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Abstract

This paper is the last part of a three-fold article aimed at some
efficient numerical methods for solving the Poisson problem in three-
dimensional prismatic and axisymmetric domains. In the first and sec-
ond parts [7][8], the Fourier singular complement method (FSCM) was
introduced and analysed for prismatic and axisymmetric domains with
reentrant edges, as well as for the axisymmetric domains with sharp
conical vertices. In this paper we shall mainly conduct numerical ex-
periments to check and compare the accuracies and efficiencies of FSCM
and some other related numerical methods for solving the Poisson prob-
lem in the aforementioned domains. In the case of prismatic domains
with a reentrant edge, we shall compare the convergence rates of three
numerical methods: 3D finite element method using prismatic elements,
FSCM, and the 3D finite element method combined with the FSCM.
For axisymmetric domains with a non-convex edge or a sharp conical
vertex we investigate the convergence rates of the Fourier finite element
method (FFEM) and the FSCM, where the FFEM will be implemented
on both quasi-uniform meshes and locally graded meshes. The com-
plexities of the considered algorithms are also analysed.
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1 Introduction

Numerical solutions of three-dimensional boundary value problems (BVPs) in non-convex
domains are quite different from the two-dimensional case and is usually much more diffi-
cult. Among many existing methods, Fourier Finite Element Method (FFEM) is a popular
and widely investigated efficient method for solving BVPs in three-dimensional prismatic
or axisymmetric domains. The method uses the Fourier expansion in one space direc-
tion and the finite element method in the other two space dimensions, see, for example,
[5, 12, 13, 16, 19]. Tt is known that when reentrant edges are present in the domains (or
sharp conical vertices characterized by [8, Eq. (3)] in axisymmetric domains), FFEM can
not achieve the optimal H'-convergence rate due to the singularities of the solution. In
order to overcome this disadvantage, the Fourier Singular Complement Method (FSCM)
has been developed in [7, 8] for solving the singular Poisson problem. One special feature
of this new method is to add some singular test functions to the usual Lagrange FEM, but
in a completely different manner from the existing ones. The FSCM has the following ad-
vantages: no any cut-off functions are required in its computation; singularity coefficients
need to be evaluated only for low Fourier modes; and no any mesh grading or refinements
are needed to achieve the optimal convergence near the singular edges or vertices so that
the application to unsteady problems with larger time steps is possible.

The aim of this paper is to test the efficiency of the FSCM, and to compare it with
the efficiency of some other popular numerical methods for solving the Poisson problem
with homogeneous boundary conditions. In the case with non-homogeneous boundary
conditions, one may consider a suitable lifting to transform the original problem into a
homogenous one. In the case of a prismatic domain we will test three numerical methods:
3D finite element method using prismatic elements, the FSCM, and the 3D FEM combined
with the FSCM. The latter is motivated by the fact that the edge singularity distribution is
in general not explicitly known, but it can be approximated by means of a Fourier series of
the 2D singularity coefficients which can be computed by the FSCM. Then the regular part
of the solution can be approximated by the usual 3D FEM to the Poisson problem with
a modified right-hand side. For axisymmetric domains we shall also conduct numerical
experiments for three different methods: the FSCM, the FFEM on quasi-uniform meshes
as well as on meshes with appropriate local grading. We remark that the algorithm of the
FSCM for the BVP in axisymmetric domains may differ slightly, depending on whether
reentrant edges or sharp conical vertices are present. There are three pairs of dual/primal
singular functions for reentrant edges, but only one pair for conical vertices [8].

The rest of this paper is arranged as follows. In Section 2, the convergence rates
of different numerical methods are tested for solving the Poisson problem in prismatic
domains, and the influence of the regularity of the right-hand side on the convergence rate
of the FSCM is also investigated. Section 3 presents numerical results for axisymmetric
domains. Due to the presence of the weighting factor r—!, where r is the distance to the
symmetry axis, in the considered bilinear forms, we shall test two problems whose exact
solutions behave differently near the symmetry axis. Furthermore, we investigate whether
the convergence rate, as a function of the number N of Fourier modes used, depends on
the regularity of the exact solution (consequently on the regularity of the right-hand side)
with respect to the rotational angle. Finally, some complexity analysis is given in Section 4
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Figure 1: 2D and 3D domains.

for the numerical methods considered.

2 Numerical results for prismatic domains

We are interested in the numerical solution of the following homogeneous Dirichlet problem
for the Poisson equation

—Au = f in Q; u=0 on 09 (1)

in prismatic domains with reentrant edges. Typically, the domain €2 is described by w x Z

1
with w being a polygonal domain having a reentrant corner of angle z, @ 6]5, 1] and Z an
Q

interval. The numerical tests to be presented in this section are made over the prismatic
domain of Figure 1, where

w=12,4[x]1,3[\ ]3,4[x]2,3[, a = g and Z =]0, 1],

so domain €) possesses only one reentrant edge F = C'x]0, 1], with C' being the reentrant
corner of w. We remark that we take a polygon w with only one reentrant edge here is
purely for the sake of simplicity.

It is well known from [10, 11] that the solution u to the Poisson system (1) has, in
general, a singular behaviour near the non-convex edge and corners. Precisely, it is shown
in [1, 20] that in the prismatic case, corner singularities behave as the edge singularity, and
the solution u can be split into

u = u, +y(r, 2)r* sin(ad), (2)

where u, is the regular part, i.e. u, € H*(Q), v(r, z) is the edge singularity distribution
and (r, 0, z) are the local cylindrical coordinates.
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The poor regularity of u, u € H*(Q) for any s < 1 4 a, makes the piecewise linear
Lagrange finite element method (FEM) converge in H'-norm only at the rate h*. So the
Singular Complement Method [9] was combined in [7] with the Fourier expansion along
the singular edge to recover an optimal convergence order O(h + N~!) with the piecewise
linear Lagrange FEM, when the right-hand side f meets certain regularity conditions:
f € H*(]0,1[, L*(w)) N H(]0, 1], L*(w)). Here h is the finite element mesh size and N is
the number of Fourier modes used. These conditions will be examined through numerical
experiments below. Three numerical methods will be used to solve the 3D Poisson problem
(1) and their convergence rates will be compared. The first method is the finite element
method using 3D prismatic elements (without any refinement), and it is motivated by
the prismatic shape of domain §2. The theoretical convergence rate of this method is
h®. The second method is the FSCM proposed in [7], while the third method uses the
SCM to approximate the singular part and then use it to discretize the regular part by
prismatic finite elements. We remark that in this last method, Inverse Fourier Transform
is needed only for reconstructing the singular part. All numerical tests are carried out with
MATLAB. Some complexity analysis will be presented in Section 4 for these numerical
methods.

2.1 Approximation of the solution using prismatic finite elements

In this section, we will test the convergence rate of the finite element method using 3D
prismatic elements for solving the Poisson problem (1). For the purpose, we triangulate
into small equal prisms of mesh size h with vertices {M;}Y ,, and the resulting triangulation
is denoted by P,. Clearly, one may realize P, by a 2D regular triangulation of &w and a
1D partition of the interval Z, both with mesh size h. On P,, we define the following

Figure 2: Two dimensional mesh for h = 0.125.

prismatic finite element space :
Vi, = {Uh € CO<Q) : Uh|Q € P21D ® PllD, VQ € Ph}
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and its subspace V}? with functions vanishing on the boundary of Q. Each shape function
¢; of Vj, satisfies ¢;(M;) = 0; ; and reads on each element as follows (cf. [6]):

¢j(x,y, 2) = ayz + arz + azz + a4x + asy + ae.

Then the Poisson problem (1) can be naturally approximated by the discrete problem:
Find uj, € V) such that

/ Yy, - VopdQ = / fondQ Yo, € V0
Q Q

h Prisms | Nodes | [[u —us|l1 | B1
0.25 768 565 4.10e-3 -
0.125 6144 3753 2.38e-3 | 0.78
0.0625 | 49152 | 27217 1.33e-3 | 0.84
0.03125 | 393216 | 207009 7.44e-4 | 0.84

Table 1: H'-norm errors.

The errors are computed with a 14 point quadrature formula in each prism, obtained
from a 2D 7 point formula (5"-order) and 1D 2 point formula (3'%-order). Table 1 presents
the H'-norm errors of the prismatic finite element solution described above when the exact
solution is constructed as follows :

u(r,6,z) = { (z(1 = 2))° (1 — (2r)3 + (2r)5 — (27“)2)2r§ n(26)

r
0 , T

(AVARIVAY
N N[

The values 3; in Table 1 represent the convergence rates in the form O(h”') and are
computed using the H'-norm errors on two consecutive meshes. We see from Table 1 that
the H! convergence rate is slightly better than the theoretical one O(hg) but still worse
than O(h). The difference between the exact and the observed rates may be due to the
use of quasi uniform meshes and the presence of a truncation function.

The next section will be dedicated to show the remarkable accuracy of the FSCM
proposed in [7] for prismatic domains. The theoretical convergence is proved to be optimal
when f € H?(]0,1[, L*(w)) and satisfies the homogeneous boundary conditions at the
faces z = 0 and z = 1. This motivates another interesting investigation into the effect of
the boundary conditions of f at the faces 2 =0 and z =1 on the convergence rate of
the method (see [7, Theorem 6.1]), as well as how this convergence rate depends on the
regularity of f with respect to z.

2.2 Convergence of the Fourier Singular Complement Method

(FSCM)

The FSCM is based on a Fourier expansion along the edge direction (z-axis) to transform
the 3D problem into a sequence of 2D problems which are then solved using the 2D SCM.

4



One of the nice features of the FSCM is that it needs to compute the singularity coefficients
in the 2D problems only for low Fourier modes, whereas for higher modes the singular part
is sufficiently small so that the discretization error dorminates. Before stating the algorithm
we introduce a few notations. N is the number of Fourier modes used and C* is a positive
constant. We denote by aj the bilinear form on H}(w) x H}(w) defined by

ag(u,v) = /(Vu Vo + kA ruv)dw.

Let 7, be a regular triangulation of @, we then define
WP ={u € C®),ux € P(K)VK € T,} N H}(w)

to be the 2D P! Lagrange finite element space. The FSCM algorithm can be stated as
follows: For k < N,

1. Find 2F € W) such that ax(2F,vs) = (f*, vn) Yo, € W2,

P22 ’

5 Qot ok — (F*—(km?)? 2y pl) if kb < C*hiﬁ
. " 0, otherwise

3. Find @f € W such that ay(af,vp) + clag(h, vy) = (f*,v) Vo, € WP,

where plt, ¢ are respectively the approximate dual and primal singular function, the exact
ones having the expressions:

ps = p+r “sin(afh), ﬁGHl(

S

);
bs = ¢+ Br® sin(ad), ¢ € H*(w), 8= %Ilpsll?),

cf.[7, §5] for more details. Then the approximate solution to the Poisson problem (1) is
given by

e

=N
upy = uf (z,y)sin(knz), uf =ay + ciol. (3)
k=0
Unlike in the axisymmetric case where no boundary conditions regarding 6 are needed
thanks to the periodicity, one has to assume in the prismatic case that f vanishes at
z =0 and z = 1 in order to derive the optimal convergence of order O(N~! + h) (cf. [7,
Theorem 6.1]. To test the actual effect of the boundary conditions of f on the accuracy
of the FSCM solution, we use a right hand side f which does not satisfy the vanishing
boundary conditions on dw x {0,1} but has the required regularity in z (cf. [7]), namely
f e H*(]0,1[, L*(w)). We suppose the exact solution is

w6, 2) = { 21— 2) (1- @0)F + (203 — @?) i sin(20). o

0,

= =
IV IA
N[ N[



for which the edge singularity coefficient is constructed in H2(]0,1[) N H(]0, 1[). In our
computations, the FSCM solution u} in (3) is computed with N Fourier modes and u} is
computed on the triangulation 7;, of w with mesh size h. To study the convergence rate
in terms of h, we take the number of Fourier modes to be the same for all meshes and to

satisfy N~1 < h for the finest mesh. The convergence of the FSCM solution is reported in

h Nodes | kmax | lu —upll1 | A1
0.125 | 417 4 8.04e-3 -
0.0625 | 1601 7 4.32e-3 | 0.90
0.0312 | 6273 13 2.15e-3 | 0.99

Table 2: H'-norm errors by the FSCM using N = 32 Fourier modes.

Table 2, where kp,.x is the highest mode used in the SCM whose dependence on the mesh
size h is given in Figure 3, and the constant C* is set to the value one. We see from Table

10°

10'F

number of modes k.
max

o

10

107 107 10°
mesh size h

max

Figure 3: Graph of Ky = [h_ﬁ] where [z] denotes the integer part of = with o = 2.

2 that the H'! rate of convergence of FSCM is optimal even if f does not vanish at z = 0
and z = 1. This leads us to investigate the effect of the regularity of the right-hand side
with respect to z. Thanks to the spectrum of the one dimensional operator:

d2

5 HA0. 1) — H(0,1)),

we know by interpolation that
[Hy (10, 1)), £2(J0, 1])]s = {f =D frsin(kmz) 2y (kw00 AP < OO}
k=1 k=0

is Hy*(]0,1]) for s # 3 and HE(]0,1[) for s = & (cf. [15]). In Table 3, optimal numerical
convergence rates are observed for f with different regularities, lying respectively in the
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Figure 4: Edge singularity distribution -, for different mesh sizes h with f = 1.

spaces Hy*(]0,1[; L*(w)) for s = 0,1,2,1 and HO%O(]O, 1[; L*(w)) for s = 3. These tests
were done without FFT but with the real Fourier modes of the right-hand side. Indeed,
considering FFT or not does not bring any obvious difference in our results. The exact
Fourier modes of the solution are
_ (1 - (27“)% + (2r)s — (27’)2)27’§ sin(gﬁ) r
up(r,0) = (km)z—ste 37

0, r

wlot
(AVARR VAN
= N

They are chosen to ensure the condition

1
2(1-s)|| £k|12
(k) 1F5115 hm)e”
for a small € > 0.
IREESENEEE
G110.97 | 1.00 | 1.03 | 1.03 | 1.02

Table 3: H'-norm convergence rate for f in Hy~*(]0, 1[; L*(w)), s #  and HE(]0, 1], L*(w)),
N = 32.

Thanks to [7, Ineq. (25)], see also [3], the edge singularity distribution 7 belongs to
H=%(]0, 1[), but when f has a C* regularity in €, v is in C>([0, 1]), as it is proved in [10].
Figure 4 represents the approximate singularity distribution ~, for f = 1 with different
mesh sizes : the fact that ~;, vanishes at the end points of the edge is an artifact due to
the truncation of the Fourier series. Nevertheless, {7,}, seems to converge to a regular
limit that vanishes at z = 0 and z = 1. It is also interesting to see what happens to
the case where f is not smooth : Figure 5 shows the edge singularity distribution for the
data f(z) = log(|log(3)|) which is in H2(]0,1]). Interestingly, the family {v,}, seems to
converge, but only outside a neighborhood of z = 0.
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Figure 5: Representation of the edge singularity distribution for f(z) = log(|log(3)|) for
different mesh sizes h.

2.3 Combination of the 3D FEM with the FSCM

The FSCM reduces the three dimensional Poisson problem (1) to a sequence of 2D prob-
lems. In this section, we are interested in a new method that combines the 3D FEM with the
FSCM. The basic idea is to make use of the singular part of the exact solution to compute its
regular part by means of the 3D prismatic finite elements. As the edge singularity distribu-
tion y(r, z) in (2) is not known explicitly for general right-hand side f € L%(f2), we assume
as in [7] some additional regularity on f, namely f € H?(]0,1[, L*(w)) N H}(]0, 1[, L*(w)).
Then one can write the singular part simply as v(2)¢s with v € H2(]0,1]) N H}(]0, 1]).
Letting

1

N(h)
w(z) = disin(krz), N(h) = ke = [0 7], (5)

be the approximate singularity distribution obtained by the FSCM, we can then com-
pute the regular part of the solution using the prismatic finite elements as described in
Section 2.1. In fact, by writing the solution as

U = Uy + YPs,

with v € H?(]0,1[) N H3(]0,1[), we know that the regular part u, solves the following
boundary value problem:

—Au, = f+ (y'¢s —ps) inQ; u, =0 on 0L,

where pg, ¢, are defined as in FSCM. Since u, and ~ are both H2-regular, the prismatic
finite element approximation of u, has an optimal convergence while the approximation
of v by 7, in (5) has a first order accuracy, cf. [7, Ineq. (68)]. The convergence of this
combined 3D FEM with the FSCM is shown in Table 4 when f is associated with the
exact solution (4) of the previous section. Once again, we see that the optimal rate of
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h 3D Nodes | 2D Nodes | ||[u —uplli | 1
0.25 565 113 1.24e-2 -
0.125 | 3753 417 7.80e-3 | 0.65
0.0625 | 27217 1601 4.22e-3 | 0.88
0.0312 | 207009 6273 2.13e-3 | 0.98

Table 4: H'-norm errors by using the FSCM for the singular part and prismatic finite
elements for the regular one.

convergence for the H' error is recovered. Noting v € H?(]0,1[) N Hg(]0, 1), so its Fourier
approximations ;, converge in H2(]0,1[) N H}(]0,1[) (cf. [7, Lemma 6.1]; in this case the
conclusion holds without assuming the boundary conditions on f), therefore the optimal
convergence rate can be recovered in this example. Also, one can observe that the errors
are almost identical to the ones as shown in Tables 2.

To summarize, one can conclude that the FSCM is indeed powerful and robust, since
it yields satisfactory results even though the vanishing boundary condition on f is not
satisfied (at least when the edge singular function lies in some suitable space). We will
analyse in Section 4 the complexity of these methods, which shall indicate that the FSCM
is less expensive.

3 Numerical results for axisymmetric domains

The aim of this section is to compare two different methods for solving the BVP (1) in
axisymmetric domains with reentrant edges or sharp conical vertices. The first method is
the FSCM [8], while the second is called the FFEM, which is a combination of the Fourier
method with the FEM in 2D (cf. [12, 16]). The convergence rates of two methods in terms
of the mesh size h and the number N of the Fourier modes used will be investigated. It is
known (e.g. [13]) that the FFEM on quasi-uniform meshes can not achieve optimal conver-
gence in terms of h, due to the singularity of the solution. So we shall test the convergence
of FFEM on some locally graded meshes and compare it with the FSCM (cf. [8]). The
numerical experiments are carried out by means of the package FEMGP, that is described
in [14]. More details can be found in Section 4 about the numerical realization of the
considered algorithms.

Let (7,0, z) be the natural cylindrical coordinates. We suppose that the axisymmetric
domain €2 is generated by rotation of a polygon w, called the meridian domain, about the
z-axis. Furthermore, v, denotes that part of Ow which generates the boundary of the 3D
domain  (see [8, §2] for more details concerning geometric setting and notations).

Applying the Fourier analysis with respect to 6 to the functions v and f in (1), with
a Fourier expansion like u = ), uFe™ we know that for any k, the Fourier mode u* is

9



characterized as the solution to the following 2D boundary value problem :

Puk 1ouk O*F K,

_ rk ; . k _
52 7o 52 T2l = f inw; uw =0 on .

The variational formulation of (6) reads as follows (cf. [8, §2.3]) :
ap(u®,v) = (f* [v) Vv € V),

where V(i is a Sobolev space described in [8, Lemma 2.1], and

ag(u,v) = //w {rVu-Vﬁ—i— ]{;uﬁ drdz, (f|v):= //wfﬁrdrdz, (7)

with V being the gradient in the (r, z) plane.

3.1 The FFEM and the FSCM for domains with reentrant edges

We will consider in this subsection the axisymmetric domain whose meridian domain pos-
sesses a single reentrant corner on 7,, and the domains with sharp conical vertices will be
studied in Subsection 3.2.

In order to describe the FFEM on locally graded meshes, we first introduce some
notations. We use (rg, zg) to denote the coordinates of the singular corner E of w, and
(p, @) to denote the local polar coordinates with respect to E:

r—rp=pcos(p+ ¢g), z—zg=psin(p+ ¢p). (8)

To provide a framework for graded meshes, we introduce the real grading parameter p
(0 < p < 1), the grading function p;, the step size h; and regions of mesh grading B; as
follows:

L .
p; = p(jh)x, j=0,1,...,J
h’] = P Pi-1, j:1727"'7J
B, = {(rz)cw:pji.1<p<p;}, j=12...,J

with J = [h7!] (integer part of h™!) and some real parameter p, 0 < p < rp. The
coordinates p, ¢ are related with r and z by (8). We suppose that the triangulation 7, of
the domain w fulfills the following assumptions (cf. [17, 1]):

(i) hh<hp<lbh for Te€eTy: TNB;=0forj=1,...,J,
(ii) lih; < hy <lsh; for T € T,: TN B; # 0 at least for one j € {1,...,J},

where [y, l; do not depend on h. Let n; denote the number of triangles satisfying TN B; # ()
for any j € {1,...,J}, then by elementary considerations it holds that n; < C} for
j=1,...,J, with C independent of h and j. Clearly, for u = 1 the mesh is quasi-uniform,

10



for 0 < p < 1 it is quasi-uniform only outside the region of grading the mesh. But the total
number of nodes of 7y, is always of the order O(h~2). Related types of mesh grading are
described e.g. in [4, 18]. The package FEMGP contains a generator for meshes satisfying
the assumptions mentioned above. Some examples of meshes with such gradings are given
in Figures 8.1 and 8.2.

Next, we shall recall the FSCM algorithm for the axisymmetric case (8, §§5.3 and 5.5,
which is slightly different from that in the prismatic case. The algorithm reads as follows:

1. Find 2} € W) such that ag(2F,vn) = (f* | vp) Yo, € WP.

0, otherwise.

1 k| ph 2 k| b - «) " 5—ag
2. Compute CZ — { ||1,,g||(2)’1 |:(f |ps) - (k —4) (Zh ‘ qg):|7 if k < C*h 0

3. Find af € W such that ay(af,vs) + cf ar(@h,v) = (fF | vp) Vo, € W,

where «q E]%, af with a being the exponent of singularity, p? and ¢ are respectively the
approximate dual and primal singular function, and ¢" := p”/r?. The bilinear form a; and
the scalar product (- | -) are taken from (7), || - ||o.1 denotes the norm associated with this
scalar product. The FSCM solution is then obtained from

N __ § k ik6 k _ ~k k  _h
Up = uh(n 2)6 ) Up, = Up, + Ch Ps -

We would like to point out that the FSCM algorithm for the Poisson problem in axisym-
metric domains with reentrant edges requires the computation of three pairs of dual /primal
singular functions (in constrast to the prismatic case where only one pair is needed), namely
p2eh and 2%h plit and pl" as well as p%" and %" [8, §5].

The exact dual singular functions are (with the notation from (8) and a := rg):

Pyt = P+ pye with p*° € Hi(w), py© = p~*sin(ag) [1 - % cos(¢ + cbo)],

~ ol o~ o r 3p
py =P +p, with e Vi(w), p,=p *sin(ag) - [1 — 5, cos(@+ ¢o)}, (9)

~ ol o~ o 7\ 2 5)
p? = p? —l—pf, with p? € V[ (w), pf, = p “sin(ag) (5) [1 — 2—2 cos(¢ + <bo)],

and the exact primal singular functions:
¢ = % 4 §%¢p%° with ¢%¢ € VI(w), ¢ = p®sin(ag),
Py = @ +0lep  with@' € VA(w),  wp = p*sin(ad) 2 (10)
2
=Pl with @ e Vi), wh=p"sin(a9) (1)

The spaces H{"(w) consist of all functions w € L?(w) such that their partial derivatives of
order < m belong to L2 (w), where L?(w) is defined as the set of measurable functions w

11



with [[w]|12 ) = (f w?(r, z)r“‘drdz) * < o0. The spaces V™(w) are characterized as fol-

lows: Vi™(w) = {w € H*(w); Owlpmny, =0,0<1<m—1, and " 'w € L2, (w)}. The
coefficients 0*¢ and 0* (k = 1,2) in (10) are defined by: 6% = L [[p2¢||5,, 0¥ = L |Ip¥[|3 ,
(k =1,2), where || - [|o.; means the norm associated with the scalar product (- | -) from (7).
The presence of various dual/primal singular functions is basically due to different regu-
larities of the Fourier modes u", u*!, and u* with |k| > 2.

To measure the convergence rate approximately, we adopt the following asymptotic
relation of the error function

||u—uflv||H1(Q) %ClhﬁJngN_V (11)

where u and u}) are respectively the exact solution of (1) and the FSCM (or FFEM)
solution, while 3 and  are respectively the convergence rates with respect to h and N. By
using the package FEMGP, we can obtain the norms of the error (u —u}) with respect to
h and N separately. Therefore the values of 3 (or ) can be computed by using the errors
on two consecutive levels of i (or N), see [19, §6.2.1] or [13, §7] for more details.

As our first example we consider the solution of (1) in an axisymmetric domain whose
meridian domain is L-shaped: w :=]0, 1[x]0, 1[\]0.5, 1[x]0.5, 1[. Consequently, the singular
corner of the meridian domain is the point £ = (rg, zg) = (0.5,0.5), the angle ¢ in (8)
is 7, and the exponent of singularity is a = % We suppose that the exact solution of the
Poisson problem is given by

,$)0(0) with

PP+ T-25 p? — 14p3 + p3) sin(2¢)  for p<0.5

u(r,0,z) =

i(p,6) = { (12)

for p> 0.5
70 for 0<8<nm
o) = {92—37r9+27r2 for m < 0 < 2m,
and u(r, 0, z) can be represented as an infinite Fourier series:
. 8 > 2k+1 ~2k+1 ~<p’ (b)
u(r,0,2) =~ kg ¢) sin((2k + 1)) with @™ (p, ¢) = k1) (13)

Considering the convenience in practical computations, we use the sin-cos-representation
of the Fourier series instead of the complex form with e??.

We have tested the FFEM and the FSCM on quasi-uniform meshes as well as the FFEM
on locally graded meshes. In order to achieve the optimal rate of convergence for FFEM
on a graded mesh, a grading parameter p with p < o should be chosen. For a < pp < 1 we
would obtain a better convergence rate than in the case of quasi-uniform meshes but not
the optimal rate [1]. For all experiments described in this subsection we use local grading
with the parameters po = 1.02a = 0.68 and p3 = 0.8 = 0.533; uy = 1 corresponds to the
quasi-uniform mesh. Figures 8.1 and 8.2 show the locally graded meshes with © = u3 for
the mesh parameters h = 0.125 and h = 0.0625.

In our implementations it seems important to mention how we calculate the most
singular part of ¥, the integration of the functions p2¢" and p*" (k = 1,2) (cf. [8, §85.2
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and 5.4]). These functions have weak regularities in the neighbourhood of the reentrant
corner because of the presence of the factor p= in pg’e and p’; (k = 1,2). But these
functions are explicitly known (see (9)), and therefore the computation of the integral can
be split into two parts: one over the subdomain wy := {(r, 2) € w: p < 0.25} and the other
over the remaining part wy := w \ wy. Then the integral [ |pj|*rdrdz can be computed
analytically, and the remaining terms in the integral over w; as well as the integral over ws

are computed numerically.

First we observe the convergence behaviour in terms of the discretization parameter h.
Table 5 and Figure 7 show the numerical results, where e,,, i = 1,2,3, (resp. ersom)
denotes the H'-norm of the error with respect to h for the FFEM on meshes with the
grading parameter j; (resp. for the FSCM), and 3,, (resp. Brsom) is the corresponding
convergence rate. For these experiments, the discretization parameter N has been chosen

as N = h™!. The value of k., in the table is determined by kpax 1= [C’*h_ﬁ}, and we
set cfl = 0 for k& > kpax. We choose C* = 1 and ag = 0.51 in the experiments, and one

may see Remark 3.1 at the end of this subsection for some comments on the choice of these
parameters.

h €1 ﬁm S ﬁug €us ﬁug €rscMm Brsem | Kmax
0.125 | 2.361e-1 - 2.072e-1 — 1.695e-1 - 1.701e-1 - 4
0.0625 | 1.485e-1 | 0.669 | 1.175e-1 | 0.818 | 7.957e-2 | 1.091 | 9.094e-2 | 0.903 6
0.0312 | 9.004e-2 | 0.722 | 6.463e-2 | 0.863 | 3.946e-2 | 1.012 | 4.696e-2 | 0.953 | 10
0.0156 | 5.401e-2 | 0.737 | 3.484e-2 | 0.891 | 1.994e-2 | 0.985 | 2.381e-2 | 0.980 | 16
0.0078 | 3.214e-2 | 0.749 | 1.849¢e-2 | 0.914 | 1.017e-2 | 0.971 | 1.197e-2 | 0.992 | 25

Table 5: H'-norms of errors: €u1> Cus» Cus» Crscm; and convergence rates By, Buys Bugs Brsom With
respect to h for the FFEM on both quasi-uniform meshes (413 = 1) and locally graded meshes
(12 = 0.68, g ~ 0.533) and for the FSCM.

The convergence rates shown in Table 5 confirm the theoretically expected rates which
are equal to % for quasi-uniform meshes and 1 for meshes with appropriate grading (1 < «)
and for the FSCM, see e.g. [8, 13, 16]. Comparing the errors e,, and epgcy, one can see that
the FFEM with the mesh grading parameter pus = 0.8 ~ 0.533 yields a slightly better
convergence than the FSCM for the considered example. Moreover, mesh grading with
e = 1.02a = 0.68 leads to an improved convergence rate than on quasi-uniform meshes,
but not the optimal rate.
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——— FFEM: gquasi-uniform mesh
~= 0=~ FFEM: graded mesh with mu = 0.68
””” FFEM: graded mesh with mu = 0.533

0.1 7

approximation error

0.01 7

100 1000 10000

number of nodes

Figure 7: Representation of approximation er-
rors for the example with the exact solution (12)

Figure 8.1: Graded mesh for h = 0.125 Figure 8.2: Graded mesh for h = 0.0625
and p ~ 0.533 and p ~ 0.533

The convergence behaviour of the considered methods in terms of the discretization
parameter N is reported in Table 6. Same errors and convergence rates are obtained for all
investigated methods, so the data are given only once in the table and the indices of e and ~y
are omitted. The fact that the convergences are independent of the employed methods can
be justified theoretically: the singularity caused by the non-convex edge of the domain does
not have any effect in direction of the rotational angle #, and the parameters h and N are
decoupled in the error estimates so mesh grading or FSCM improves only the convergence
in h.

The results in Table 6 show that the convergence rate in NV is considerably better than
the theoretically expected rate v, = 1. This may be justified as follows: the Fourier modes
of the exact solution u behaves like k73 (see formula (13)), therefore the regularity of u
with respect to 6 is better than H?(]0,2nx[). But theoretically the H?-regularity already
guarantees the convergence rate v = 1 with respect to N. So it would be interesting to
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N e v
8 | 1.3681e-3 -
16 | 4.5929e-4 | 1.5747
32 | 1.5985e-4 | 1.5227
64 | 5.5912e-5 | 1.5155
128 | 1.8620e-5 | 1.5863

Table 6: H'-error norms e with respect to N and convergence rates

consider a problem whose exact solution has less regularity with respect to 6. Moreover,
in view of the weighting factor =! in the bilinear forms a; from (7), it would also be
important to study an example where the Fourier modes of the solution are not equal to
zero near the z-axis. This motivates our next example.

As our second example, we take the same domain €2 as in the first example, but the
exact solution is represented by

ﬂo 256 ’ak
u(r,0,z) = 5+ Z e sin k6 (14)
k=1
with @* = a(p, ¢) + a*(r,2) for k =0,...,256, @(p, ¢) from (12), and

W0(r,z) = (12" — 1412+ 2) (z° — 1.52% + 0.52) |

WF(r,2) = (P =152 4050 (2 — 1.522 +0.52), k=1,...,256.
0¥ (r, z) are added to @(p, ) to ensure that the Fourier modes of u do not vanish in
the neighbourhood of the z-axis. However, functions @*(p, ¢) for k # 0 vanish right on
the z-axis. This is a general property of the Fourier modes of functions u € H'() in
axisymmetric domains €2, see e.g. [2, 16] for more details.

h €1y ﬁul S /B;Q €us ﬁug €rscm Brsom
0.125 | 1.708e-1 - 1.533e-1 - 1.300e-1 - 1.178e-1 -
0.0625 | 1.059e-1 | 0.690 | 8.631e-2 | 0.829 | 6.257e-2 | 1.055 | 6.322e-2 | 0.898
0.0312 | 6.351e-2 | 0.738 | 4.705e-2 | 0.875 | 3.122e-2 | 1.003 | 3.250e-2 | 0.960
0.0156 | 3.777e-2 | 0.750 | 2.519e-2 | 0.902 | 1.577e-2 | 0.985 | 1.642e-2 | 0.985
0.0078 | 2.234e-2 | 0.758 | 1.326e-2 | 0.925 | 8.027e-3 | 0.974 | 8.232e-3 | 0.996

Table 7: H'-norms of errors: €u1s €uzs €us»> Ersom; and convergence rates By, Busy Bus, Prsom
with respect to h for the FFEM on quasi-uniform meshes (43 = 1), on locally graded meshes
(12 = 0.68, pg ~ 0.533) and for the FSCM

Table 7 shows the convergence results with respect to h, but the values of k.. are
not listed because they are the same as those in Table 5. We observe that the obtained
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convergence rates are again very close to the ones predicted by theory. We remark that
the convergence rates 3,,, 3,, are slightly better than those in Table 5. This difference
can be explained as follows: the addition of the function 4* in (14) makes the regular part
of @* more dominant, therefore the convergence rates with the quasi-uniform meshes and
the graded meshes with © > « are improved.

Table 8 presents the approximation errors and convergence rates with respect to N.
These convergence rates agree with the theoretically predicted value 7, = 1 for functions
having a regularity H?(]0,27[) (but not better) with respect to 6.

N e v
8 | 2.4070e-3 -
16 | 1.1731e-3 | 1.0370
32 | 5.8013e-4 | 1.0158
64 | 2.8242e-4 | 1.0386
128 | 1.2595e-4 | 1.1650

Table 8: H'-norms of approximation errors with respect to N and convergence rates -y

Remark 3.1 The choice of the parameter C* may have some influence on the approrima-
tion errors and the convergence rates. In order to find a suitable value for this parameter,
we have tried to fix ag = 0.51 and compare the convergence rates obtained for C* =
(see Table 5) with those for C* = 0.125. In the case C* = 0.125, we have ke = 0 for
h = 0.125 and h = 0.0625, so we obtain exactly the same approximate solution as in the
case of the FFEM. Consequently, the convergence rate at this level is not better than that
of the FFEM. But for the smaller discretization parameters h, the convergence rates are as
good as the rates presented in this subsection, although the values of k.. are smaller than
those in Table 5. On the other hand, since the convergence rates obtained with C* = 1
are convincing, there is no use to increase the value of C*. Larger values of C* would
cause increased values of k. and, consequently, an increased number of 2D problems to
be solved [8, §5.3]. For fized C* = 1, the value of ke becomes larger with increasing .
But we have observed that their effects on the convergence rate is insignificant in all the
experiments reported in this subsection. Therefore we have chosen g = 0.51, in contrast
to oy = 2/3 selected in Section 2.

3.2 Numerical results for domains with sharp conical vertices

Sharp conical vertices are another type of geometric singularities occurring in an axisym-
metric domain, and are defined by the condition that § > - ~130°48’ (cf. [8, §2.1]). Here
% is the size of an interior angle of w which belongs to a corner lying on the z-axis. The
FSCM is an algorithm that is proposed in [8] to deal with such singularities. In compari-
son with the reentrant edge case of Subsection 3.1, only one Fourier mode, namely «°, has

a singularity. Consequently, we need an approximation for only one pair of dual/primal
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singularities p%¢, ©%¢ and one singularity coefficient. The exact dual and primal singular
function read as follows:

e = 4 pie with §%¢ € H}(w) and p%° = p~°~1P, (cos ¢),
(15)
G = @0+ B0l with § € HE(w) and g = g P, (cos o).

where P, denotes the Legendre function with index vy := min{v > 0: P,(cos §) = 0} [8,
§2.1]. The spaces H{"(w) were introduced in Subsection 3.1, and the coefficient §°¢ in (15)
is given by

/B
-1
8¢ = 1213, |1+ 2) [ P(cos @) sinod|

0

with the norm || - || associated with the scalar product (- | -) from (7).

Now, the FSCM algorithm given in Subsection 3.1 needs to be carried out only for
k = 0, where the parameters C*, o and the number k., do not occur.

We now consider an axisymmetric domain whose meridian domain is a pentagon with
the vertices (0, —1), (1,—1), (1,1), (0.41421,1), and (0, 0), see Figure 9. The corresponding
axisymmetric domain has a sharp vertex with the opening angle % = 157.5°. Assume that
the Poisson problem (1) has the exact solution of the form

u®(r, 2)

u(r,0,z) = +u'(r, z) sin @ (16)

where the Fourier modes u° and u! are given by

3 — -3
u’(r,z) = @’(p,¢) = (—p3 p O T ey p”°) Py (cosp)  forp <1
vy — 1 Vg — 1 0
u(r,z) = a@(p,¢) =0 for p > 1
ul(r,z) = a'(p,¢) = (=p° +3p" =3 + p?) By, (cos 9) for p < 1
u(r,z) = a'(p,¢) =0 forp>1

with P (cos¢) (resp. P, (cos¢)) above being the Legendre function with indices vy ~
0.29225 and 0 (resp. v; ~ 1.06783 and 1). It is natural for us to consider only the con-
vergence with respect to the discretization parameter h with this example. Noting that
u® € H" 575(w) for ¢ > 0, we choose the parameters py = 1.02(ry + 3) ~ 0.808 and
p3 = 0.8(p + 3) ~ 0.634 for the local mesh grading near the singular point (0,0); py = 1
corresponds to the quasi-uniform mesh. Figure 9 shows the graded mesh with h = 0.125
and p = 3.

The approximation errors and convergence rates are shown in Table 9 and Figure 10,
where the notations are the same as in the previous subsection. We notice that 3, < 3, for
any discretization parameter h, where (3, is the theoretically predicted rate of convergence,
and we know (3, = vy + % ~ 0.792 for the quasi-uniform meshes. This behaviour differs
from the one for the reentrant edge case where 3,, > 3, for all h, see Tables 5 and 7. The
convergence rates 3,, and Brson given in Table 9 are very close to 3, = 1, namely the rate
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h €y ﬁm €z

ﬁuz €us B,LLS Erscm Brsom

0.25 3.982e-1 - 3.721e-1
0.125 | 2.608e-1 | 0.610 | 2.253e-1
0.0625 | 1.597e-1 | 0.708 | 1.276e-1
0.0312 | 9.521e-2 | 0.746 | 7.020e-2
0.0156 | 5.612e-2 | 0.763 | 3.806e-2
0.0078 | 3.279e-2 | 0.775 | 2.039e-2

- 3.350e-1 - 2.422e-1 -
0.724 | 1.654e-1 | 1.018 | 1.345e-1 | 0.849
0.821 | 8.358e-2 | 0.984 | 7.079e-2 | 0.926
0.862 | 4.243e-2 | 0.978 | 3.625e-2 | 0.966
0.883 | 2.152e-2 | 0.979 | 1.832e-2 | 0.984
0.900 | 1.089e-2 | 0.984 | 9.206e-3 | 0.993

Table 9: H'-norms of approximation errors: €u1s Cuss €uy and epscn; and convergence rates 3,
Bus» Bus» Prsem of the FFEM on both quasi-uniform meshes (11 = 1) and locally graded meshes

(12 =~ 0.808, ug ~ 0.634) and of the FSCM.

predicted by theory, but the FSCM yields better approximation errors. As in the reentrant
edge case, the mesh grading parameter pu, = 1.02a = 0.808 improves the convergence rate
compared with quasi-uniform meshes, but the optimal rate is not achieved.

It should be mentioned that for the FSCM algorithm, the errors occurring due to the
approximate evaluation of the Legendre function are negligible compared with the finite
element discretization error [8, Remark 5.1].

Figure 9: Graded mesh for h = 0.125
with p ~ 0.634

approximation error

—+—— FFEM: quasi-uniform mesh
~=0—-- FFEM: graded mesh with mu = 0.808
””” FFEM: graded mesh with mu = 0.634

01 7

001 7 T

100 1000 10000
number of nodes
Figure 10: Representation of approximation er-
rors for the example with the exact solution (16)

4 Study of the complexity of the algorithms

In this section, we shall analyse the computational complexities of the numerical algorithms
We start with the two methods FFEM and the
FSCM, both of which involve finite element computations only in 2D. For the purpose, we

which were tested in Sections 2 and 3.
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introduce the following notations:

K B}

m -
q1 -
q2 -

number of Fourier modes used in an approximate solution;

parameter used in the FSCM, given by ki ax

= [hiﬁ], cf. Sections 2.2 and 3.1;

total number of nodes of the 2D finite element mesh;

tolerance to stop the CG iteration in solving a linear system of equations;
characterizes the number of iterations for solving a linear system of equations.
For each h there exists a number kcg(h) such that the number of iterations
to reach the tolerance ¢ in solving a linear system of equations by the pre-

conditioned CG method is O(Nzg Ine™!) for k < kca(h) and O(Nylne™t) for
k > kcg(h), with k being the Fourier index; we set kg = kog(h) in the FFEM
complexity, and ko = min(kcg(h), kmax) in the FSCM complexity.

number of subintervals used for the algorithm of the Fast Fourier Transform:;
number of quadrature points used for 1D integration;

number of quadrature points used for 2D integration.

First consider the FFEM. We know that for each k, the coefficient matrix Ay involved
in the resulting finite element system is of the form: Ay, = A;, + k?Dy, (cf. also [19,
§6.1.1]), so the “ stiffness ” matrix A, and the ¢ mass ” matrix Dy, need to be generated
only once. Moreover, it should be pointed out that for larger %, the part k*D;, dominates
in the coefficient matrix Ayj,. Consequently, the condition number of A,, becomes more
well-conditioned, thus the number of CG iterations for solving the linear system reduces.

Step of the algorithm

Number of operations

Generating the element stiffness matrices
and the element mass matrices

Assembling the matrices A;, and D,

Computing the Fourier modes f* of the
right-hand side f in each quadrature point

Assembling the element right-hand sides
fork=1,...,K

Solving K systems of linear equations
using the preconditioned CG method

Fourier synthesis of the solutions
of the 2D problems

O(q2Ns)
O(Nz)

O(g2Nam log, m)

O(@2\N2K)

O(koNg Ine )+
O((K - kO)N2 11'18_1)

O(Nymlog, m)

Table 10: Number of arithmetic operations needed for

axisymmetric domains

the FFEM in case of prismatic and

In Table 10, the number of operations is given for FFEM in both axisymmetric and pris-
matic domains, although it has been implemented only in axisymmetric domains (cf. Sec-
tion 3). We know that the FFEM algorithm for prismatic domains is analogous to that for
axisymmetric domains, and the FSCM algorithm contains all steps of the FFEM.

We see from Table 10 that the total number of operations for the FFEM may be
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estimated by
3
O(@No K + gaNomlogym + koNg Ine™ ! + (K — k) NoIne™t). (17)

When the FSCM is applied, we additionally have to take into account the number
of operations which are needed to compute the dual and primal singular functions, the
coefficients ¢} and the regular parts @y for each k = 0,...,kpax. Let us mention that
the computation of the dual and primal singular functions does not require any Fourier
transform since the right-hand sides as well as the boundary functions of the correspond-
ing 2D BVPs are explicitly known. For prismatic domains the dual and primal singular
functions are the same for all k, therefore two systems of linear equations are to be gen-
erated and solved, and same for axisymmetric domains with a conical vertex. But for an
axisymmetric domain with a reentrant edge, we have different dual (resp. primal) singular
functions for £ =0, |k| = 1, and |k| > 2 (see (9), (10)), hence 6 systems of linear equations
occur.

For computing the regular parts @, the matrices Ay, Dy, and the right-hand sides do
not need to be generated again and can be taken from the algorithm of the FFEM. We
have to compute only the bilinear form ay (¢, v) for the prismatic case (cf. Subsection 2.2)
and for the axisymmetric case (with 2" 1" and %" for a reentrant edge and 2%t
for a sharp vertex, cf. Subsections 3.1, 3.2). This leads to the complexity estimates in the
following table.

Step of the algorithm Number of operations

Generating the linear systems of equations
for the dual and primal singular functions O(qaN2)

Solving the systems of linear equations .
using the preconditioned CG method O(NZ Ine™t)

Computing the coefficients cf for all k =1,. .., knax | O(g2Nokimax)
Computing the bilinear form a (", v)
forall k =1,..., knax O(qaNokmax)

3
Solving k. systems of linear equations O(koNg Ine 1)+
using the preconditioned CG method (if kpax > ko) | O((kmax — ko) Nolne™t)

Solving the 2D problems:
uf =af + ot k=1, .. kmax O(kmaxN2)

Table 11: Number of arithmetic operations additionally needed for the FSCM in prismatic and
axisymmetric domains

We see from Table 11 that the number of additional operations for the FSCM can be
bounded by

3
O<q2N2kmax + koN; 111871 + (kmax — kO)N2 11'1871). (18)
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In order to estimate the number of operations for those algorithms involving finite
element computations in 3D for prismatic domains, i.e. the FEM with prismatic elements
and the combined method discussed in Section 2.3, we add the following notations :

N; - number of nodes along the edge direction;
N3 - total number of nodes of the 3D finite-element mesh;
gs - number of quadrature points used for 3D integration.

Noting that for the finite element meshes used in Section 2.1, we have the relations:
¢2q1 = q3, NoN; = Ns, and the regularity of the meshes implies N; ~ h™! ~ /Ns.
1
Moreover, for the parameter k., used in the FSCM algorithm, we have k... &~ h™ 2= =~
1

N;E

When prismatic finite elements are used to solve the 3D problem, one needs to consider
only the assembling of the stiffness matrix and the right-hand side, and the cost arising
from the CG algorithm. These are reported in Table 12, from which we know the total
number of operations for the prismatic finite element method can be estimated by

O(gsNagi Ny + (N1 N3) 3 Ine ™). (19)
Step of the algorithm Number of operations
Generating the element stiffness matrix O(q2Naq1 Ny)
Assembling the stiffness matrix O(NyNy)
Assembling the right-hand side O(N1q1 N2go)
Solving a linear system using the CG method | O((N{N,)3 Ine)

Table 12: Number of arithmetic operations needed for the 3D FEM in prismatic domains.

The discretization of the singular part involved in the FSCM requires to compute the
Fourier modes f* of the data f and u* of the solution u approximately. The number
of Fourier modes used to get the approximation of the singular part of u by the FSCM
algorithm is h-dependent as outlined in Section 2.3, and only k.. modes are needed to
obtain the approximation of the singular part.

The number of operations required for this method is summarized in Table 13, where
A, and Dy are respectively the stiffness and the mass matrix of the 2D Fourier modes
problems. The numbers of operations for 3D computations are the same as in Table 12.

In summary, the combined method of prismatic finite elements with FSCM leads to a
total number of operations of the following order :

3
O((NlNg)% Ine ! + N1 Nogo + koNZ Ine™! + (kpax — ko) NoIne™? (20)
+ @2 Nokmax + g2 Nom log, m),
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Step of the algorithm Number of operations

Generating the 2D stiffness matrices
related to the dual and primal singular functions O(q2N2)

Solving the systems of linear equations X
using the preconditioned CG method O(NZ Ine )

Assembling the matrices A; and Dy, O(N,)

Computing the Fourier modes f* of the
right-hand side f in each quadrature point O(gaNom log, m)

Assembling the right-hand sides

for k=1,..., knax (@) Q2N2 Kmax)

]if(]]\f2 Ine™ 1)
( max kO)NQ lne_l)

C]2N2 max)
Nomlog, m)

(

Solving k.. linear systems of equations O(
using the preconditioned CG method (if kyax > ko) | O(
(

(

Computing the coefficients cﬁ forall k =1,... kpax | O

Fourier synthesis of the c’,i@? for k=1,..., knax O

Table 13: Number of arithmetic operations needed for the FSCM discretization of the singular
part of the solution in prismatic domains.

which shows that the most expensive part of the combined method lies in the 3D solution of
the linear system with a complexity O(NZ Ine~!) and the FFT algorithm with a complexity

O(NZ g In(Na)).

Remark 4.1 [t should be mentioned that the number m of the subintervals for the FFT
implementation depends on the number K of Fourier modes used, and we should have
m > 2(K+1). As far as the FSCM is concerned, the number K of Fourier modes used was
chosen to ensure K > h™' for both prismatic and azisymmetric domains, see Sections 2.2
and 3.1. In contrast, the combined 3D FEM with FSCM requires only to compute ka0 =
h~=a Fourier modes (o = 2/3) for prismatic domains, see Table 13. Consequently, the
parameter m for this method can be chosen to be smaller than that of the FSCM.

To compare the complexities, assume that ky = kpax for the FSCM (worst complexity).
In one hand, if one recalls that K > k., the complexities of the FSCM (18) and of the
FFEM (17) are equivalent. On the other hand, when expressed in terms of the numbers of
2D degrees of freedom, the complexity of the FSCM is O(NQQ*’7 Ine™!), withn = >0

2(2 a)
that is slightly better than that of the 3D methods.

5 Conclusion

The numerical tests demonstrate that the FSCM always leads to optimal H!-convergence
in both the prismatic and the axisymmetric domains. It is especially interesting to observe
that FSCM yields optimal convergence rates even when the right hand sides do not satisfy
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the additional boundary condition on dw x {0, 1} in the prismatic case or have less regularity
with respect to z such as f € Hy*(]0, 1[; L*(w)). In the case of axisymmetric domains with
a reentrant edge, the convergence in terms of the discretization parameter N outperforms
the expected theoretical rate if u is more regular than H?(]0,27[) with respect to 6, or
equivalently f is more regular than Lo (]0, 27[) with respect to 0 (see Section 3.1). Moreover,
the numerical experiments confirm that the convergence rates in terms of N are almost
identical for all investigated methods. Concerning the complexities (see Section 4), the
number of operations needed for the FSCM or the FFEM is slightly better than that of
the 3D methods. It should be pointed out that, even if a large number N of Fourier modes
are used, the number k., of additional problems to be solved for the FSCM is not very
large in comparison with N (cf. Tables 2 and 5).
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