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Abstract

We consider augmented variational formulations for solving the static or time-harmonic Maxwell equations. For

that, a term is added to the usual H (curl) conforming formulations. It consists of a (weighted) L2 scalar product

between the divergence of the EM and the divergence of test fields. In this respect, the methods we present are H (curl,

div) conforming. We also build mixed, augmented variational formulations, with either one or two Lagrange multipli-

ers, to dualize the equation on the divergence and, when applicable, the relation on the tangential or normal trace of the

field. It is proven that one can derive formulations, which are equivalent to the original static or time-harmonic Max-

well equations. In the latter case, spurious modes are automatically excluded. Numerical analysis and experiments will

be presented in the forthcoming paper [Augmented formulations for solving Maxwell equations: numerical analysis and

experiments, in preparation].

� 2004 Elsevier B.V. All rights reserved.
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0. Introduction

In recent years, much attention has been devoted to the computation of electromagnetic fields in

bounded singular domains, that is with a non-smooth and non-convex boundary. This is in particular true

with numerical methods based on finite element techniques. Although the numerical computation is fairly

standard in a 3d domain with either a smooth or a convex boundary, i.e. a regular domain, a number of
problems need to be addressed in the more general case. In particular, it is common knowledge that in a

singular domain, there usually exist intense electromagnetic fields near the geometrical singularities, that

is reentrant corners and/or edges of the boundary.
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For instance, with edge finite element methods [28,29], in order to reach an acceptable approximation of

the solution, one way is to use suitable mesh refinement techniques near the corners and edges [30]. It is also

possible to adapt the mesh and the degree of the local Finite Element, by hp techniques [20,31,32]. If one

computes instead a continuous approximation of the field based on the P1 Lagrange FEM (see [7] and Refs.

therein), then one can prove that this method, which works well in a regular domain, fails to capture the
electromagnetic field even in a 2d singular domain [6,10,5,24,2,3]. It is well-known that this corresponds to

a density problem, i.e. that of the subspace of H1-smooth fields in the space of EM fields (see for instance

[10]). In this case, it is advised in the above mentioned Refs to introduce additional basis functions to the

usual FE basis functions: the resulting method is called the singular function method, or the singular com-

plement method.

In terms of functional spaces, edge FEM are H (curl)-conforming, whereas the P1 Lagrange FEM is

H (curl,div)-conforming. In this paper, we study H (curl,div)-conforming methods for solving Maxwell

equations. We investigate three different approaches, from a theoretical point of view:

• With boundary conditions treated as essential boundary conditions. This means that they are explicitly

included in the definition of the functional spaces. This approach corresponds more or less to the clas-

sical one [7].

• With boundary conditions treated as natural boundary conditions, in order to overcome the density prob-

lem mentioned above. This amounts to solving Maxwell equations in larger functional spaces, in which

the subspace of H1-smooth fields is dense [14,16].

• In weighted Sobolev spaces. By introducing suitable weights, which depend on the distance to the singu-
lar edges, one can prove a second density result in another class of larger functional spaces [17].

Therefore, from a numerical point of view, the last two approaches do not require a singular comple-

ment, which leads to a more straightforward implementation.

We are interested in solving static-like Maxwell equations, and the time-harmonic Maxwell equations.

Also, we consider augmented, and augmented and mixed Variational Formulations to solve those equations

theoretically. The (augmented and) mixed variational formulations, which are introduced here, yield an effi-

cient framework to handle the time-dependent Maxwell equations. Numerical analysis, implementation is-
sues and numerical examples will be dealt with in a forthcoming paper [15]. We usually provide detailed

proofs for the electric field. For the magnetic field, we only give the proofs, or parts of proof, which can-

not be easily inferred from those corresponding to the electric field, or when they lead to different

conclusions.

The outline of this paper is as follows. In the next section, we derive the static and time-harmonic mod-

els, and we detail the mathematical framework. Then, in Section 2, we validate augmented, and augmented

and mixed variational formulations with the boundary conditions treated as essential. This section is split

into two subsections: we consider first the solution of the static model, and then the solution of the time-
harmonic model. In Section 3, we follow the same framework, with boundary conditions handled as natural

boundary conditions. Then, in Section 4, we solve those models with the electric field in a weighted Sobolev

space. Finally, we give a few concluding remarks.

Note that, as far as H (curl)-conforming methods are concerned, mixed formulations have already been

introduced to solve the static and time-harmonic models (see for instance [25,1]).
1. Derivation of the models and mathematical framework

If we let c, e0 and l0 be respectively the light velocity, the dielectric permittivity and the magnetic per-

meability (e0l0c
2 = 1), Maxwell equations in vacuum read
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e0
oE

ot
� curlH ¼ �J; ð1Þ

l0

oH

ot
þ curlE ¼ 0; ð2Þ

div ðe0EÞ ¼ q; ð3Þ

div ðl0HÞ ¼ 0; ð4Þ
where E and H are the electric and magnetic fields, q and J the charge and current densities. These quan-
tities depend on the space variable x and on the time variable t.

For the moment, we assume that we consider equations (1)–(4) outside a bounded, open perfect conduc-

tor O, with a Lipschitz polyhedral boundary oO. These equations are then supplemented with the boundary

condition
E � nO ¼ 0 on oO ð5Þ
with nO a unit outward normal to oO. Note that (2) and (5) imply
l0

o

ot
ðH � nOÞ ¼ 0 on oO: ð6Þ
The charge conservation equation is a consequence of equations (1) and (3)
oq
ot

þ divJ ¼ 0: ð7Þ
Last, initial conditions are provided (for instance at time t = 0)
Eð�; 0Þ ¼ E0; ð8Þ

Hð�; 0Þ ¼ H0; ð9Þ
where the couple ðE0;H0Þ depends only on the variable x. It is convenient to assume that l0H0 � nOjoO ¼ 0,

so that (6) is equivalent to
l0H � nO ¼ 0 on oO: ð10Þ

Then, we truncate the domain, to define a bounded computational domain. We thus introduce a bounded,

open subset of R3 n O, called X, with a Lipschitz polyhedral boundary oX. For convenience, we further as-

sume that the domain X is simply connected, and that its boundary oX is connected. The goal is to solve

Maxwell equations in this domain X.

The boundary oX is made up of two parts: CC and CA, with �CC ¼ oX \ oO the perfect conductor bound-

ary, and CA an artificial boundary. On CC, conditions (5) and (10) hold, with nO replaced by n, the unit out-
ward normal to oX. We further split the artificial boundary CA into Ci

A and Ca
A. On Ci

A, we model incoming

plane waves, whereas we impose on Ca
A an absorbing boundary condition. Both conditions can be modelled

[7] as a Silver–Müller boundary condition on CA, which reads
E �
ffiffiffiffiffi
l0

e0

r
H � n

� �
� n ¼~e

H � n on CA: ð11Þ
By definition, one has~e
H

jCa
A

¼ 0, whereas~e
H

jCi
A
is linked to the incoming plane waves. Where~e

H ¼ 0, condition

(11) is actually a first order absorbing boundary condition. Without loss of generality, it is possible
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• to choose the artificial boundary CA such that it does not intersect any of the geometrical singularities of

oO, i.e. there exists a neighborhood V of the reentrant corners and/or edges such that V \ CA ¼ ;;
• to split CA into two smooth subsets Ci

A and Ca
A;

• to assume that the incoming wave is smooth.

A study of the existence of the time-dependent EM field, with perfect conductor and absorbing boundary

conditions (Ci
A ¼ ;), has been carried out in [8]. It can be generalized to our case (~e

H 6¼ 0, �CA \ �CC 6¼ ;) with
no difficulty.

Remark 1. Note that 1, within the H (curl,div) framework, the EM field belongs to H (curl) \ H (div),
outside of O, and it satisfies boundary conditions (5) and (10) on oO. Under the above assumption that �CA

contains no geometrical singularities, there exists a neighborhood WA of CA, such that, with

W ¼ WA \ ðR3 n �OÞ, the field actually belongs to H1ðWÞ � H1ðWÞ (cf. [1, Theorems 2.9 and 2.12]).

The above equations, considered in X and on its boundary oX, will be referred to as the time-dependent

Maxwell equations.

As mentioned in the Introduction, the static model is build in order to provide a sound mathematical

framework to the time-dependent Maxwell equations. So, let us detail the steps, which lead to its definition.

We give below a formal presentation for E, which can be justified mathematically, see [9,8]. It is well-known
that one can replace Ampère�s law (1) by a second-order Maxwell equation and an additional initial

condition, which read
1 So
o2E

ot2
þ c2curl curlE ¼ � 1

e0

oJ

ot
; ð12Þ

oE

ot
ð0Þ ¼ 1

e0
ðcurlH0 � Jð0ÞÞ: ð13Þ
Now, let us consider a test field in
TE :¼ fv 2 Hðcurl;XÞ : v � njoX 2 L2ðoXÞ; v � njCC
¼ 0g:
There holds, by integration by parts
d2

dt2
ðE; vÞ0 þ c2ðcurlE; curl vÞ0 � c2ðcurlE � n; vTÞ0;oX ¼ � 1

e0

d

dt
ðJ; vÞ0;
where vT stands for the tangential trace components, i.e. vT = n · (v · n)joX. But, according to Faraday�s law
(2) and the boundary condition (11) on CA, one finds
c2curlE � njCA
¼ c

o

ot
~e
H

T � c
o

ot
ET;
so that one gets
find E 2 TE

s:t:
d2

dt2
ðE; vÞ0 þ c2ðcurlE; curl vÞ0 þ c

d

dt
ðET; vTÞ0;CA

¼ � 1

e0

d

dt
ðJ; vÞ0 þ c

d

dt
ð~eHT ; vTÞ0;CA

8v 2 TE: ð14Þ
bolev spaces of vector-valued fields are written in boldface.
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This suggests strongly that one defines the following static model for the electric field: look for a static-

like field E, solution to
curlE ¼ fE in X; ð15Þ

divE ¼ gE in X; ð16Þ

E � n ¼~e � n on oX: ð17Þ

Its a priori regularity is (without forgetting the H (div)-conforming requirement),
E 2 TE; divE 2 L2ðXÞ ð18Þ

with the corresponding assumptions on the data
fE 2 L2ðXÞ; div fE ¼ 0; gE 2 L2ðXÞ; ~e 2 H1=2ðoXÞ: ð19Þ

NB. The extra regularity on~e is a consequence of Remark 1.

And, finally, f and~e need to fufill a compatibility condition, which reads, according to [11, p. 23]
fE � njoX ¼ divCð~e � nÞ: ð20Þ
One can proceed similarly for H: replace Faraday�s law by a second-order Maxwell equation, and addi-

tional boundary and initial conditions, which read
o2H

ot2
þ c2 curlðcurlH � JÞ ¼ 0; ð21Þ

1

e0
ðcurlH � JÞ � njCC

¼ 0; ð22Þ

oH

ot
ð0Þ ¼ � 1

l0

curlE0: ð23Þ
Now, let us consider a test field in
TH :¼ fv 2 Hðcurl;XÞ : v � njoX 2 L2ðoXÞg:

There holds, by integration by parts
d2

dt2
ðH; vÞ0 þ c2ðcurlH � J; curl vÞ0 � c2ððcurlH � JÞ � n; vTÞ0;oX ¼ 0:
According to Ampère�s law and the boundary condition (11) on CA, one finds
c2ðcurlH � JÞ � njCA
¼ 1

l0

o

ot
ð~eH � nÞ � c

o

ot
HT;
so that one gets
find H 2 TH

s:t:
d2

dt2
ðH; vÞ0 þ c2ðcurlH; curl vÞ0 þ c

d

dt
ðHT; vTÞ0;CA

¼ c2ðJ; curl vÞ0 þ 1

l0

d

dt
ð~eH � n; vTÞ0;CA

8v 2 TH: ð24Þ
This suggests that one solves a mixed problem, imposing H � n on CC and H � n on CA. This is actually

what one has to do to solve the time-dependent Maxwell equations. However, we are mainly interested here
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in resolving problems related to geometrical singularities and the corresponding (numerical) approximation

of intense fields. Thanks to Remark 1, the magnetic field is H1-smooth in a neighborhood of CA, which

means it can only be intense in a neighborhood of, and on, CC. This is the reason why we impose a single

boundary condition on the whole of oX, the one on CC. We thus obtain the following static model for the

magnetic field: look for a static-like field H, solution to
curlH ¼ fH in X; ð25Þ

divH ¼ gH in X; ð26Þ

H � n ¼ h on oX: ð27Þ
Its a priori regularity is
H 2 TH; divH 2 L2ðXÞ ð28Þ
with the corresponding assumptions on the data
fH 2 L2ðXÞ; div fH ¼ 0; gH 2 L2ðXÞ; h 2 L2ðoXÞ ð29Þ
and a compatibility condition, which reads
ðgH; 1Þ0 ¼ ðh; 1Þ0;oX: ð30Þ
Remark 2. Notice that both static models include the usual electrostatic and magnetostatic equations.

To introduce the time-harmonic Maxwell equations, let us consider the case of a resonator cavity X,
bounded by a perfect conductor. As before, X is a bounded and simply connected open subset of R3, with

a connected Lipschitz polyhedral boundary oX. The goal is to solve a source problem or to model eigen-

modes of electromagnetic oscillations. In these cases, the solutions to and data of system (1)–(4) are har-

monic functions of time. Given x 2 R, one has relations such as Eðx; tÞ ¼ Re ðe ðxÞ exp ıxtÞ and

Hðx; tÞ ¼ ReðhðxÞ exp ıxtÞ, where the fields e and h belong to C3. The same holds for the current density

ðj 2 C3Þ and the charge density ðr 2 CÞ. The equations are
ıxe0e � curlh ¼ �j in X; ð31Þ

ıxl0h þ curl e ¼ 0 in X; ð32Þ

div ðe0eÞ ¼ r in X; ð33Þ

div ðl0hÞ ¼ 0 in X; ð34Þ

e � n ¼ 0 on oX; ð35Þ

ðl0hÞ � n ¼ 0 on oX: ð36Þ

The charge conservation reads
ıxr þ div j ¼ 0: ð37Þ

It is fairly straightforward to replace (31) and (32) by
x2e0e � curlðl�1
0 ðcurl eÞÞ ¼ ıxj in X; ð38Þ
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x2l0h � curlðe�1
0 ðcurlh � jÞÞ ¼ 0 in X; ð39Þ

e�1
0 ðcurlh � jÞ � n ¼ 0 on oX: ð40Þ
NB. The problems in e and h are coupled, through the data j.

In addition, if one solves
find /e 2 H 1
0ðXÞ

s:t: � div ðe0r/eÞ ¼ r; ð41Þ
one can replace j by j� ıxe0$/e, r by 0, and e by e + $/e.
To summarize, in the time-harmonic case, we solve a source problem in e 0
x2e0e
0 � curlðl�1

0 ðcurl e0ÞÞ ¼ j0 in X; ð42Þ

div ðe0e0Þ ¼ 0 in X; ð43Þ

e0 � n ¼ 0 on oX; ð44Þ

where we set j 0 = ıx j + x2 e0$/e and e 0 = e + $/e.

We can also solve a source problem in h
x2l0h � curlðe�1
0 ðcurlh � jÞÞ ¼ 0 in X; ð45Þ

div ðl0hÞ ¼ 0 in X; ð46Þ

ðl0hÞ � n ¼ 0 on oX; ð47Þ

e�1
0 ðcurlh � jÞ � n ¼ 0 on oX: ð48Þ
We have some a priori regularities on the solution and on the data
e0 2 Hðcurl;XÞ; h 2 Hðcurl;XÞ; ð49Þ

j0 2 L2ðXÞ; div j0 ¼ 0; j 2 L2ðXÞ; div j ¼ 0: ð50Þ

Following for instance [25], we note that Eqs. (31)–(34) and (37) naturally split into decoupled problems

(real and imaginary parts): one in ðRðeÞ;IðhÞ;IðjÞ;RðrÞÞ, and the other in ðIðeÞ;RðhÞ;RðjÞ;IðrÞÞ. Further-
more, the boundary conditions (35) and (36) do not yield any coupling between those two quadruples. For

these reasons, we shall consider from now on real valued data and electromagnetic fields.
In the following Sections, we set e0, l0 (and c

2) to one.

We now introduce the mathematical framework. First, let us define five Sobolev spaces:
L2
t ðoXÞ ¼ fz : z 2 L2ðoXÞ; z � n ¼ 0 a:e:g;

XE ¼ fv : v 2 Hðcurl;XÞ \ Hðdiv ;XÞ; v � njoX 2 L2
t ðoXÞg;

X0
E ¼ fv : v 2 XE; v � njoX ¼ 0g;

XH ¼ fv : v 2 Hðcurl;XÞ \ Hðdiv ;XÞ; v � njoX 2 L2ðoXÞg;
X0

H ¼ fv : v 2 XH; v � njoX ¼ 0g:
Thanks to our assumptions on the data (19) and (29), the static-like and time-harmonic electromagnetic

fields� a priori regularities are
ðE;HÞ 2 XE � XH; ðe; hÞ 2 X0
E � X0

H: ð51Þ
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Recall that the domain X is a bounded and simply connected open subset of R3, with a connected Lips-

chitz polyhedral boundary oX. Then, according to [33,21,1], the following results hold

Theorem 3. In X0
E and X0

H,
kvkX 0 ¼ fkcurl vk2

0 þ kdivvk2

0g
1=2
is a norm, which is equivalent to the full H(curl, div,X) norm.

In XE,
kvkXE
¼ fkcurl vk2

0 þ kdivvk2

0 þ kv � nk2

0;oXg1=2
is a norm, which is equivalent to the full H (curl, div,X) norm, plus L2 (oX) norm of the tangential trace.
In XH,
kvkXH
¼ fkcurl vk2

0 þ kdivvk2

0 þ kv � nk2

0;oXg1=2
is a norm, which is equivalent to the full H (curl, div,X) norm, plus L2 (oX) norm of the normal trace.

Note that kv · nk0,oX can be replaced by kvTk0,oX in kvkXE.
We denote by (Æ , Æ)X0, (Æ , Æ)XE

, and (Æ , Æ)XH
the associated scalar products.

Remark 4. If the boundary is not connected, there appears an additional term (see for instance [19]) in the

norm in X0
E: from an electrostatic point of view, it corresponds to the constant value of the electrostatic

potential, at the surface of each perfect conductor. When the domain is not simply connected, there appears

an additional term in the norm in X0
H (see [1,22]). For the additional terms in the norms of XE and XH, we

refer the reader to [21].
2. Variational formulations with essential boundary conditions

In this section, we focus on Variational Formulations, with spaces including the boundary condition.

More precisely, the field is explicitly split into two parts: the first one corresponds to the incoming part
(cf. the comment after formula (11)), so it is known, and the second one belongs toX0

E;H. In the PDE vocab-

ulary, this means that the boundary conditions are treated as essential boundary conditions. This framework

was introduced in [7].
2.1. The static equations

Since~e belongs to H1/2 (oX), there exists ~e in H1 (X)3 such that ~ejoX ¼~e. We then define f0E ¼ fE � curl~e
and g0

E ¼ gE � div~e. We thus look for E0 ¼ E � ~e, which satisfies
E0 2 X0
E; curlE0 ¼ f0E; divE0 ¼ g0

E: ð52Þ

In order to illustrate our framework, based on variational formulations, we introduce our first problem

(P 0
E)
find E0 2 X0
E

s:t: ðE0; vÞX 0 ¼ ðf0E; curl vÞ0 þ ðg0
E; divvÞ0 8v 2 X0

E: ð53Þ
With respect to (14), the variational formulation (53) is called an augmented variational formulation (or

AVF later on), since the (div Æ ,div Æ)0 product appears in addition to (curl Æ ,curl Æ)0. According to the Riesz
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theorem, it is clear that there exists one, and only one, solution to problem (P 0
E), which is continuous with

respect to the data ðf0E; g0
EÞ in L2 (X) · L2 (X).

There holds

Theorem 5. The field E0 satisfies (52) iff it is a solution to problem (P 0
E).

Proof. It is clear that if E0 is a solution to (52), it also solves (53).

Let us consider the reciprocal assertion: let E0 be the solution to (53). Given g 2 L2 (X), 9!/ 2 H1
0ðXÞ s.t.

D/ = g. As v ¼ r/ 2 X0
E, there holds ðdivE0; gÞ0 ¼ ðg0E; gÞ0; divE0 ¼ g0E follows.

By construction, div f0E ¼ 0, and, moreover, thanks to (20)
f0E � njoX ¼ fE � njoX � curl~e � njoX ¼ fE � njoX � divCð~e � nÞ ¼ 0:
According to [23, Theorem 3.6, p. 48], 9!w0 2 X0
E s.t. divw0 = 0, and curlw0 ¼ f0E. As v ¼ E0 � w0 belongs to

X0
E, (53) yields kcurlðE0 � w0Þk2

0 ¼ 0, or curlE0 ¼ f0E. h

This allows to prove

Theorem 6. There exists one, and only one, solution E to (15)–(17) in XE.

Proof. Taking E ¼ E0 þ ~e yields existence.

Uniqueness follows from the fact that if E and E0 are two solutions to (15)–(17), their difference satisfies

(53) with vanishing data, i.e. it also vanishes. h

Evidently, the solution E depends continuously on the data (fE,gE,e) in L2 (X) · L2 (X) · H1/2 (oX).

For the problem (25)–(27) in H, one uses the same procedure. Indeed, one solves
find w 2 H 1ðXÞ \ L2
0ðXÞ

s:t: Dw ¼ 1

j X j ðgH; 1Þ0;
ow
on joX

¼ h:
NB. It is a Neumann problem, and the data fulfills the usual compatibility condition, thanks to (30).

Then, ~h ¼ gradw is an admissible lifting, together with f0H ¼ fH and g0
H ¼ gH � ðgH; 1Þ0= j X j. We now

look for H0 ¼ H � ~h, solution to
H0 2 X0
H; curlH0 ¼ f0H; divH0 ¼ g0

H: ð54Þ

We then define the problem (P 0

H)
find H0 2 X0
H

s:t: ðH0; vÞX 0 ¼ ðf0H; curl vÞ0 þ ðg0
H; divvÞ0 8v 2 X0

H; ð55Þ
our second so-called AVF (augmented w.r.t. (24) this time). According to the Riesz theorem, this formu-

lation admits one, and only one, solution, continuous w.r.t. f0H and g0
H. There follows:

Theorem 7. The field H0 satisfies (54) iff it is a solution to problem (P 0
H).

Proof. If H0 is a solution to (54), it also solves (55).

Now, let H0 be the solution to (55). Given g 2 L2
0ðXÞ; 9!/ 2 H 1ðXÞ \ L2

0ðXÞ s.t. D/ = g and on/joX = 0.

As v ¼ r/ 2 X0
H, there holds ðdivH0; gÞ0 ¼ ðg0H; gÞ0. Since divH0 � g0H belongs to L2

0ðXÞ, divH0 ¼ g0H
follows.

By construction, div f0H ¼ 0, so, according to [23, Theorem 3.5 p. 47], 9w0 2 X0
H s.t. curlw0 ¼ f0H. Putting

v ¼ H0 � w0 in (53) yields kcurlH0 � f0Hk20 ¼ 0. h
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And, with a proof similar to the one given in the electric case,

Theorem 8. There exists one, and only one, solution H to (25)–(27) in XH.

Now that existence, uniqueness (and continuous dependence w.r.t. the data) is proven for the static-like

fields, let us investigate a dualization of the divergence of the fields. In other words, what happens if one
considers (16) and (26) as constraints? Note that, in order to solve the time-dependent Maxwell equations,

it is important to enforce those relationships, so that one avoids a drift as one iterates in time, if for instance

the charge conservation equation is not enforced numerically. This is the approach originally investigated

by Assous et al. in [7].

So, let us define a new problem (Q0
E)
find ðE0; pÞ 2 X0
E � L2ðXÞ

s:t: ðE0; vÞX 0 þ ðp; divvÞ0 ¼ ðf0E; curl vÞ0 þ ðg0
E; divvÞ0 8v 2 X0

E; ð56Þ

ðdivE0; qÞ0 ¼ ðg0
E; qÞ0 8q 2 L2ðXÞ: ð57Þ
This is our first mixed, augmented variational formulation (or MAVF later on). According to Proposi-

tion 3.5 of [4], there holds divX0
E ¼ L2ðXÞ. So, a necessary condition for (Q0

E) to yield the expected E0 (i.e.
the solution to (P 0

E) and (52)), is that p vanishes.

Proposition 9. In (Q0
E), one has p = 0.

Proof. 9!/
H

2 H 1
0ðXÞ s.t. D/H = p. Taking vH = $/H in (56) yields
ðdivE0; pÞ0 þ kpk2

0 ¼ ðg0
E; pÞ0:
Since ðdivE0; pÞ0 ¼ ðg0
E; pÞ0 according to (57), one has p = 0. h

Quoting [20], one calls sometimes p the dummy variable.

Remark 10. Notice that one reaches a similar conclusion (in the continuous case), provided the charge

conservation equation is true, when one solves the time-dependent Maxwell equations with an MAVF. The

well-posedness of such MAVFs is alluded to in Section 5 and Appendix A.

Theorem 11. Problem (Q0
E) admits one, and only one, solution ðE0; pÞ. Moreover, E0 is the solution to problem

(P 0
E).

Proof. The existence and uniqueness of the solution to problem (Q0
E) stem from the Babuska–Brezzi theory

(cf. for instance [23]). The so called V-ellipticity condition is automatic, since the bilinear form involved is

the scalar product of X0
E. The inf–sup condition (cf. Appendix A) is proved as follows: "q 2 L2 (X),

9!/ 2 H 1
0ðXÞ s.t. D/ = q. As v = $/ belongs to X0

E with kvkX0 = kqk0, there holds ðdivv; qÞ0=kvkX 0 ¼
kqk0, so the inf–sup condition follows with a unit constant b. This proves the first point.

To conclude, it is enough to note that problem (Q0
E) reduces to problem (P 0

E), since p = 0. h

NB. As emphasized in the proof, (Q0
E) satisfies an inf–sup condition.

Similarly, we introduce an MAVF for H0, i.e. a problem (Q0
H),
find ðH0; pÞ 2 X0
H � L2

0ðXÞ

s:t: ðH0; vÞX 0 þ ðp; divvÞ0 ¼ ðf0H; curl vÞ0 þ ðg0
H; divvÞ0 8v 2 X0

H; ð58Þ
ðdivH0; qÞ0 ¼ ðg0

H; qÞ0 8q 2 L2
0ðXÞ: ð59Þ
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We know from [23, Corollary 2.4, p. 24] that divH1
0ðXÞ ¼ L2

0ðXÞ. Since H1
0ðXÞ � X0

H and since

(divv, 1)0 = 0 for all v in X0
H, we derive divX0

H ¼ L2
0ðXÞ. Again, a necessary condition for (Q0

H) to provide

the same solution as (P 0
H) and (54) is that p vanishes. Following the proof of Proposition 9 (with a Neu-

mann problem in /H).

Proposition 12. In (Q0
H), one has p = 0.

Finally, following the proof of Theorem 11, one easily proves

Theorem 13. Problem (Q0
H) admits one, and only one, solution ðH0; pÞ. Moreover, H0 is the solution to

problem (P 0
H).

NB. Problem (Q0
H) satisfies an inf–sup condition.

So far, we defined one augmented variational formulation, and one mixed augmented variational formu-

lation, for each of the static-like fields E and H. More precisely, for the part which belongs to X0
E or X0

H,
i.e. E0 and H0. We shall see, in the next subsection, that one can try successfully the same mathematical

approach, in order to solve the time-harmonic Maxwell equations.
2.2. The time-harmonic equations

In this subsection, we concentrate first on solving the system of equations (42)–(44) in e 0 2 H (curl,X),

given j 0 and x. Then, we derive equivalent variational formulations, set in X0
E for the electric field. Let

us introduce
V0
E :¼ fv 2 H0ðcurl;XÞ : divv ¼ 0g:
(The set V0
E is either a subspace of H0(curl,X) or of X0

E.)
One can prove easily that the two formulations below are equivalent to the problem (42)–(44). The obvi-

ous one,
find e0 2 H0ðcurl;XÞ
s:t: ðcurl e0; curl vÞ0 ¼ x2ðe0; vÞ0 � ðj0; vÞ0 8v 2 H0ðcurl;XÞ; ð60Þ

dive0 ¼ 0: ð61Þ
One can also choose to solve an AVF, such as
find e0 2 V0
E

s:t: ðe0; vÞX 0 ¼ x2ðe0; vÞ0 � ðj0; vÞ0 8v 2 V0
E: ð62Þ
The reason why a solution e0 2 V0
E to (62) solves (60) is simple (why it solves (61) is obvious). Indeed,

given v in H0 (curl,X), one considers first / 2 H 1
0ðXÞ such that D/ = divv. Then v � $/ belongs to V0

E, and

used as a test function in (62), it yields (60) for v, since
ðx2e0 � j0;r/Þ0 ¼ �ðx2 dive0 � div j0;/Þ0 ¼ 0:
The difference between the two formulations is that X0
E––and so V0

E as a subset of X0
E––is compactly

imbedded into L2 (X) [33], whereas H0 (curl, X) is not. It is therefore possible to use the Fredholm theory

to solve problem (62). Indeed, let us define gE : L2ðXÞ ! V0
E by (gE f,v)X0 = (f,v)0 for all v 2 V0

E, and iE
the compact imbedding of V0

E into L2 (X). By construction, TE ¼ gE � iE is a (symmetric) compact operator

of V0
E, and (62) now amounts to
ðI � x2TEÞe0 ¼ �gEj
0 in V0

E:
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There follows:

Theorem 14. Assume 1/x2 is not an eigenvalue of TE: problem (42)–(44) admits one, and only one, solution.

Assume 1/x2 is an eigenvalue of TE: let v1, . . . ,vp denote a basis of kerðI � x2TEÞ, then

• either $l 2 {1, . . . , p} st (j,vl)0 5 0: problem (42)–(44) admits no solution;

• or " l 2 {1, . . . , p}, (j,vl)0 = 0: problem (42)–(44) admits an affine space of solutions, in the form

e0 ¼ e0
0 þ

P
lblvl, ðblÞl 2 Rp.

Remark 15. The orthogonality condition of the Fredholm theory says that (gE j 0,vl)X0 = 0. Or, according to

the definition of operator gE, (j 0,vl)0 = 0. Now, since v 2 V0
E and /e 2 H 1

0ðXÞ, there follows automatically

($/e,vl)0 = 0 (see (41)), so that (j 0,vl)0 = 0 corresponds to (j,vl)0 = 0 (it is indeed equivalent, since the

orthogonality condition is relevant only when x 5 0).
Now that problem (42)–(44) has been solved, we turn to the derivation of equivalent formulations. Let

us define our starting point. As a matter of fact, one can consider, in-between (60)–(62), the equivalent

formulation, called problem ðp0EÞ

find e0 2 X0

E

s:t: ðe0; vÞX 0 ¼ x2ðe0; vÞ0 � ðj0; vÞ0; 8v 2 X0
E; ð63Þ

dive0 ¼ 0: ð64Þ
Then, we turn to an MAVF, with (64) handled as a constraint, as in the static case: problem ðq0
EÞ,
find e0; p 2 X0
E � L2ðXÞ

s:t: ðe0; vÞX 0 þ ðp; divvÞ0 ¼ x2ðe0; vÞ0 � ðj0; vÞ0 8v 2 X0
E; ð65Þ

ðdive0; qÞ0 ¼ 0 8q 2 L2ðXÞ: ð66Þ
NB. A similar, well-known, mixed VF, set in H0ðcurl;XÞ � L2ðXÞ � R (with j 0 = 0), had already been con-

sidered to solve the related eigenvalue problem by Kikuchi [25].

There holds

Proposition 16. In (q0E), one has p = 0.

Proof. 9!/H 2 H 1
0ðXÞ s.t. D/H = p. Taking vH = $/H in (65) yields
ðdive0; pÞ0 þ kpk2
0 ¼ 0:
Since (dive 0,p)0 = 0 according to (66), one has p = 0. h

According to Theorem 55, thanks to the inf–sup condition proved for problem ðQ0
EÞ, one gets finally the

Theorem 17. (e 0, 0) is a solution to problem (q0E) iff e 0 is a solution to (42)–(44).

Second, let us consider the system (45)–(48) in h 2 H(curl,X), given j and x. We introduce
V0
H :¼ fv 2 Hðcurl;XÞ : divv ¼ 0; v � njoX ¼ 0g:
As in the electric case, it is easily inferred that the two formulations below are equivalent to the original

problem (45)–(48)
find h 2 Hðcurl;XÞ
s:t: ðcurlh; curl vÞ0 ¼ x2ðh; vÞ0 þ ðj; curl vÞ0 8v 2 Hðcurl;XÞ; ð67Þ

divh ¼ 0: ð68Þ
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Or, one can choose to solve equivalently
find h 2 V0
H

s:t: ðh; vÞX 0 ¼ x2ðh; vÞ0 þ ðj; curl vÞ0 8v 2 V0
H: ð69Þ
Since the imbedding of X0
H into L2 (X) is compact [33], one can utilize the Fredholm theory again. Let

TH ¼ gH � iH, with obvious notations, be the (symmetric) compact operator of V0
H into itself. With

jH 2 V0
H such that (jH,v)X0 = (j,curl v)0 for all v 2 V0

H, (69) is equivalent to
ðI � x2THÞh ¼ jH in V0
H:
There follows:

Theorem 18. Assume 1/x2 is not an eigenvalue of TH: problem (45)–(48) admits one, and only one, solution.

Assume 1/x2 is an eigenvalue of TH: let w1, . . . ,wp denote a basis of kerðI � x2THÞ, then

• either $l 2 {1, . . . , p} s.t. (j,curlwl)0 5 0: problem (45)–(48) admits no solution;

• or " l 2 {1, . . . , p}, (j,curlwl)0 = 0: problem (45)–(48) admits an affine space of solutions, in the form
h ¼ h0 þ

P
lblwl, ðblÞl 2 Rp.

Remark 19. It is well known that the operators TE and TH have the same eigenvalues (with the same mul-

tiplicity). Indeed, one can actually prove that vl is an eigenvector of TE with eigenvalue k if, and only if,

wl = curlvl is an eigenvector of TH with eigenvalue k. Finally, the orthogonality conditions are identical

for both the electric and the magnetic problems, so that the Fredholm classifications of the solutions in

e and h are compatible, as expected.

As far as equivalent formulations of (45)–(48) are concerned, let us begin by the following formulation,

called problem ðp0
HÞ,
find h 2 X0
H

s:t: ðh; vÞX 0 ¼ x2ðh; vÞ0 þ ðj; curl vÞ0 8v 2 X0
H; ð70Þ

divh ¼ 0: ð71Þ

With (71) handled as a constraint, we define further the MAVF ðq0

HÞ,

find ðh; pÞ 2 X0

H � L2
0ðXÞ

s:t: ðh; vÞX 0 þ ðp; divvÞ0 ¼ x2ðh; vÞ0 þ ðj; curl vÞ0 8v 2 X0
H; ð72Þ

ðdivh; qÞ0 ¼ 0 8q 2 L2
0ðXÞ: ð73Þ
There holds

Proposition 20. In (q0H), one has p = 0.

According to Theorem 55 (inf–sup valid for problem ðQ0
HÞ), one gets the

Theorem 21. (h, 0) is a solution to problem (q0H) iff h is a solution to (45)–(48).
3. Variational formulations with natural boundary conditions

In this section, we focus on Variational Formulations, with boundary conditions treated as natural

boundary conditions, i.e. which stem from the formulation. The obvious advantage is computational, since,
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according to the density of smooth fields in XE and XH [14,16], one can (theoretically) use the continuous

approximation of the field based on the P1 Lagrange FEM. Still, one has to validate those formulations, i.e.

prove that they are well-posed! This is the topic we address in this section.

3.1. The static equations

As a starting point, we consider the AVFs and MAVFs of Section 2.1. The first difference with these

Variational Formulations is that we now treat the boundary conditions as natural. This requires that

one includes those in a variational form. Consequently, and this is the second difference, we look directly

for the total field E or H, i.e. we solve the variational problems in XE and XH. Let us proceed for E: we
introduce the linear form
lEðvÞ ¼ ðfE; curl vÞ0 þ ðgE; divvÞ0 þ ð~e � n; v � nÞ0;oX

and define the problem (PE)
find E 2 XE

s:t: ðE; vÞXE
¼ lEðvÞ 8v 2 XE: ð74Þ
With respect to (14), this falls in the AVF category. We infer from the Riesz theorem, that there exists

one, and only one, solution to (74), which is continuous w.r.t. the data (cf. (19)). Moreover, one can prove

Theorem 22. E is a solution to (15)–(17) iff it solves (PE).

Proof. It is clear that if E is a solution to (15)–(17), it also solves (74).

Let us consider the reciprocal assertion: let E be the solution to (74). Following the proof of Theorem 5,
we find divE ¼ gE, i.e. (16). Furthermore, according to the same proof, one can write
fE ¼ curlw with w ¼ w0 þ ~e:
As v ¼ E � w belongs to XE, with v � njoX ¼ E � njoX �~e � n, (74) yields kcurlE � fEk2
0 þ kE�

njoX �~e � nk2
0;oX ¼ 0: both (15) and (17) hold. h

By construction, E depends continuously on the data ðfE; gE;~eÞ in L2ðXÞ � L2ðXÞ � L1=2
t ðoXÞ.

Remark 23. From a numerical point of view, we recall that the difference between (PE) and (P 0
E) is that

H1 (X) is always dense in XE, whereas H
1ðXÞ \ X0

E is not dense in X0
E, when X is not convex [14,16]. There is

no need for a Singular Complement, when one uses a continuous P1 FE approximation to solve (PE) (see

[15] for some numerical illustrations).

For the problem in H (25)–(27), we introduce the linear form
lHðvÞ ¼ ðfH; curl vÞ0 þ ðgH; divvÞ0 þ ðh; v � nÞ0;oX;
and consider the AVF (PH)
find H 2 XH

s:t: ðH; vÞXH
¼ lHðvÞ 8v 2 XH: ð75Þ
This is again a formulation, which admits one, and only one, solution, continuous w.r.t. the data (cf. (29)),

thanks to the often cited Riesz theorem. In addition, the following theorem can be proven.

Theorem 24. H is a solution to (25)–(27) iff it solves (PH).

Proof. If H is a solution to (25)–(27), it also solves (75).
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Now, let H be the solution to (75). We prove in a single shot that both divH ¼ gH and H � njoX ¼ h
hold, provided the compatibility condition (30) is enforced.

We first deal with constants: 9!/c 2 H 1ðXÞ \ L2
0ðXÞ s.t. D/c = joX j and on/cjoX = jXj. Since r/c 2 XH,

one finds
j oX j ðdivH; 1Þ0þ j X j ðH � n; 1Þ0;oX ¼j oX j ðgH; 1Þ0þ j X j ðh; 1Þ0;oX:
According to the identity ðdivH; 1Þ0 ¼ ðH � n; 1Þ0;oX and to the compatibility condition (30), this yields
ðdivH; 1Þ0 ¼ ðgH; 1Þ0: ð76Þ

Now, we proceed with the general case. Given g 2 L2 (X) and l 2 L2 (oX), let c � cg;l 2 R such that

(g + c, 1)0 = (l, 1)0,oX. Then, 9!/ 2 H 1ðXÞ \ L2
0ðXÞ s.t. D/ = (g + c) and on/joX = l. As r/ 2 XH, there

holds, according to (76)
ðdivH; gÞ0 þ ðH � n; lÞ0;oX ¼ ðgH; gÞ0 þ ðh; lÞ0;oX:
Taking g ¼ divH � gH and l ¼ H � njoX � h yields kdivH � gHk2

0 þ kH � njoX � hk2

0;oX ¼ 0, so (26) and

(27) hold.

The formulation (PH) reduces to ðcurlH; curl vÞ0 ¼ ðfH; curl vÞ0, for all v in XH. One concludes that (25)

is true as in the proof of Theorem 7. h

One notices a difference between the two proofs given for problems (PE) and (PH). For the first one, in E,
one deals first with the divergence condition, and then simultaneously with the curl and boundary condi-

tions. For the second one, in H, one deals first with the divergence and boundary conditions with a stone,

and then with the curl condition.
As in Section 2.1, it is possible to consider an MAVF, with the divergence condition on the field treated

as a constraint. But it is not the only possibility, since one can also investigate another MAVF, with two

constraints. For E, one on the divergence, and one on the tangential trace. For H, one on the divergence,

and one on the normal trace.

Remark 25. For the time-dependent Maxwell equations, the MAVF with a single constraint is not

relevant. As a matter of fact, it seems unlikely that the boundary condition is resolved, when only the

divergence condition is treated as a constraint. On the other hand, the MAVF with two constraints is a

good candidate to resolve the time-dependent Maxwell equations. This is actually very similar in the case of

the time-harmonic equations, as we shall see in Section 3.2.

We begin by the MAVF with a single constraint, on the electric field E. We propose to solve the problem

(QE)
find ðE; pÞ 2 XE � L2ðXÞ

s:t: ðE; vÞXE
þ ðp; divvÞ0 ¼ lEðvÞ 8v 2 XE; ð77Þ

ðdivE; qÞ0 ¼ ðgE; qÞ0 8q 2 L2ðXÞ: ð78Þ
Once more, as divXE ¼ L2ðXÞ, a necessary condition for (QE) to yield the desired solution is that p = 0.

Actually, with proofs identical to that of Proposition 9 and Theorem 11, one finds

Proposition 26. In (QE), one has p = 0.

Theorem 27. Problem (QE) admits one, and only one, solution ðE; pÞ. Moreover, E is the solution to problem

(PE).
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Accordingly, we propose a single constraint MAVF for H, problem (QH)
find ðH; pÞ 2 XH � L2
0ðXÞ

s:t: ðH; vÞXH
þ ðp; divvÞ0 ¼ lHðvÞ 8v 2 XH; ð79Þ

ðdivH; qÞ0 ¼ ðgH; qÞ0 8q 2 L2
0ðXÞ: ð80Þ
Since divXH ¼ L2ðXÞ, the usual necessary condition is p = 0.

Proposition 28. In (QH), one has p = 0.

Theorem 29. Problem (QH) admits one, and only one, solution ðH; pÞ. Moreover, H is the solution to prob-

lem (PH).

NB. Both problems (QE) and (QH) satisfy an inf–sup condition.
The (M)AVFs (PE,H) and (QE,H) allow to solve the static-like problems (15)–(17) and (25)–(27). In order

to deal with the time-dependent Maxwell equations, one has to consider the boundary conditions as con-

straints, as mentioned before. The MAVF in E, called (RE), reads
find ðE; p;~kEÞ 2 XE � L2ðXÞ � L2
t ðoXÞ

s:t: ðE; vÞXE
þ ðp; divvÞ0 þ ð~kE; vTÞ0;oX ¼ lEðvÞ 8v 2 XE; ð81Þ

ðdivE; qÞ0 ¼ ðgE; qÞ0 8q 2 L2ðXÞ; ð82Þ
ðET;~lÞ0;oX ¼ ð~eT;~lÞ0;oX 8~l 2 L2

t ðoXÞ: ð83Þ

To go back to (15)–(17), the method of proof is different than the ones we utilized up to now. Let us begin

by a preliminary result

Lemma 30. The space spanned by the tangential trace of elements of XE is
K ¼ f~l 2 L2
t ðoXÞ : curlC~l 2 H�1=2ðoXÞg:
Proof. Let v 2 XE. Then, one has vT 2 L2
t ðoXÞ by definition. Also, since v belongs to H (curl,X), one has

curlCvT 2 H�1/2 (oX), according to [11, Theorem 3.10]. So vT 2 K.

Conversely, let ~l 2 K. Thanks to [12, Theorem 5.4], there exists v 2 H (curl,X) s.t. vT ¼ ~l. Now, divv

belongs to H�1 (X), so 9!/ 2 H1
0ðXÞ s.t. D/ = divv. Then, w = v � $/ is such that
w 2 Hðcurl;XÞ; divw ¼ 0; wT ¼ ~l:
Since ~l is an element of L2
t ðoXÞ, we conclude that w is in XE. h

In terms of potentials, note that (see [12, Theorem 3.4])
L2
t ðoXÞ ¼ rCH 1ðoXÞ �

?
curlCH 1ðoXÞ:
The additional condition on the tangential curl of elements of K means that
K ¼ rCH 1ðoXÞ �
?
curlCHðoXÞ
with HðoXÞ ¼ fq 2 H 1ðoXÞ : DCq 2 H�1=2ðoXÞg. Thus K 6¼ L2
t ðoXÞ. As a consequence, one has the follow-

ing ‘‘negative result’’.

Corollary 31. Problem (RE) does not satisfy the inf–sup condition.

Proof. It is based on the Corollary 4.1 of Chapter I of [23]: this corollary is concerned with mixed prob-
lems, for which the V-ellipticity condition is true. Applied to our case, it says that problem (RE) is well-

posed, i.e. that
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XE � L2ðXÞ � L2
t ðoXÞ ! X0

E � L2ðXÞ � L2
t ðoXÞ;

ðE; p;~kEÞ7!ðlE; gE;~eTÞ

(

is an isomorphism, iff the inf–sup condition holds. Now, if one takes~eT 2 L2
t ðoXÞ n K, it is clear that prob-

lem (RE) admits no solution: otherwise, (83) would imply ET ¼~eT in L2
t ðoXÞ, with E 2 XE, a

contradiction. h

However, one can still prove a density result, as below.

Proposition 32. The space K is dense in L2
t ðoXÞ.

Proof. Let e > 0 and~l 2 L2
t ðoXÞ be given. By definition, L2

t ðoXÞ is a subset of L2 (oX), and H1/2 (oX) is dense

in L2 (oX). So, 9~le 2 H1=2 ðoXÞ s.t. k~le �~lk0;oX 6 e. Using the H1/2 (oX) � H1 (X) lifting operator, one can

choose ve 2 H1 (X) s.t. ve
joX ¼ ~le. Now, ve is an element of XE, so ~le

T ¼ ve
T is an element of K, and
k~le
T �~lkL2

t ðoXÞ 6 k~le �~lk0;oX 6 e;
which yields the result. h

This allows to prove

Theorem 33. Problem (RE) admits one, and only one, solution ðE; p;~kEÞ. In addition, ðp;~kEÞ ¼ ð0; 0Þ, so that

E is the solution to (15)–(17).

Proof. Since the usual Babuska–Brezzi theory is not usable here, we revert to simpler means to prove the

existence and uniqueness.

Existence of the solution: let E be the solution to problem (15)–(17), then ðE; 0; 0Þ is a solution to

problem (RE).

Uniqueness of the solution: let ðE; p;~kEÞ be a solution to problem (RE) with ðlE; gE;~eÞ ¼ ð0; 0; 0Þ. In
particular, (83) yields ET ¼ 0, so E 2 X0

E. Then, with test fields v in X0
E only, (81) and (82) lead to (56) and

(57), with zero right-hand sides: ðE; pÞ satisfies the homogeneous problem (Q0
E), and it is therefore equal to

(0,0). Finally, (81) now reduces to
ð~kE; vTÞ0;oX ¼ 0 8v 2 XE: ð84Þ
This gives ~kE ¼ 0 according to the density result of Proposition 32.

The obvious by-product of the existence and uniqueness results is that ðp;~kEÞ always vanishes. h

The MAVF on H, called (RH), reads
find ðH; p; kHÞ 2 XH � L2
0ðXÞ � L2ðoXÞ

s:t: ðH; vÞXH
þ ðp; divvÞ0 þ ðkH; v � nÞ0;oX ¼ lHðvÞ 8v 2 XH; ð85Þ

ðdivH; qÞ0 ¼ ðgH; qÞ0 8q 2 L2
0ðXÞ; ð86Þ

ðH � n; lÞ0;oX ¼ ðh; lÞ0;oX 8l 2 L2ðoXÞ: ð87Þ
We fall back to the often used pattern of proof, 2 with the Babuska–Brezzi theory.

Theorem 34. Problem (RH) admits one, and only one, solution ðH; p; kHÞ. In addition, (p,kH) = (0,0), so that

H is the solution to (25)–(27).
is possible to choose the formulation with ðH; p; kHÞ 2 XH � L2
0ðXÞ � L2

0ðoXÞ, i.e. with two zero mean-value Lagrange

liers.
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Proof. Existence and uniqueness of the solution to problem (RH).

The V-ellipticity condition is automatic, since the bilinear form involved is the scalar product of XH.

To check the inf–sup condition, let ðq; lÞ 2 L2
0ðXÞ � L2ðoXÞ. Define cl = (l,1)0,oX/jXj:

9!/ 2 H 1ðXÞ \ L2
0ðXÞ s.t. D/ = q + cl, on/joX = l. We note that
kclk2
0 ¼j clj2 j X j¼ ðl; 1Þ20;oX= j X j6 CXklk2

0;oX with CX ¼j oX j = j X j :
Then, v = $/ is in XH, and
ðq; divvÞ0 þ ðl; v � nÞ0;oX ¼ kqk2
0 þ klk2

0;oX;

kvk2

XH
¼ kq þ clk2

0 þ klk2

0;oX ¼ kqk2

0 þ kclk2

0 þ klk2

0;oX 6 ð1 þ CXÞ kqk2

0 þ klk2

0;oX

h i
:

In other words
inf
ðq;lÞ6¼0

sup
v2XH

ðq; divvÞ0 þ ðl; v � nÞ0;oX
kvkXH

kqk2

0 þ klk2

0;oX

	 
1=2
P

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ CX

p ;
which means that the inf–sup condition is fulfilled.

Let us prove that (p,kH) = (0,0). Set cH = (kH,1)0,oX/jXj; 9!/H 2 H 1ðXÞ \ L2
0ðXÞ s.t. D/H = p + cH,

on/HjoX = kH. As $/H is in XH, one can consider (85) with $/H, minus (86) with p and (87) with kH, to get
cHðdivH; 1Þ0 þ kpk2
0 þ kkHk2

0;oX ¼ cHðgH; 1Þ0:
Now, ðdivH; 1Þ0 ¼ ðH � n; 1Þ0;oX ¼ ðh; 1Þ0;oX ¼ ðgH; 1Þ0, according to the compatibility condition (30).

Thus p and kH vanish, so (85) implies that H is the solution to problem (PH). According to Theorem

24, H is the solution to (25)–(27). h

NB. Problem (RH) satisfies an inf–sup condition.

In this subsection, we defined one augmented variational formulation, and two mixed augmented vari-

ational formulations for each of static-like fields E and H. We shall see whether these formulations fare

well or not, when applied to the time-harmonic Maxwell equations. In particular, the vector vs. scalar

boundary condition for E and H yields differences, consequences of the facts we emphasized in Lemma

30, Corollary 31 and Proposition 32.

3.2. The time-harmonic equations

We consider the time-harmonic source problems (42)–(44) and (45)–(48), given j, j 0 and x with the elec-

tromagnetic field set in XE � XH.

Let us begin by the electric problem, already solved inV0
E in Section 2.2. It is tempting to define first, à la

sauce (63) and (64), a problem (pE),
find e0 2 XE

s:t: ðe0; vÞXE
¼ x2ðe0; vÞ0 � ðj0; vÞ0 8v 2 XE; ð88Þ

dive0 ¼ 0: ð89Þ
What can be said about the formulation (pE)? If one considers test fields which are elements of X0
E, (88)

and (89) is similar to (63) and (64), boundary condition e 0 · njoX = 0 excepted. Actually, this boundary con-

dition is (pE)�s major drawback. . . Assume for instance that j 0 = 0, and x 5 0 in (88). Then, if in addition

e 0 · njoX = 0, one could consider v = $/, with smooth /, to find
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0 ¼ ðe0;r/Þ0 ¼ �H�1=2ðoXÞ < e0 � n;/>H1=2ðoXÞ:
By density, e0 Æ njoX = 0 would follow, so that e0 would necessarily belong to H1
0ðXÞ, according to [1, Theo-

rem 2.5, p. 827], i.e. a rather unlikely truth. . .
We just carried out an a posteriori analysis of (88) and (89). Let us now attempt an a priori analysis of

(42)–(44). Eq. (42) reveals that curl e 0 belongs to H (curl,X). Since (curl e 0) Æ njoX = divC (e
0 · njoX) = 0, one

has moreover curl e0 2 X0
H. Thus, curl e 0 belongs to H1/2+r (X) for some r > 0, thanks to [1, Proposition

3.7, p. 838], so that (curl e 0)joX 2 L2 (oX). Therefore, taking the L2 (X) scalar product of v 2 XE and (42),

and integrating by parts, one finds
ðcurl e0; curl vÞ0 � ððcurl e0Þ � n; vTÞ0;oX ¼ x2ðe0; vÞ0 � ðj0; vÞ0: ð90Þ
With dive 0 = 0 and e 0 · njoX = 0, we found (88) with an additional term. . .
The preliminary conclusion is that a formulation set in XE, which does not take into account the bound-

ary condition e 0 · njoX = 0 explicitly, fails to resolve the time-harmonic electric equations (contrarily to the

static case, cf. Section 3.1). So, it is necessary to enforce this boundary condition. When it is handled as a

natural boundary condition, we prove below it can be achieved by imposing it as a constraint. Let us intro-

duce the problem (qE)
find ðe0;~kEÞ 2 XE � L2
t ðoXÞ

s:t: ðe0; vÞXE
þ ð~kE; vTÞ0;oX ¼ x2ðe0; vÞ0 � ðj0; vÞ0 8v 2 XE; ð91Þ

dive0 ¼ 0; ð92Þ

ðe0
T;~lÞ0;oX ¼ 0 8~l 2 L2

t ðoXÞ: ð93Þ
Proposition 35. In (qE), one has ~kE ¼ �ðcurl e0Þ � njoX in L2
t ðoXÞ.

Proof. First, take v 2 DðXÞ3 in (91) and integrate by parts the curl-curl term, to recover (42). Second,

choose v 2 XE and perform the same integration by parts: there remains
ð~kE þ ðcurl e0Þ � n; vTÞ0;oX ¼ 0 8v 2 XE:
The result follows by applying Proposition 32. h

It is then straightforward to prove

Theorem 36. ðe0;~kEÞ is a solution to problem (qE) with ~kE ¼ �ðcurl e0Þ � njoX iff e 0 is a solution to (42)–(44).

Remark 37. We found that~kE ¼ �ðcurl e0Þ � njoX in Proposition 35, i.e. a nonzero Lagrange multiplier. It

can be characterized (see [12] for details) as
~kE ¼ rCa þ curlCb; a; b 2 H 1ðoXÞ=R;

DCa ¼ ðj0 � x2e0Þ � njoX;

DCb ¼ curlCððcurl e0Þ � njoXÞ:
The final step is to construct an MAVF, with both (43) and (44) handled as constraints. It is called prob-
lem (rE)
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find ðe0; p;~kEÞ 2 XE � L2ðXÞ � L2
t ðoXÞ

s:t: ðe0; vÞXE
þ ðp; divvÞ0 þ ð~kE; vTÞ0;oX ¼ x2ðe0; vÞ0 � ðj0; vÞ0 8v 2 XE; ð94Þ

ðdive0; qÞ0 ¼ 0 8q 2 L2ðXÞ; ð95Þ

ðe0
T;~lÞ0;oX ¼ 0 8~l 2 L2

t ðoXÞ: ð96Þ
We conclude the time-harmonic electric case by the two results below, which are concerned with the

MAVF (rE). The first one is established similarly to Proposition 16.

Proposition 38. In (rE), one has p = 0.

Theorem 39. ðe0; 0;~kEÞ is a solution to problem (rE) with ~kE ¼ �ðcurl e0Þ � njoX iff e 0 is a solution to

(42)–(44).

Proof. It is easily established that ðe0; 0;~kEÞ is a solution to problem (rE) if, and only if, ðe0;~kEÞ is a solution

to problem (qE), so the conclusion follows from Theorem 36. h

Let us turn now to (45)–(48), solved in V0
H in Section 2.2. We introduce a problem (pH)
find h 2 XH

s:t: ðh; vÞXH
¼ x2ðh; vÞ0 þ ðj; curl vÞ0 8v 2 XH; ð97Þ

divh ¼ 0: ð98Þ
Contrarily the the electric case (set in XE), we can prove that problem (pH) is indeed equivalent to the
original magnetic time-harmonic equations. To that aim, we establish a preliminary result. Let
W :¼ w 2 H 1ðXÞ : Dw 2 L2ðXÞ; ow
on

joX 2 L2ðoXÞ
� �

:

Proposition 40. Given ðg;xÞ 2 L2ðoXÞ � R, there exists w 2 W s.t.
ow
on

� x2w

� �j
oX

¼ g:
Proof. Let f 2 L2 (X), and solve the problem
find w 2 H 1ðXÞ

s:t: ðrw;rw0Þ0 � x2ðw;w0Þ0;oX ¼ ðf ;w0Þ0 þ ðg;w0Þ0;oX 8w0 2 H 1ðXÞ:
If this problem admits a solution, it satisfies �Dw = f and (onw � x2w)joX = g, so the Proposition is proved.

Now, it is easily checked (for instance by contradiction), that the norm associated to the scalar product
ðw;w0Þ1;H ¼ ðrw;rw0Þ0 þ ðw;w0Þ0;oX;
defines a norm, which is equivalent to k Æ k1 in H1 (X). We rewrite the problem in w as
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find w 2 H 1ðXÞ

s:t: ðw;w0Þ1;H � ðx2 þ 1Þðw;w0Þ0;oX ¼ ðf ;w0Þ0 þ ðg;w0Þ0;oX 8w0 2 H 1ðXÞ:
It can be resolved by the Fredholm theory. In order to define a (symmetric) compact operator T1 of

H1 (X), remember that the imbedding of H1 (X)joX = H1/2 (oX) into L2 (oX) is compact. Then, since

$!G 2 H1 (X) s.t. (G,v)1,w = (f,v)0 + (g,v)0,oX, "v 2 H1 (X), one reaches
ðI � ðx2 þ 1ÞT1Þw ¼ G in H 1ðXÞ:
If 1/(x2 + 1) is not an eigenvalue of T1, w exists. Otherwise, let (w1, . . . ,wp) be a basis of

kerðI � ðx2 þ 1ÞT1Þ. In order for w to exist, it is enough to have (f,wk)0 + (g,wk)0,oX = 0, for 1 6 k 6 p.
Since g and (wk)k are fixed and f is not, one simply chooses f such that (f,wk)0 = �(g,wk)0,oX, for 1 6 k 6 p.

This concludes the proof. h

Theorem 41. h is a solution to (pH) iff h is a solution to (45)–(48).

Proof. If h solves (45)–(48), it is also a solution to problem (pH). Reciprocally, if h belongs to XH and sat-

isfies (97) and (98), then it also satisfies (70) and (71). To reach the result, one has to check that h Æ njoX = 0.

We know from the previous Proposition that $w 2 W s.t. (onw � x2w)joX = h Æ njoX. Since $w belongs to XH,
(97) with $w and (98) yield
ðh � n; onwÞ0;oX ¼ x2ðh � n;wÞ0;oX; or kh � njoXk2

0;oX ¼ 0: �
Let us now successively consider two formulations with Lagrange multipliers. First, the problem (qH),
find ðh; kHÞ 2 XH � L2ðoXÞ

s:t: ðh; vÞXH
þ ðkH; v � nÞ0;oX ¼ x2ðh; vÞ0 þ ðj; curl vÞ0 8v 2 XH; ð99Þ

divh ¼ 0; ð100Þ

ðh � n; lÞ0;oX ¼ 0 8l 2 L2ðoXÞ: ð101Þ
Proposition 42. In (qH), one has kH = 0.

Proof. Given kH 2 L2 (oX), 9!/H 2 H 1ðXÞ \ L2
0ðXÞ s.t. D/H = (kH,1)0,oX/jXj and on/HjoX = kH. $/H belongs

to XH, so it can be utilized as a test field in (99): this yields, thanks to (100) and (101),
kkHk2

0 ¼ x2ðh;r/
H

Þ0 ¼ 0 (by integration by parts). h

It is then straightforward to prove

Theorem 43. (h, 0) is a solution to problem (qH) iff h is a solution to (45)–(48).

The final step is to construct an MAVF, with both (46) and (47) handled as constraints: problem (rH),
find ðh; p; kHÞ 2 XH � L2
0ðXÞ � L2ðoXÞ

s:t: ðh; vÞXH
þ ðp; divvÞ0 þ ðkH; v � nÞ0;oX ¼ x2ðh; vÞ0 þ ðj; curl vÞ0 8v 2 XH; ð102Þ

ðdivh; qÞ0 ¼ 0 8q 2 L2
0ðXÞ; ð103Þ

ðh � n; lÞ0;oX ¼ 0 8l 2 L2ðoXÞ: ð104Þ



580 P. Ciarlet Jr. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 559–586
There holds

Proposition 44. In (rH), one has (p,kH) = (0,0).

Proof. Let us check first that p = 0 in (rH): 9!/
H

2 H 1ðXÞ \ L2
0ðXÞ s.t. D/H = p and on/HjoX = 0. Let us plug

vH = $/H into (102): kpk2

0 ¼ x2ðh;r/
H

Þ0 ¼ 0, by integration by parts.

Second, we note that (rH) with p = 0 is equivalent to (qH), provided that (rH) yields divh = 0. But this is a

straightforward consequence of (103) and of (divh, 1)0 = (h Æ n, 1)0,oX = 0.

Finally, Proposition 42 allows to conclude. h

According to Theorem 55 (inf–sup valid for problem (RH)), one gets the

Theorem 45. (h, 0,0) is a solution to problem (rH) iff h is a solution to (45)–(48).

If we focus on the magnetic time-harmonic equations with j = 0, and (h,x) as unknowns, i.e. the eigen
value problem we note that our approach is different from the one adopted by Costabel, Dauge and Martin

in [18]. In [18], a penalization method was investigated, which resulted in solving, with s > 0 and k > 0:
3 T

would
find ðh;xÞ 2 XH � R

s:t: ðcurlh; curl vÞ0 þ sðdivh; divvÞ0 þ kðh � n; v � nÞ0;oX ¼ x2ðh; vÞ0 8v 2 XH:
With this VF, spurious eigenmodes on the divergence of the magnetic field appear, since divh = 0 is neither
enforced explicitly (as in problems (pH) and (qH)), nor dualized (as in problem (rH)).

To conclude the section on the natural boundary conditions, we emphasize the fact that the vector vs.

scalar boundary condition for e 0 and h produces major differences. On the one hand, problem (pH) solves

the magnetic time-harmonic equations, whereas (pE) does not solve the electric counterpart! On the other

hand, there is an inf–sup condition for the magnetic problems (RH) and (rH) with two Lagrange multipliers,

whereas there is none for the electric counterparts (RE) and (rE).
4. Variational formulations in weighted Sobolev spaces

In this section, we focus on Variational Formulations, in weighted Sobolev spaces. Again, the obvious

advantage is computational, since, according to the density of smooth fields [17] in the X0
E-like

3 space

X0
E;c to be described below, one can use the continuous approximation of the field based on the P1 Lagrange

FEM. This breakthrough has been achieved in [17] for the approximation of the time-harmonic electric

field, without Lagrange multiplier. Note that in this section, we follow closely the ideas of Section 2.

Before we proceed with the Variational Formulations, let us recall a few definitions and results. Since we
deal with weighted Sobolev spaces, we begin by the weight functional. Among other possibilities, it can be

defined with respect to the following distance.

Definition 46. Let E denote the closure of the set of reentrant edges of oX, that is edges such that the

dihedral angle in X is larger than p. Then, let
d0ðxÞ ¼ dðx;EÞ:

After that, we introduce the weighted Lesbesgue and Sobolev spaces that we shall use throughout this section.

Definition 47. Let c 2 [0,1] and set
L2ðXÞ ¼ fg : g 2 D0 ðXÞ; dcg 2 L2ðXÞg with norm kgk ¼ kdcgk ;
c 0 0;c 0 0

he ad hoc density result has not been established for spaces of magnetic fields, so we focused on the electric field. Nevertheless,

this result be proven, one could use the same techniques as the ones described in this paper.
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X0
E;c ¼ fv : v 2 H0ðcurl;XÞ; divv 2 L2

cðXÞg:
The upper bound (one) on c is taken so that L2
cðXÞ � H�1ðXÞ always holds. In [17, Theorem 5.1], the

fundamental result was established.

Theorem 48. There exists c0 2 ]0,1/2[, which depends only on the geometry of oX, such that, for all

c 2 ]c0,1], the set of regular fields
fv : v 2 H1ðXÞ; v � njoX ¼ 0g
is dense in X0
E;c.

Moreover, one can prove that the reduced norm in X0
E;c is equivalent to the full norm.

Theorem 49. In X0
E;c, for c 2 ]c0,1[,
kvkX 0
c

¼ fkcurl vk2
0 þ kdivvk2

0;cg
1=2
is a norm, which is equivalent to the full norm.

Proof. According to [17], for c 2 ]c0,1[, L
2
cðXÞ is compactly imbedded into H�1 (X), which implies (cf. Cor-

ollary 2.3 op. cit.) that X0
E;c is compactly imbedded into L2 (X).

Then, one proves easily by contradiction that k � kX 0
c
is equivalent to the full norm: assume there exists a

sequence (vk)k of elements of X0
E;c such that
lim
k

kvkkX 0
c

¼ 0; kvkk0 ¼ 1 8k:
In particular, (vk)k is bounded in X0
E;c, so there exists a subsequence, still denoted by (vk)k, which con-

verges in L2 (X), to v (and kvk0 = 1). Now, as (curl vk)k goes to zero in L2 (X), we infer that curl v = 0. Thus

(vk)k converges to v in H (curlX), so v · njoX = 0. Also, as c < 1, L2
cðXÞ � H�1ðXÞ, therefore limkdivvk = 0 in

H�1 (X). This implies divv = 0. As a consequence, v is an element of X0
E and, thanks to Theorem 3, v = 0,

which contradicts kvk0 = 1. h

These two results form the framework that allows to solve the static model in E and the time-harmonic

Maxwell equations in e.

4.1. The static equations

We introduce a lifting of ~e, called ~e, in H1 (X)3, and E0 ¼ E � ~e, which satisfies (52). We consider the
AVF (P 0

E)
find E0 2 X0
E;c

s:t: ðE0; vÞX 0
c

¼ ðf0E; curl vÞ0 þ ðg0
E; divvÞ0;c 8v 2 X0

E;c: ð105Þ
According to the Riesz theorem, there exists one, and only one, solution to problem (P 0
E), continuous

with respect to the data ðf0E; g0
EÞ in L2ðXÞ � L2

cðXÞ.

Theorem 50. The field E0 satisfies (52) iff it is a solution to problem (P 0
E).

Proof. It is clear that if E0 is a solution to (52), it also solves (105).

Let us consider the reciprocal assertion: let E0 be the solution to (105). Since L2
cðXÞ � H�1ðXÞ, given

g 2 L2
cðXÞ; 9!/ 2 H 1

0ðXÞ s.t. D/ = g. As v ¼ r/ 2 X0
E;c, there holds ðdivE0; gÞ0;c ¼ ðg0E; gÞ0;c; divE0 ¼ g0E

follows.
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The end of the proof is that of Theorem 5. h

Evidently, the solution E depends continuously on the data (fE,gE,e) in L2ðXÞ � L2
cðXÞ � H1=2ðoXÞ.

NB. Within the framework of weighted Sobolev spaces, it is possible to solve (15)–(17) with only

gE 2 L2
cðXÞ (a weaker assumption than gE 2 L2 (X)).

Next, we define the MAVF (Q0

E
)

find ðE0; pÞ 2 X0
E;c � L2

cðXÞ

s:t: ðE0; vÞX 0
c

þ ðp; divvÞ0;c ¼ ðf0E; curl vÞ0 þ ðg0
E; divvÞ0;c 8v 2 X0

E;c; ð106Þ

ðdivE0; qÞ0;c ¼ ðg0
E; qÞ0;c 8q 2 L2

cðXÞ: ð107Þ
There holds divX0
E;c ¼ L2

cðXÞ. So, it is required that p vanishes. Noticing that the Lagrange multipliers
belong to H�1 (X), one can follow the pattern of proofs given in Section 2.1 to prove the two results below.

Proposition 51. In (Q0

E
), one has p = 0.

Theorem 52. Problem (Q0

E
) admits one, and only one, solution ðE0; pÞ. Moreover, E0 is the solution to problem

(P 0
E).

NB. Problem (Q0

E
) satisfies an inf–sup condition.

4.2. The time-harmonic equations

We turn to the time-harmonic source problem (42)–(44), which we solved inV0
E in Section 2.2. It is inter-

esting to note that V0
E is not only a subspace of H0 (curlX) or of X0

E, but also of X0
E;c. Therefore, we define,

in-between (60) and (61), and (62), a new equivalent formulation, called problem ðp0

E
Þ

find e0 2 X0
E;c

s:t: ðe0; vÞX 0
c

¼ x2ðe0; vÞ0 � ðj0; vÞ0 8v 2 X0
E;c; ð108Þ

dive0 ¼ 0: ð109Þ
If (109) is handled as a constraint, one gets problem ðq0

E
Þ

find ðe0; pÞ 2 X0
E;c � L2

cðXÞ
s:t: ðe0; vÞX 0

c
þ ðp; divvÞ0;c ¼ x2ðe0; vÞ0 � ðj0; vÞ0 8v 2 X0

E;c; ð110Þ

ðdive0; qÞ0;c ¼ 0 8q 2 L2
cðXÞ: ð111Þ
There holds successively

Proposition 53. In (q0
E

), one has p = 0.

According to Theorem 55, thanks to the inf–sup condition in problem ðQ0

E
Þ, there holds the

Theorem 54. (e 0, 0) is a solution to problem (q0
E

) iff e 0 is a solution to (42)–(44).
5. Conclusion

In this paper, we focused on variational formulations to solve the static-like or time-harmonic Maxwell
equations. To that aim, we derived augmented variational formulations, where the additional term is de fac-
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to a (weighted) L2 scalar product between the divergence of the EM and the divergence of test fields. The

EM fields can live in three different classes of Sobolev spaces:

• X0
E=X

0
H (0 for vanishing b.c.);

• XE=XH;
• X0

E;c (0 for vanishing b.c.; c for a weight on the divergence).

In this respect, all the methods we presented are H (curl,div)-conforming, with a weight on the diver-

gence in X0
E;c. We also built mixed, augmented variational formulations, with either one or two Lagrange

multipliers. In other words, we considered the equation on the divergence as a constraint. When applicable

(i.e. in XE=XH), we took into account the relation on the tangential trace of electric fields or on the normal

trace of magnetic fields as a second constraint.

Let us make two remarks from a theoretical point of view. First, in the case of the magnetic field, we
noted already that a density result of regular fields in the ad hoc weighted Sobolev space is missing. Second,

it is possible to generalize the study we performed here to Maxwell equations, posed in heterogeneous

media. More precisely, assume that the electric permittivity e and magnetic permeability l are nonnegative

piecewise constants. With boundary conditions treated as essential, the same kind of study can still be

carried out. As far as the natural boundary conditions approach is concerned, a density result still holds,

under some assumptions on the jumps of e and l across interfaces (cf. [27]). To our knowledge, in the case

of the weighted approach, no result is available.

As far as numerical applications are concerned, we recall that the main difference between those formu-
lations lies in the fact that P1 continuous aproximations span a dense subspace of XE=XH and X0

E;c: a

straightforward implementation yields convergence. On the contrary, the FE span a closed and strict sub-

space ofX0
E=X

0
H, thus requiring a singular complement. Also, the uniform discrete inf–sup condition has been

established for the pairs ( Æ ,p) in [13], when the field lives in the spaces X0
E=X

0
H or XE=XH. There remains to

prove a similar condition for ðE; pÞ when the electric field lives in X0
E;c, and also on ðE;~kEÞ in XE � L2

t ðoXÞ
and ðH; kHÞ in XH � L2ðoXÞ.

For the time-dependent Maxwell equations, the same techniques can be applied. For instance, when

these equations are solved within the framework developed by Lions and Magenes [26], one can utilize a

result similar to the one proved in Appendix A, i.e. think in terms of operators, when constraints are dual-

ized. Note that these equations have already been numerically approximated with H (curl,div)-conforming

FEM, see for instance [7,5,3].
Appendix A. Annex

LetH be a Hilbert space, with scalar product (Æ , Æ) and norm k Æ k. We consider thatH is a pivot space, i.e.

H 0 = H.

Let X and Q be two Hilbert spaces, with norms k ÆkX and k Æ kQ; X is a subset of H.

Let a and b be two continuous bilinear forms, a: X � X ! R and b: X � Q ! R, (l,v) 2 X 0 · Q 0 and

k 2 R. We then define
V ðvÞ :¼ fv 2 X : bðv; qÞ ¼ hv; qi 8q 2 Qg; V :¼ V ð0Þ:

We introduce two source problems: a direct one, called (P), and a constrained one, called (Q).

Problem (P)
find u 2 V ðvÞ
s:t: aðu; vÞ ¼ kðu; vÞ þ hl; vi 8v 2 V :
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Problem (Q)
find ðu; pÞ 2 X � Q

s:t:
aðu; vÞ þ bðv; pÞ ¼ kðu; vÞ þ hl; vi 8v 2 X ;

bðu; qÞ ¼ hv; qi 8q 2 Q:

(

We prove next that, in terms of u, problems (P) and (Q) have the same solutions, under the assumption

that b satisfies an inf–sup condition, i.e.
9b > 0 s:t: 8q 2 Q; sup
v2X

bðv; qÞ
kvkX

P bkqkQ:
Theorem 55. Let u 2 X be given: u is a solution to (P) iff there exists p 2 Q such that (u,p) is a solution to (Q).

Proof. Let (u,p) be a solution to (Q).

First, u belongs to V (v) by definition. Second, since b (v,p) vanishes for v 2 V, there follows that
a (u,v) = k (u,v) + hl,vi for all v 2 V.

Now, let u be a solution to (P).

We introduce three continuous linear operators A :X ! X 0, B0 :Q ! X 0, and j :H ! X 0, respectively
defined by
hAv;wi ¼ aðv;wÞ 8ðv;wÞ 2 X � X ;

hB0q;wi ¼ bðw; qÞ 8ðq;wÞ 2 Q � X ;

hjh;wi ¼ ðh;wÞ 8ðh;wÞ 2 H � X :
Thus, one gets h(A � k j)u � l,vi = 0, "v 2 V. In other words, (A � k j)u � l belongs to the polar set of V

in X 0, V0 :¼ {g 2 X 0 : hg,vi = 0 "v 2 V}.

According to [23, Lemma 4.1(ii), p. 58], since the inf–sup condition is satisfied, there exists one, and only

one, p in Q such that B 0p = �(A � kj)u + l in X 0. Therefore
hAu; vi þ hB0p; vi ¼ khju; vi þ hl; vi 8v 2 X
or equivalently
aðu; vÞ þ bðv; pÞ ¼ kðu; vÞ þ hl; vi 8v 2 X :
By construction, u belongs to V (v), so b (u,q) = hv,qi"q 2 Q, which concludes the proof. h

Corollary 56. (Q) admits no solution iff (P) admits no solution.

Proof. It is enough to utilize the contraposed statement of Theorem 55. h

This means that the eigenvalue problems, which can be derived from (P) and (Q), possess the same

eigenpairs.

Let us note that one can use a very similar approach to solve 2nd order time-dependent equations with

dualized constraints (for instance within the framework developed by Lions and Magenes [26]), such as, for
given T > 0
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find ðu; pÞ :�0; T ½! X � Q

s:t:
hu00ðtÞ; vi þ aðuðtÞ; vÞ þ bðv; pðtÞÞ ¼ ðlðtÞ; vÞ 8v 2 X ; t > 0;

bðuðtÞ; qÞ ¼ hvðtÞ; qi 8q 2 Q; t > 0

�

(with initial conditions : u (0) = u0 2 X and u 0 (0) = u1 2 H.)
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