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Abstract

We describe and analyze an approach to the pure traction problem of three-dimensional linearized elasticity, whos
consists in considering the linearized strain tensor as the ‘primary’ unknown, instead of the displacement itself as is cu
This approach leads to a well-posed minimization problem, constrained by a weakform of the St Venant compatibility condi-
tions. It also provides a new proof of Korn’s inequality.To cite this article: P.G. Ciarlet, P. Ciarlet Jr., C. R. Acad. Sci. Paris,
Ser. I 339 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

On décrit et analyse une approche du problème de traction pure en élasticité linéarisée tridimensionnelle, dont la n
consiste à considérer le tenseur linéarisé des déformations comme l’inconnue principale, au lieu du déplacement lui-m
l’habitude. Cette approche conduit à un problème bien posé de minimisation sous contraintes, celles-ci consistant en une fo
affaiblie des conditions de compatibilité de St Venant. Cette approche conduit aussi à une nouvelle démonstration de l’inég
de Korn.Pour citer cet article : P.G. Ciarlet, P. Ciarlet Jr., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

1. The classical approach to existence theory in linearized elasticity

Latin indices range over the set{1,2,3} and the summation convention with respect to repeated indices is
in conjunction with this rule. The Euclidean and exterior products ofa,b ∈ R

3 are denoteda · b anda ∧ b. The
matrix inner product of two 3× 3 matricesε ande is denotedε : e = trεTe. The identity mapping of a setX is
denotedidX . The restriction of a mappingf to a setX is denotedf |X .

E-mail addresses:mapgc@cityu.edu.hk (P.G. Ciarlet), ciarlet@ensta.fr (P. Ciarlet Jr.).
1631-073X/$ – see front matter 2004 Published by Elsevier SAS on behalf of Académie des sciences.
doi:10.1016/j.crma.2004.06.021
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Given an open subsetΩ of R
3, spaces of vector-valued or matrix-valued functions or distributions defined on

Ω are denoted by boldface letters. The norm in the spaceL2(Ω) is denoted‖ · ‖0,Ω and that in the spaceH1(Ω)

is denoted‖ · ‖1,Ω . If V is a vector space andR a subspace ofV , the quotient space ofV moduloR is denoted
V/R and the equivalence class ofv ∈ V moduloR is denoteḋv.

Let xi denote the coordinates of a pointx ∈ R
3, let ∂i := ∂/∂xi and ∂ij := ∂2/∂xi∂xj . Given a vector field

v = (vi), the 3× 3 matrix with∂jvi as its element at thei-th row andj -th column is denoted∇v.
Let Ω be an open, bounded, and connected subset ofR

3 whose boundaryΓ is Lipschitz-continuous in the sens
of Nečas [13] or Adams [1]. Assume that the setΩ is thereference configurationoccupied by alinearly elastic
bodyin the absence of applied forces. The elastic material constituting the body, which may be nonhomogene
and anisotropic, is thus characterized by itselasticity tensorA = (Aijkl ) ∈ L∞(Ω), whose elements possess t
symmetriesAijkl = Ajikl = Aklij , and which is uniformly positive-definite a.e. inΩ , in the sense that there exis
a constantα > 0 such thatA(x)t : t � αt : t for almost allx ∈ Ω and all 3× 3 symmetric matricest = (tij ), where
(A(x)t)ij := Aijkl(x)tkl .

The body is assumed to be subjected toapplied body forcesin its interior with densityf ∈ L6/5(Ω). Hence the
linear formL :H1(Ω) → R defined byL(v) := ∫

Ω
f · v dx for all v ∈ H 1(Ω) is continuous.

Then the associatedpure traction problem of linearized elasticityclassically consists in finding a displaceme
vector fieldu ∈ H1(Ω) that satisfiesJ (u) = infv∈H1(Ω) J (v), where the quadratic functionalJ is defined by

J (v) = 1

2

∫
Ω

Ae(v) : e(v)dx − L(v) for all v ∈ H 1(Ω),

e(v) := 1

2
(∇vT + ∇v) =

(
1

2
(∂ivj + ∂jvi)

)
∈ L2

sym(Ω)

denotes thelinearized strain tensor fieldassociated with an arbitrary vector fieldv ∈ H1(Ω), and

L2
sym(Ω) := {e = (eij ) ∈ L2(Ω); eij = eji in Ω}.

Let

R(Ω) := {r ∈ H1(Ω); e(r) = 0 in Ω} = {r = a + b ∧ idΩ; a ∈ R
3, b ∈ R

3}
denote thespace of infinitesimal rigid displacements of the setΩ . The applied forces are also assumed to be s
that the associated linear formL satisfies the (clearly necessary) relationL(r) = 0 for all r ∈ R(Ω). Hence the

above minimization problem is equivalent to findingu̇ ∈ Ḣ
1
(Ω) := H1(Ω)/R(Ω) such that

J (u̇) = inf
v̇∈Ḣ1(Ω)

J (v̇),

whereJ (v̇) := J (v) for all v̇ ∈ Ḣ
1
(Ω). In order to apply the Lax–Milgram lemma, it suffices to show that

mappingv̇ → ‖e(v̇)‖0,Ω is a norm over the quotient spaceḢ
1
(Ω) equivalent to the quotient norm, defined by

‖v̇‖1,Ω := inf
r∈R(Ω)

‖v + r‖1,Ω for all v̇ ∈ Ḣ
1
(Ω).

The proof comprises two stages, whose proofs are wellknown. We nevertheless record these here (see T
rems 1.1 and 1.2) for the sake of comparison with those found in the present approach. The first stage c
establishing the classicalKorn inequality in the spaceH 1(Ω):

Theorem 1.1. There exists a constantC such that

‖v‖1,Ω � C
{‖v‖2

0,Ω + ‖e(v)‖2
0,Ω

}1/2
for all v ∈ H1(Ω).
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Proof. As shown in Theorem 3.2, Chapter 3 of Duvaut and Lions [10], the essence of this remarkable ine
is that thetwo Hilbert spacesH1(Ω) andK(Ω) := {v ∈ L2(Ω); e(v) ∈ L2

sym(Ω)} coincide. This property relies

on a fundamentallemma of J.L. Lionsthat asserts that, if a distributionv ∈ H−1(Ω) is such that∂jv ∈ H−1(Ω),
thenv ∈ L2(Ω) (see Theorem 3.2, Chapter 3 of Duvaut and Lions [10] for domains with smooth boundari
Amrouche and Girault [2] for Lipschitz-continuous boundaries). The Korn inequality inH1(Ω) then becomes
consequence of theclosed graph theoremapplied to the identity mapping fromH1(Ω) into K(Ω), which is thus
surjective and otherwise clearly continuous.�

The second stage consists in establishing the (equally classical)Korn inequality in the quotient spacėH
1
(Ω)

as a corollary to Theorem 1.1, a proof of which can be found in Theorem 3.4, Chapter 3 of Duvaut and Lio

Theorem 1.2. There exists a constanṫC such that

‖v̇‖1,Ω � Ċ
∥∥e(v̇)

∥∥
0,Ω

for all v̇ ∈ Ḣ
1
(Ω).

Interestingly, our subsequent analysis will provide ‘as a by-product’ an essentially different proof of Ko

equalities in both spacesH 1(Ω) andḢ
1
(Ω) (see Corollary 3.2).

2. Weak versions of a classical theorem of Poincaré and of St Venant compatibility conditions

A classicaltheorem of Poincaré(see, e.g., page 235 in Schwartz [14]) asserts that, if functionshk ∈ C1(Ω)

satisfy∂lhk = ∂khl in a simply-connected open subsetΩ of R
3 (or R

n for that matter), then there exists a functi
p ∈ C2(Ω) such thathk = ∂kp in Ω . This theorem was extended by Girault and Raviart [12] (see Theorem 2
Chapter 1), who showed that, if functionshk ∈ L2(Ω) satisfy∂lhk = ∂khl in H−1(Ω) on a bounded, connecte
and simply-connected open subsetΩ of R

3 with a Lipschitz-continuous boundary, then there existsp ∈ H 1(Ω)

such thathk = ∂kp in L2(Ω). In fact, this extension can be carried out one step further:

Theorem 2.1. Let Ω be a bounded, connected, and simply-connected open subset ofR
3 with a Lipschitz-

continuous boundary. Lethk ∈ H−1(Ω) be distributions that satisfy

∂lhk = ∂khl in H−2(Ω).

Then there exists a functionp ∈ L2(Ω), unique up to an additive constant, such that

hk = ∂kp in H−1(Ω).

Idea of the proof. Givenanyh ∈ H−1(Ω), Theorem 5.1, Chapter 1 of Girault and Raviart [12] shows that t
exist u ∈ H 1

0(Ω) andp ∈ L2(Ω) such that (the assumptions thatΩ is bounded and has a Lipschitz-continuo
boundary are used here)−�u + gradp = h in H−1(Ω) and divu = 0 in Ω .

It then suffices to show that, ifin additioncurl h = 0 in H−2(Ω), thenu = 0. The proof of this crucial im-
plication relies on several results, which include in particular an extension result of Girault [11, Theore
and a representation theorem of Girault and Raviart [12, Theorem 2.9, Chapter 1], the assumption of
connectedness being essential here (as in the ‘classical’ version of this theorem). See [4] for a complete proof.�

In 1864, A.J.C.B. de Saint Venant showed that, if functionseij = eji ∈ C3(Ω) satisfy inΩ ad hoccompatibility
relationsthat since then bear his name, then there exists a vector field(vi) ∈ C4(Ω) such thateij = 1

2(∂j vi + ∂ivj )

in Ω . Thanks to Theorem 2.1, theseSt Venant compatibility relationsare also sufficient conditionsin the sense o
distributions, according to the following result:
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Theorem 2.2. Let Ω be a bounded, connected, and simply-connected open subset ofR
3 with a Lipschitz-

continuous boundary. Lete = (eij ) ∈ L2
sym(Ω) be a symmetric matrix field that satisfies the following compatib

relations:

Rijkl (e) := ∂lj eik + ∂kiejl − ∂liejk − ∂kj eil = 0 in H−2(Ω).

Then there exists a vector fieldv = (vi) ∈ H 1(Ω) such that

eij = 1

2
(∂j vi + ∂ivj ) in L2(Ω),

and all other solutions̃v = (ṽi ) ∈ H1(Ω) of the equationseij = 1
2(∂j ṽi + ∂i ṽj ) are of the formṽ = v + a + b∧ id,

with a ∈ R
3 andb ∈ R

3.

Idea of the proof. The proof consists in showing that the classical proof can be re-interpreted in such a way
still holds in the sense of distributions (see [4]). That all other solutions are of the indicated form is well know�
Remark 2.3. A different necessary and sufficient condition for a tensore ∈ L2

sym(Ω) to be of the forme =
1
2(∇vT + ∇v) for somev ∈ H1(Ω) has been given by Ting [16].

Remark 2.4. The assumption thatΩ is simply-connected can be disposed of with some extra care; see [9].

3. A basic isomorphism and a new proof of Korn’s inequality

Let a symmetric matrix fielde = (eij ) ∈ L2
sym(Ω) satisfyRijkl (e) = 0 in H−2(Ω), i.e., the weak form o

St Venant’s compatibility conditions considered in Theorem 2.2. There then exists a unique equivalence

v̇ ∈ Ḣ
1
(Ω) = H1(Ω)/R(Ω) such thate = e(v̇) in L2

sym(Ω). We now show the mappingF : e → v̇ defined in this
fashion has a remarkable property.

Theorem 3.1. Let Ω be a bounded, connected, and simply-connected open subset ofR
3 with a Lipschitz-

continuous boundary. Define the space

E(Ω) := {
e = (eij ) ∈ L2

sym(Ω); Rijkl (e) = 0 in H−2(Ω)
}
,

and letF :E(Ω) → Ḣ
1
(Ω) be the linear mapping defined for eache ∈ E(Ω) byF (e) = v̇, wherev̇ is the unique

element in the quotient spacėH
1
(Ω) that satisfiese(v̇) = e; see Theorem2.2. ThenF is an isomorphism betwee

the Hilbert spacesE(Ω) andḢ
1
(Ω).

Proof. It is easily seen that the mappingF is injective and surjective and that the inverse mappingF −1 : v̇ ∈
Ḣ

1
(Ω) → e(v̇) ∈ E(Ω) is continuous. The conclusion thus follows from theclosed graph theorem. �
Remarkably, the classical Korn’s inequalities of Section 1 can now be very simply recovered:

Corollary 3.2. That the mappingF :E(Ω) → Ḣ
1
(Ω) is an isomorphism implies Korn’s inequalities in bo

spacesH 1(Ω) andḢ
1
(Ω) (see Theorems1.1and1.2).

Proof. (i) SinceF is an isomorphism, there exists a constantĊ such that‖F (e)‖1,Ω � Ċ‖e‖0,Ω for all e ∈ E(Ω),

or equivalently such that‖v̇‖1,Ω � Ċ‖e(v̇)‖0,Ω for all v̇ ∈ Ḣ
1
(Ω). But this is exactlyKorn’s inequality in the

quotient spacėH
1
(Ω), obtained by different means in Theorem 1.2.
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(ii) One then shows by means of standard arguments thatKorn’s inequality in the quotient spacėH
1
(Ω) implies

Korn’s inequality in the spaceH1(Ω) (see [4]). �

4. Another approach to existence theory in linearized elasticity

Thanks to the isomorphismF :E(Ω) → Ḣ
1
(Ω) introduced in Theorem 3.1, the pure traction problem

linearized elasticity problem can be recast asanother minimization problem, this time in terms of an unknown tha
lies in the spaceE(Ω):

Theorem 4.1. Let Ω be a bounded, connected, and simply-connected open subset ofR
3 with a Lipschitz-

continuous boundary. The minimization problem: Find ε ∈ E(Ω) such that

j (ε) = inf
e∈E(Ω)

j (e), wherej (e) := 1

2

∫
Ω

Ae : e dx − Λ(e),

the linear formΛ :E(Ω) → R being defined byΛ := L ◦ F , has one and only one solutionε. Besides,ε = e(u̇)

whereu̇ is the unique solution to the ‘classical’ variational formulation of the pure traction problem of linear
elasticity.

Proof. By assumption (Section 1), there existsα > 0 such that
∫
Ω

Ae : e dx � α‖e‖2
0,Ω for all e ∈ L2

sym(Ω). The

linear formΛ is continuous sinceL andF are continuous. Finally,E(Ω) is a closed subspace ofL2
sym(Ω). Conse-

quently, there exists one, and only one, minimizer of the functionalj overE(Ω). Thatu̇ minimizes the functiona

J overḢ
1
(Ω) implies thate(u̇) minimizesj overE(Ω). Henceε = e(u̇) since the minimizer is unique.�

5. Concluding remarks

(a) While the minimization problem over the spaceḢ
1
(Ω) is anunconstrained onewith three unknowns, tha

found in Theorem 4.1 over the spaceE(Ω) is in effect aconstrained minimization problemover the space
L2

sym(Ω) with six unknowns, the constraints (in the sense of optimization theory) being the compatibility rela-

tionsRijkl (e) = 0 in H−2(Ω) that the matrix fieldse ∈ E(Ω) satisfy (it is easily seen that these compatibi
relations reduce in fact to six independent ones).

(b) As recalled in the proof of Theorem 1.1, thelemma of J.L. Lionsis the keystone of the classical proof
Korn’s inequality. In a sense, the same role is played in the present approach by the ‘H−2-version of a classica
theorem of Poincaré’ established in Theorem 2.1.

(c) In linearized elasticity, thestress tensor fieldσ ∈ L2
sym(Ω) is given in terms of the displacement field byσ =

Ae(v). Since the elasticity tensorA is assumed to be uniformly positive-definite a.e. inΩ , the minimization
problem of Theorem 4.1 can thus be immediately recast as aconstrained minimization problem with the stre
tensor as the primary unknown.

(d) Various attempts to consider the ‘fully nonlinear’Green–St Venant strain tensorE(v) = 1
2(∇vT + ∇v +

∇vT∇v), or equivalently theCauchy–Green tensorI +2E(v), as the ‘primary’ unknown inthree-dimensiona
nonlinear elasticity(this idea goes back to Antman [3]) have beenrecently undertaken in the same spirit; s
[5–8,15]. These attempts have met only partial success, however, since nonlinearityper secreates specific
challenging difficulties.
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