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Abstract

We describe and analyze an approach to the pure traction problem of three-dimensional linearized elasticity, whose novelty
consists in considering the linearized strain tensor as the ‘primary’ unknown, instead of the displacement itself as is customary.
This approach leads to a well-posed miigation problem, constrained by a wefakm of the St Venanhcompatibility condi-
tions. It also provides a new proof of Korn’s inequality cite thisarticle: P.G. Ciarlet, P. Ciarlet Jr., C. R. Acad. Sci. Paris,

Ser. | 339 (2004).
0 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

On décrit et analyse une approche du probléme de traction pure en élasticité linéarisée tridimensionnelle, dont la nouveaut
consiste & considérer le tenseur linéarisé des déformations comme I'inconnue principale, au lieu du déplacement lui-méme selo
I’habitude. Cette approche conduit a un probléme bien posé denisation sous contraintes, celles-ci consistant en une forme
affaiblie des conditions de comiilailité de St Venant. Cette appche conduit aussi a une nouvelle démonstration de I'inégalité

de Korn.Pour citer cet article: P.G. Ciarlet, P. Ciarlet Jr., C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Published by Elsevier SAS on behalf of Académie des sciences.

1. Theclassical approach to existencetheory in linearized elasticity

Latin indices range over the sgt, 2, 3} and the summation convention with respect to repeated indices is used
in conjunction with this rule. The Euclidean and exterior products,df < R® are denoted - b anda A b. The
matrix inner product of two 3« 3 matricess ande is denoteck : e = tre"e. The identity mapping of a sef is
denoteddy. The restriction of a mapping to a setX is denotedf |y .
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Given an open subse? of R3, spaces of vector-valued or matrix-vatlifunctions or distoutions defined on
2 are denoted by boldface letters. The norm in the sizg&2) is denoted| - [|o.> and that in the spacH(£2)
is denoted| - ||1. . If V is a vector space ankl a subspace oV, the quotient space df moduloR is denoted
V/R and the equivalence classo& V moduloR is denoted.

Let x; denote the coordinates of a pointe R3, let ; := 8/dx; and 0;j = Bz/axiaxj-. Given a vector field
v = (v;), the 3x 3 matrix withd;v; as its element at thieth row and;-th column is denote® v.

Let £2 be an open, bounded, and connected subset efhose boundary is Lipschitz-continuous in the sense
of Netas [13] or Adams [1]. Assume that the getis thereference configurationccupied by dinearly elastic
bodyin the absence of applied forces. The elastic mateonstituting the body, which may be nonhomogeneous
and anisotropic, is thus characterized byeilasticity tensord = (A;j) € L*(£2), whose elements possess the
symmetriesA;ji; = A ji = Agij, and which is uniformly positive-definite a.e. i, in the sense that there exists
aconstani > 0 suchthatd (x)¢ : ¢ > ot : t for almost allx € £2 and all 3x 3 symmetric matrices= (z;;), where
(AG))ij = Ajjia (X))t

The body is assumed to be subjectedpplied body forcem its interior with densityf € L8°(2). Hence the
linear formL : H(£22) — R defined byL(v) := [, f - vdx forall v e H(£2) is continuous.

Then the associatgalre traction problem of linearized elasticityassically consists in finding a displacement
vector fieldu € H(£2) that satisfies/ (1) = infveHl(m J (v), where the quadratic functiondlis defined by

J(v) = %/Ae(v) ce(v)dx — L(v) forallve HY(),
2

e(v) = %(VUT + Vo) = (%(a,-vj + ajv,»)> € LEn(£2)

denotes théinearized strain tensor fieldssociated with an arbitrary vector fialde H($2), and
LE,n($2) :={e = (e;j) € LA(2); eij =eji in 2).
Let
R(2):={reHXR2); er)=0inR}={r=a+bAridg; acR3 becR3

denote thespace of infinitesimal rigid displacements of the st The applied forces are also assumed to be such
that the associated linear formsatisfies the (clearly necessary) relatib@r) = O for all r € R(£2). Hence the

above minimization problem is equivalent to findiiag: Hl(.Q) := HY(2)/R(£2) such that

J@)= inf J(®),
veHY(Q)

whereJ (v) := J(v) forall v € Hl(Q). In order to apply the Lax—Milgram lemma, it suffices to show that the
mappingd — |le(d)]lo,s2 is @ norm over the quotient spaéél(Q) equivalent to the quotient norm, defined by

lbllne = inf lo+rlue forallse H'(2).
reR($2)

The proof comprises two stages, whose proofs are kvellvn. We nevertheless record these here (see Theo-
rems 1.1 and 1.2) for the sake of comparison with those found in the present approach. The first stage consists il
establishing the classicbrn inequality in the spac# 1(£2):

Theorem 1.1. There exists a constat such that

1/2
Ivllne < C{lvld o + e o} /2 forall ve HY(2).
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Proof. As shown in Theorem 3.2, Chapter 3 of Duvaut and Lions [10], the essence of this remarkable inequality
is that thetwo Hilbert spacesH *(2) and K (2) := {v € L?(2); e(v) € L§,,(2)} coincide This property relies

on a fundamentdemma of J.L. Lionshat asserts that, if a distributiane H~1(£2) is such thav;v H (),

thenv € L?(£2) (see Theorem 3.2, Chapter 3 of Duvaut and Lions [10] for domains with smooth boundaries and
Amrouche and Girault [2] for Lipschitzontinuous boundaries). The Korn inequality it ($2) then becomes a
consequence of thedosed graph theorerapplied to the identity mapping frol1(£2) into K (£2), which is thus
surjective and otherwise clearly continuousi

The second stage consists in establishing the (equally claskimad)inequality in the quotient spaoél(s?)
as a corollary to Theorem 1.1, a proof of which can be found in Theorem 3.4, Chapter 3 of Duvaut and Lions [10]:

Theorem 1.2. There exists a constant such that

lolne <Cle@|,, forallve ().

Interestingly, our subsequent analysis will provide ‘as a by-product’ an essentially different proof of Korn in-
equalities in both spaceg(£2) and HH*(£2) (see Corollary 3.2).

2. Weak versions of a classical theorem of Poincar é and of St Venant compatibility conditions

A classicaltheorem of Poincardsee, e.g., page 235 in Schwartz [14]) asserts that, if funcliprsC1(£2)
satisfyd;hx = d;hy in a simply-connected open subsgtof R3 (or R” for that matter), then there exists a function
p € C2(£2) such thath, = 3 p in £2. This theorem was extended by Girault and Raviart [12] (see Theorem 2.9 in
Chapter 1), who showed that, if functiohg € L2($2) satisfy 8;h; = d;h; in H~1(£2) on a bounded, connected
and simply-connected open substof R® with a Lipschitz-continuous boundary, then there exjsts H1(£2)
such thati, = 8 p in L2(£2). In fact, this extension can be carried out one step further:

Theorem 2.1. Let £2 be a bounded, connected, and simply-connected open subggt wfith a Lipschitz-
continuous boundary. Lét, € H~1(£2) be distributions that satisfy

dhx = dh;  in H2(2).
Then there exists a functigne L2(£2), unique up to an additive constant, such that

hi=dp in H ().

Idea of the proof. Givenanyh € H=1(£2), Theorem 5.1, Chapter 1 of Girault and Raviart [12] shows that there
existu e H(lj(.Q) and p € L?(£2) such that (the assumptions th@tis bounded and has a Lipschitz-continuous
boundary are used here)Au + grad p = h in H=1(£2) and dive =0 in 2.

It then suffices to show that, if additioncurl & = 0in H~2(£2), thenu = 0. The proof of this crucial im-
plication relies on several results, which include in particular an extension result of Girault [11, Theorem 3.2]
and a representation theorem of Girault and Raviart [12, Theorem 2.9, Chapter 1], the assumption of simple-
connectedness being essential here (as in the ‘class@ralon of this theorem). See [4] for a complete proafi

In 1864, A.J.C.B. de Saint Venant showed that, if functigns=e;; € C3(2) satisfy in£2 ad hoccompatibility
relationsthat since then bear his name, then there exists a vecto«figld C*(£2) such thak;; = %(8]‘ v; + 0;vj)
in 2. Thanks to Theorem 2.1, theS¢ VVenant compatibility relatiorere also sufficient conditions the sense of
distributions according to the following result:
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Theorem 2.2. Let 2 be a bounded, connected, and simply-connected open subget afith a Lipschitz-
continuous boundary. Let= (e;;) € Lgym(.Q) be a symmetric matrix field that satisfies the following compatibility
relations

Rijki(€) == djeix + dieji — diejx — hjeir =0 in H2(82).
Then there exists a vector fiebd= (v;) € H1(£2) such that
1 N
ejj = E(ajv,' +0d;vj) In Lo(82),
and all other solution® = (3;) € H1(2) of the equations;; = %(8j v; +0;0;) are of the formv =v+a + b Aid,

with a € R3 andb € R3.

Idea of the proof. The proof consists in showing that the classical proof can be re-interpreted in such a way that it
still holds in the sense of distributions (see [4]). That all other solutions are of the indicated form is well knawn.

Remark 2.3. A different necessary and sufficient condition for a tensar Lgym(ﬂ) to be of the forme =
2(VoT + Vo) for somev € HY(£2) has been given by Ting [16].

Remark 2.4. The assumption tha® is simply-connected can be disposed of with some extra care; see [9].

3. A basicisomorphism and a new proof of Korn’sinequality

Let a symmetric matrix field = (¢;;) € Lgym(Q) satisfy R;jx(e) = 0 in H™2(2), i.e., the weak form of
St Venant’s compatibility conditionsonsidered in Theorem 2.2. There then exists a unique equivalence class
v e H'(2) = HY(2)/R($2) such thae = e() in L3,(£2). We now show the mapping : e — o defined in this
fashion has a remarkable property.

Theorem 3.1. Let 2 be a bounded, connected, and simply-connected open subget afith a Lipschitz-
continuous boundary. Define the space

E(2) :={e=(eij) € L{n(£2): Riju(e)=0 in H ()},
andlet¥ . E(2) - Hl(SZ) be the linear mapping defined for eagk E (£2) by & (e) = v, wherev is the unique

element in the quotient spadflél(sz) that satisfiez(v) = e; see Theorer.2 Then¥ is an isomorphism between
the Hilbert spaces (2) and H'(£2).

Proof. It is easily seen that the mappirs is injective and surjective and that the inverse map@igt: v €
Hl(Q) — e(v) € E(£2) is continuous. The conclusion thus follows from ttiesed graph theorem O

Remarkably, the classical Korn’s inequalities of Section 1 can now be very simply recovered:

Corollary 3.2. That the mappingf : E(2) — Hl(.Q) is an isomorphism implies Korn's inequalities in both
spacesH(2) and H'(£2) (see Theorems.1and1.2).

Proof. (i) Since# is an isomorphism, there exists a constarstich thatlF (e)|l1.o < C'||e||0,g foralle € E(£2),
or equivalently such thati||1.o < Clle(d)|o.e for all v € Hl(.Q). But this is exactlyKorn’s inequality in the
quotient spacdill(s?), obtained by different means in Theorem 1.2.
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(ii) One then shows by means of standard argumentsirat's inequality in the quotient spadél(Q) implies
Korn’s inequality in the spacé#l(£2) (see [4]). O

4. Another approach to existencetheory in linearized elasticity

Thanks to the isomorphisr&# : E(£2) — Hl(.Q) introduced in Theorem 3.1, the pure traction problem of
linearized elasticity problem can be recastasther minimization problenthis time in terms of an unknown that
lies in the spacd (£2):

Theorem 4.1. Let £2 be a bounded, connected, and simply-connected open subget afith a Lipschitz-
continuous boundary. The minimization probldfind ¢ € E (§2) such that

()= inf j(e) Where'()~—1/A cedx — A(e)
Js—eeE(m]e, je.—2 e:elx e),
Q

the linear formA : E(£2) — R being defined byl := L o &, has one and only one solutian Besidesg = e(it)
wherew is the unique solution to the ‘classical’ variational formulation of the pure traction problem of linearized
elasticity.

Proof. By assumption (Section 1), there exists- 0 such that/,, Ae : edx > oz||e||(21Q forall e € Lgym(.Q). The
linear formA is continuous sincé and¥ are continuous. FinallyE (£2) is a closed subspacebﬁym(s?). Conse-

quently, there exists one, and only one, minimizer of the functigraler E (£2). Thatiz minimizes the functional
J overHl(.Q) implies thate(it) minimizes; over E(£2). Hencee = e (i) since the minimizer is unique.O

5. Concluding remarks

(a) While the minimization problem over the spaHel(.Q) is anunconstrained on&ith three unknowns, that
found in Theorem 4.1 over the spag#ks?) is in effect aconstrained minimization problewver the space
Lgym(.Q) with six unknowns, the constraints (in the sense dirojzation theory) beig the compatibility rela-
tionsR;jk(e) =0in H~2(£2) that the matrix fieldg € E (£2) satisfy (it is easily seen that these compatibility
relations reduce in fact to six independent ones).

(b) As recalled in the proof of Theorem 1.1, thenma of J.L. Lionss the keystone of the classical proof of
Korn's inequality. In a sense, the same role is played in the present approach By theérsion of a classical
theorem of Poincaréestablished in Theorem 2.1.

(c) Inlinearized elasticity, thetress tensor field € Lgym(s?) is given in terms of the displacement field by=
Ae(v). Since the elasticity tensot is assumed to be uniformly positive-definite a.esdnthe minimization
problem of Theorem 4.1 cahus be immediately recast as@nstrained minimization problem with the stress
tensor as the primary unknown

(d) Various attempts to consider the ‘fully nonline@teen—-St Venant strain tensd (v) = %(VvT + Vv +
Vo' Vo), or equivalently th€auchy—Green tensdr+ 2E (v), as the ‘primary’ unknown ithree-dimensional
nonlinear elasticity(this idea goes back to Antman [3]) have beecently undertaken in the same spirit; see
[5-8,15]. These attempts have met only partial success, however, since nonlipearsycreates specific
challenging difficulties.
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