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SUMMARY

In this article, we study the static and time-dependent Maxwell equations in axisymmetric geometry.
Using the mathematical tools introduced in (Math. Meth. Appl. Sci. 2002; 25:49), we investigate the
decoupled problems induced in a meridian half-plane, and the splitting of the solution in a regular part
and a singular part, the former being in the Sobolev space H 1 component-wise. It is proven that the
singular parts are related to singularities of Laplace-like or wave-like operators. We infer from these
characterizations: (i) the �nite dimension of the space of singular �elds; (ii) global space and space–
time regularity results for the electromagnetic �eld. This paper is the continuation of (Mod�el. Math.
Anal. Num�er. 1998; 32:359, Math. Meth. Appl. Sci. 2002; 25:49). Copyright ? 2003 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In this paper, we propose to study the static and time-dependent Maxwell equations in
axisymmetric geometry. It is the continuation of Reference [1], where the mathematical tools
were introduced, and will be followed by another paper where numerical developments and
applications will be shown.
Though it is mathematically a two-dimensional (2D) situation, the axisymmetric case can be

viewed, from a modelling point of view, as an intermediate between a full three-dimensional
(3D) problem and a 2D one. Indeed, while the geometry of real devices is very rarely Carte-
sian, it is much more common to have an axial symmetry, at least approximately or locally.
In other words, the axisymmetric geometry can be considered as a zero-order approximation
of a real 3D case [2]. Nevertheless, very few mathematical analyses had been carried out so
far in the framework of axisymmetric problems [3,2].
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In Reference [1], we recalled two basic principles for solving the static or time-dependent
Maxwell equations in an axisymmetric domain � with circular edges and conical vertices.
The �rst is the space decomposition principle, which states that the natural spaces associated
with Maxwell’s equations

Xd=H0(curl; �)∩H(div;�) and Xn=H(curl; �)∩H0(div;�)

can be split as the direct sum of a regular part Xd=n
R =Xd=n ∩H1(�)—which is closed within

the natural space—and a suitably chosen singular part Xd=n
S . In the time-dependent case, this

splitting is continuous with respect to time. The second is the Curie principle (cf. Reference
[2]): the solution is axisymmetric i� so are the data and initial conditions.
Namely, we proved that the axisymmetric subspaces of Xd and Xn obey the decomposition

principle except, in the electric case, when some conical vertex has an aperture angle �=�?,
characterized by the presence of the eigenvalue 3=4 in the spectrum of the local Laplace
operator. (In this article, we shall always assume that this phenomenon does not occur.) We
also proposed singular complements related to dual singularities of Laplace-like problems.
These results parallel those of References [4,5], but cannot be considered as a mere application
of them, since the domain � is not a polyhedron (nor even a ‘curved polyhedron’), and speci�c
treatments have to be designed to handle the conical vertices.
The article is organized as follows. Section 2 recalls the basic notations related to the ax-

isymmetric geometry, and the functional-analytic framework adapted to the study of boundary-
value problems in this geometry (i.e. weighted Sobolev spaces and the variational problems
de�ned on them). Section 3 is devoted to the study of the singular solutions to the Laplace-like
problems, which allows one to determine the dimension of the singular parts. In Section 4, an
in-depth examination of the static Maxwell equations is performed. We focus on two topics:
the decoupling, induced by the axial symmetry, of the equations into two systems posed in
the meridian half-plane; and its relationship with the splitting in regular and singular parts.
As a by-product, we determine the global space regularity of the electromagnetic �eld. This
study is one of the two key ingredients needed for the understanding of the time-dependent
equations. The other one is the analysis of singularities of a wave-like problem, which is
carried out in Section 5. Finally, Section 6 investigates the time-dependent equations, in the
spirit of Section 4; we conclude with a space–time regularity result for the electromagnetic
�eld.

2. BASIC DEFINITIONS AND NOTATIONS

2.1. The axisymmetric geometry and operators

Let � be a bounded and simply connected axisymmetric domain of R3, 	 its perfectly con-
ducting boundary, and n the unit outward normal to 	. � is generated by the rotation of a
polygon ! around one of its sides, denoted �a. The other sides are denoted �i, 16i6n+ 1,
and generate the faces 	i, 16i6n+ 1, of 	. The notations are the same as in Reference [1]
and are recalled in Figure 1. We shall mostly use the cylindrical co-ordinates (r; �; z).
In this article, we generally assume that the �elds de�ned on � possess an axial symmetry.

The de�nition of axial symmetry for general scalar- or vector-valued distributions is found
in References [2,1]. In practice, it means that they are entirely characterized by the data
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Figure 1. The domains � and !.

of their traces (or the traces of their cylindrical components) in a meridian half-plane, or
equivalently that their derivative (or the derivatives of their cylindrical components) with
respect to � vanishes: T (x; y; z)=T (r; z) or @�T=0. We denote by the sign 
 the subspaces of
axisymmetric �elds, e.g. 
L2(�), 
Hs(�); 
Xd : : : .

2.2. Some results of functional analysis

Weighted Sobolev spaces and traces. The characterization of the subspaces of axisymmetric
�elds via their traces in a meridian half-plane can be found in Reference [2, Section II.2; 1,
Section 3]. Let us recall some notations: L2�(!) is the weighted Lebesgue space

L2�(!)=
{
f: f is measurable on !;

∫
!
|f|2r� dr dz¡+∞

}
; �∈R

with its canonical norm ‖ · ‖0; �;!, and Hs
�(!) is the related scale of Sobolev spaces, with the

canonical norms ‖ · ‖s; �;!. We also use the following scales (cf. [2, Theorems II.2.1, II.2.6]):

• Hs
+(!) is the trace space of scalar functions in 
Hs(�), as well as of z components of
vector �elds in 
Hs(�).

• Hs
−(!) is the trace space of r and � components of vector �elds in 
Hs(�).

Now we state some properties of the Hs
�(!) and Hs

±(!) spaces, and the consequences on
axisymmetric Sobolev spaces 
Hs(�); proofs are found in Reference [6].

Proposition 2.1
Let R be the isometry L2�(!)→ L2�−2(!), f �→ rf. One has

R[Hs
−(!)]=Hs

−1(!) for 06s61; R[Hs
−(!)]⊂Hs

−1(!) for 1¡s¡2

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:861–896
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The canonical norm in R[Hs
−(!)] is ‖w‖R[Hs

−(!)]=‖w=r‖s;−; !. Hence, for any axisymmetric
and azimuthal vector �eld u=u� e�, the following properties are equivalent:

u∈ 
H(curl; �) ⇔ u∈ 
H(curl; div;�) ⇔ u∈ 
H1(�)

and the canonical norms of these spaces are equivalent. Moreover, for 06s¡1, Hs
+(!)=

Hs
−(!)=Hs

1(!), hence R[H
s
+(!)]=Hs

−1(!).

Proposition 2.2
Let A be a point in the meridian half-plane; (�; �) local polar co-ordinates centred at A, and
!A the bounded angular sector {(�; �): 0¡�¡�0; 0¡�¡�0}. Let f be a function whose
expression in !A is f(�; �)=��g(�), with g(�)∈C∞([0; �0]).

1. If A is in the open half-plane (r(A)¿0), and !A is small enough to ensure �!A ∩ �a=∅,
then: ∀s∈R+; H s(!A)=Hs

±1(!A) and ∀s∈R; f∈Hs(!A)⇔ s¡�+ 1.
2. If A stands on the axis (r(A)=0), and the axis is taken as the origin of �, then

∀s∈R+;
{
f∈Hs

1(!A)⇔ s¡�+ 3=2

f∈Hs
−1(!A)⇔ s¡�+ 1=2 and g( j)(0)=0 for all j∈N; j6s

The modi�ed Laplacians and their variational spaces. The modi�ed Laplacians �+ and
�− are de�ned as

�±f=
@2f
@r2

± 1
r
@f
@r
+

@2f
@z2

�+ is the trace of the 3D scalar Laplacian for an axisymmetric function. And for an axisym-
metric, azimuthal vector �eld u, there holds

u=
’
r
e� ⇒ �u=

1
r
�−’ e� (1)

The variational theory for �+ can be found in [2, Section II.4.a]. The variational spaces for
the Dirichlet, resp. Neumann boundary conditions are: Vd+=H

�
1
1 (!)={v∈H 1

1 (!): v=0 on �b}
resp. Vn+=H 1

1 (!). Similarly, the variational spaces for Dirichlet and Neumann problems with
�− are

Vd−=H
◦1
−1(!)={v∈H 1

−1(!): v=0 on �} and Vn−=H 1
−1(!)

We shall denote either space by Vd=n− or simply V−. Besides the di
culty of the description of
the space [V−]′ in 2D, another technical point is that the product by r or 1=r of a distribution
is not de�ned in general. Yet these operations are underlying in the use of �−, cf. (1).
Fortunately, all we need in the sequel are the three particular cases dealt with in the following
Proposition.

Proposition 2.3
Let f∈ [V−]′ and u∈V− as well as �¿0. The equality −�−u+�u=f in the sense of distribu-
tions, supplemented in the Neumann case with the boundary condition @	u|�b=0∈H−1=2

−1 (�b),
is equivalent to the variational formulation:

∀v∈V−;
∫ ∫

!
[grad u · grad v+ �uv]

d!
r
=〈f; v〉[V−]′ ;V− (2)
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in the three following cases:

1. f is an element of L2−1(!), i.e. 〈f; v〉[V−]′ ;V−=
∫∫

! fv d!r ;

2. more generally, f∈Lp
1−p(!)=R[L

p
1 (!)] � R[ 
Lp(�)], for p¿6=5;

3. f is an element of the dual of H 1(!) or H 1
0 (!) whose support is away from the axis.

Remark 2.1
The limiting value 6=5 for the Lebesgue exponent p stems from the Sobolev imbedding in
the 3D domain �: H 1(�)⊂L6(�), and by duality L6=5(�)⊂H 1(�)′.

As a straightforward consequence, we have the following Green’s formulae for �−:

Proposition 2.4
Let �n−={u∈Vn−: �−u∈L2−1(!) and @	u|�b=0} and �d−={u∈Vd−: �−u∈L2−1(!)}. There
holds

∀u∈Vd=n−; ∀v∈�d=n−;
∫ ∫

!
{�−uv+ grad u · grad v}d!

r
=0 (3)

∀u; v∈�d=n−;
∫ ∫

!
{�−uv− u�−v}d!

r
=0 (4)

3. ANALYSIS OF SINGULARITIES OF THE MODIFIED LAPLACIANS

In this section, we study the non-variational solutions in L2±1(!) to ‘very weak’ Dirichlet
problems for �± in !. Let us de�ne Nd+ as the space of p∈L21(!) satisfying

�+p=0 in ! (5)

p=0 on �i; 16i6n+ 1 (6)

p∈C∞( �!\Vb) for any neighbourhood Vb of �b (7)

The trace on �i is understood in the suitable trace space, cf. [1, Section 5]. Since p is smooth
up to any segment included in �a, one infers that @rp|�a=0.
Similarly, let Nd− be the set of solutions in L2−1(!) to

�−p=0 in ! (8)

p=0 on �i; 16i6n+ 1 (9)

p
r
∈C∞( �!\Vb) for any neighbourhood Vb of �b (10)

The smoothness of p=r up to any segment included in �a yields p|�a=0. We remark that
p∈Nd− ⇔ P=(p=r)e� is a solution in 
L2(�) to

�P=0 in �; P�=0 on 	i ; 16i6n+ 1 (11)

Obviously, there holds: Nd+ ∩H 1
1 (!)={0} and Nd− ∩H 1

−1(!)={0}.
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Figure 2. Edge singularity.

Lemma 3.1
Any p∈Nd+, resp. p∈Nd−, belongs to C∞( �!\V ), where V is any neighbourhood of the
corners E1; : : : ; En, O1, O2. Any P solution to (11) belongs to 
C∞( ��\V), where V is any
neighbourhood of the edges and conical vertices.

Proof
By (7), resp. (10), we only have to prove that p is C∞ up to a neighbourhood of any
segment included in �j. This is away from the axis, hence �± has smooth coe
cients and
one concludes by a standard bootstrap argument [6].

3.1. Local study of singularities near the edges

We look for a local analytical expression of the solution p to (5)–(7), resp. (8)–(10) in
a neighbourhood of an edge, i.e. and o�-axis corner E=Ej with opening �=�. [We drop
the corner subscript j.] In a meridian half-plane, we use the local polar co-ordinates (�; �)
(see Figure 2). The expression of the modi�ed Laplacians in these co-ordinates reads, with
�′=�+ �0:

�±p=
@2p
@�2

+
1
�
@p
@�

± 1
a+ � cos�′

(
cos�′ @p

@�
− sin�′

�
@p
@�

)
+
1
�2

@2p
@�2

(12)

We settle in a neighbourhood !E of E such that �!E is away from all corners except E and
all sides except the ones which meet at E. 
∈C∞( �!) is a cuto� function with the following
properties: (i) 
 ≡ 1 in !E; (ii) 
 ≡ 0 outside some neighbourhood !′

E ⊃ �!E which satis�es
the same conditions as !E and (iii) 
 depends on � only.
In !E , there is no di�erence between functions of L21(!); L

2
−1(!) or L

2(!); and the modi-
�ed Laplacians are perturbations of the standard Laplacian by less singular terms. Thus, the
singularities of �± in L2±1(!) are locally ‘close’ to the singularities of � in L2(!).

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:861–896
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Lemma 3.2
Let p∈Nd+, resp. p∈Nd−. There exist c∈R and ‘∈Z; ‘�¿−1, such that

(p− c�‘� sin(‘��))∈H 1(!E).

Proof
Let !∗ be the polygonal domain {x∈!: r(x)¿b}, and �∗ its boundary (see Figure 2). One
has

�(
p)= ∓ 

r
@p
@r
+ 2 grad 
 · gradp+ p�
∈H−1(!∗)

Now let v∈H 1(!∗) be the variational solution to the Dirichlet problem

�v=�(
p) in !∗; v=0 on �∗

and p∗=
def


p−v, p∗ belongs to L2(!∗), has a vanishing Laplacian in !∗ and a vanishing trace
on �∗. Grisvard [8, pp. 45–56] has established that such a singularity satis�es


(p∗ − c�‘� sin(‘��))∈H 1(!∗)

for some c; ‘ such that ‘�¿−1. Hence 
(p− c�‘� sin(‘��))∈H 1(!E).

By Proposition 2.2, the condition ‘�¿−1 is needed for the term �‘� sin(‘��) to be in
L2(!E). If the corner is outgoing (�¿1), this implies ‘¿0 and the latter expression is indeed
in H 1(!E). Hence any element of Nd± is locally H 1. For a reentrant corner (1=2¡�¡1),
however, the term �‘� sin(‘��) is locally L2 but not H 1 for ‘=−1, and locally H 1 for ‘¿0.
As a consequence, there exists a unique (up to a multiplication by a constant) local singular
function, as shown by the following lemma.

Lemma 3.3
If the corner E is reentrant, there exists �± ∈Nd± such that

�±(�; �)− 
�−� sin ��∈H 1
±1(!)

Proof
Let u(�; �)= 
�−� sin ��; this function vanishes on �b and �a, and so does its normal derivative
on �a. In !E; 
≡ 1 and by (12),

f±=�±u= ∓ ��−�−1

a+ � cos�′ (cos�
′ sin ��+ sin�′ cos ��)

As −� − 1¿−2; f± ∈H−1(!E); elsewhere it is C∞ and vanishes near the axis. Hence, by
[2, Proposition II.4.1] and our Proposition 2.3, one can solve variationally the Dirichlet
problems

�±w±=f± in !; w±=0 on �b

in H
◦
1
−1(!) or H

�
1
1 (!). As f± vanishes near the axis, w+ is smooth there and @rw|�a =0. And

since w− ∈H 1
−1(!)⊂H 1

−(!), it satis�es w|�a =0 [1, Proposition 3.18]. Finally, the di�erence
�±= u − w± ∈L2±1(!) has a vanishing modi�ed Laplacian �

± and a vanishing trace on �b;
on �a; �± satis�es the same boundary condition as w±. So, �± ∈Nd±.

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:861–896
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Figure 3. Conical singularity.

3.2. Local study of singularities near the conical vertices

Similarly to the previous subsection, we look for an analytical expression of p near a conical
vertex O. [Here too, we drop the vertex subscript.] We use once more local polar co-ordinates
(�; �) in a meridian half-plane (see Figure 3). The expression of the modi�ed Laplacians in
these variables is

�+p=
@2p
@�2

+
2
�

@p
@�
+
cot�
�2

@p
@�
+
1
�2

@2p
@�2

(13)

�−p=
@2p
@�2

− cot�
�2

@p
@�
+
1
�2

@2p
@�2

(14)

Unlike the previous situation, the complementary terms (with respect to the standard
Laplacian) are not less singular. However, the whole of �± enjoys another nice feature:
variable separation. To take advantage of it, let us introduce the angular parts

(�±u)(�)=−u′′(�)∓ cot� u′(�)

and the Hilbert spaces

H+ =L2
(]
0;

�
�

[
; sin� d�

)
; H−=L2

(]
0;

�
�

[
;
d�
sin�

)
The boundary conditions in the de�nition of Nd± suggest to consider the domains

D(�+) = {u∈H+: �+u∈H+ and u′(0)= u(�=�)=0} (15)

D(�−) = {u∈H−: �−u∈H− and u(0)= u(�=�)=0} (16)

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:861–896
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We notice that �± de�nes an unbounded operator in H±, which is self-adjoint in the above
domain, strictly positive and has a compact inverse; hence,

Theorem 3.4
There exists a Hilbert basis (u±‘ )‘∈N∗ of H± made of eigenfunctions of �±. The corresponding

eigenvalues (�±‘ )‘∈N∗ are strictly positive and go to in�nity. Moreover, ((u±‘ )
′=
√

�±‘ )‘∈N∗ is
an orthonormal family in H±.

These eigenfunctions and -values can be determined by simple calculations [6]. Denoting
P�
	 (x) the Legendre function, we de�ne (	+‘ )‘∈N∗ , resp. (	−‘ )‘∈N∗ as the increasing sequences
of 	¿0, resp. 	¿1, satisfying the conditions

P0	

(
cos

�
�

)
=0 resp: P1	−1

(
cos

�
�

)
=0 (17)

The eigenpairs (�±; u±) of �± are

�+‘ = 	+‘ (	
+
‘ + 1); u+‘ (�)=C+‘ P0	+‘ (cos�) (18)

�−‘ = 	−‘ (	
−
‘ − 1); u−‘ (�)=C−

‘ sin�P1	−‘ −1(cos�) (19)

where the C±
‘ are normalization coe
cients in H±. The three following facts are worth noting:

(i) all eigenvalues of �± are simple; (ii) as shown by tables of Legendre functions (see e.g.
Reference [9]), there are no x∈ ] − 1; 1[ nor 	∈ ]1; 2] such that P1	−1(x)=0; hence, 	

−
1 ¿2;

(iii) the 	±‘ have an asymptotic linear behaviour, as shown by

Lemma 3.5
One has 	±‘ ∼ �‘ when ‘→+∞.
Proof
It relies on the asymptotic expansion [9, Equation (8.6.6)] of P�

	 (cos�) when 	→+∞ with
� and �¿0 �xed, taking into account the following equivalence: 	(n + �)=	(n)∼n� when
n→+∞ and � is �xed [9, Equation (6.1.45)].

Let us return to the singularities of the modi�ed Laplacians. As p(�; �)∈Nd± belongs to
L2±1(!)∩C∞( �!\V ), for any neighbourhood V of O, it can be viewed as a C∞ function of
�∈ ]0; R[ (for some R¿0) with values in H±. Then (5), resp. (8), becomes

@2p
@�2

+
2
�

@p
@�

− 1
�2
�+p=0 (20)

resp.

@2p
@�2

− 1
�2
�−p=0 (21)

Hence p takes its values in D(�±) de�ned by (15) and (16). We denote DR=
!O ∩{0¡�¡R}.

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:861–896
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Lemma 3.6
Let p∈C∞(]0; R[;D(�−)) be a solution to (21), and assume p∈L2−1(DR)=
L2(DR; (� sin�)−1� d� d�). There exists a sequence (c‘)‘∈N∗ satisfying

p(�; �) =
+∞∑
‘=1

c‘�	−‘ u−‘ (�) (22)

|c‘|6KR−	−‘
√

	−‘ (23)

where the constant K depends only on p.

Proof
For a �xed �, one expands � �→ p(�; �) on the Hilbert basis (u−‘ )‘∈N∗ :

p(�; �)=
+∞∑
‘=1

p‘(�)u−‘ (�); where p‘(�)=
∫ �=�

0
p(�; �)u−‘ (�)

d�
sin�

(24)

Then (21) yields

p′′
‘ (�)− 	−‘ (	

−
‘ − 1)p‘(�)

�2
= 0; hence: p‘(�)= c‘�	−‘ + d‘�1−	−‘

By Proposition 2.2, ��u−‘ (�)∈L2−1(DR) i� �¿−1=2. As 	−‘ ¿2; d‘�1−	−‘ u−‘ cannot be in
L2−1(DR) unless d‘=0; on the other hand, c‘�	−‘ u−‘ ∈L2−1(DR) for any ‘.
To obtain the estimate (23), we apply the Schwarz inequality to (24):

p‘(�)26
∫ �=�

0
p(�; �)2

d�
sin�

since the functions u−‘ are normalized. Hence,∫ R

0
p‘(�)2 d�6

∫ R

0

∫ �=�

0
p(�; �)2

d� d�
sin�

= ‖p‖2L2−1(DR)
= cst

The integral on the left-hand side is c2‘R
2	−‘ +1=(2	−‘ +1), and (23) follows.

Lemma 3.7
Letp∈C∞(]0; R[;D(�+)) be a solution to (20), and assume p∈L21(DR)=L2(DR; (� sin�)�d� d�).
There exists a sequence (c‘)‘∈N∗ satisfying

p(�; �) = d1�−1−	+1 u+1 (�) +
+∞∑
‘=1

c‘�	+‘ u+‘ (�) (25)

|c‘|6KR−	+‘

√
	+‘ (26)

for some constants K; d1 depending only on p. Moreover, if � is greater than �?, the
exceptional value for which 
X

d
R is not closed, then necessarily d1 = 0. �? is de�ned by

P01=2(cos�=�?)=0; its value is �? � 1; 3771, or �=�? � 130◦43′.
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Proof
Similarly to the previous proof, one writes: p(�; �)=

∑+∞
‘=1 p‘(�)u+‘ (�). One �nds that:

p‘(�)= c‘�	+‘ +d‘�−1−	+‘ . By Proposition 2.2, ��u+‘ (�)∈L21(DR) i� �¿−3=2; d‘�−1−	+‘ u+‘ (�)
is L21(DR), with d‘ �=0, i� 	+‘ ¡1=2. Tables [9] show that

• if �¡�?; 	+1 ¡1=2 and 	+‘ ¿1=2, hence d‘=0, for ‘¿1;
• if �¿�?; 	+‘ ¿1=2, hence d‘=0, for ‘¿1;
• if �=�?; 	+1 =1=2, which does correspond to the eigenvalue �+1 =3=4 for �

+.

Moreover, c‘�	+‘ u+‘ ∈L21(DR) for any ‘. The Schwarz estimate for p‘(�) yields∫ R

0
p‘(�)2�2 d�6

∫ R

0

∫ �=�

0
p(�; �)2�2 sin� d� d�= ‖p‖2L21(DR)

= cst

For ‘¿1, the left-hand side is equal to c2‘R
2	+‘ +3=(2	+‘ + 3), and (26) follows.

We will call O a sharp vertex if its aperture angle is strictly greater than �=�?. The
consequence of the previous results is that �− has no singularity near O, while �+ has
locally one singular function if O is sharp, and no singularity if it is not.

Theorem 3.8
Let p∈C∞(]0; R[;D(�−)) be a solution to (21). If p∈L2−1(DR), then p∈H 1

−1(DR′) for any
R′¡R.

Proof
Let us di�erentiate formally the expansion (22):

@p
@�
=
+∞∑
‘=1

c‘	−‘ �	−‘ −1u−‘ (�);
1
�

@p
@�
=

+∞∑
‘=1

c‘�	−‘ −1
√

	−‘ (	
−
‘ − 1) (u−‘ (�))

′√
	−‘ (	

−
‘ − 1)

For a �xed �6R′¡R, these expansions are performed on orthonormal families in H−, see
Theorem 3.4. Thus, establishing their convergence amounts to checking that their coe
cients
are in l2(N∗). This follows from the estimate (23), since by Lemma 3.5, 	−‘ ¿�‘=2 for ‘
large enough. Hence for � �xed, gradp∈ [H−]2 and its norm is∫ �=�

0
|gradp(�; �)|2 d�

sin�
62KR

+∞∑
‘=1

(	−‘ )
3
(�
R

)2	−‘ −2
6K ′ ��

R� − ��

So, by Fubini’s theorem,∫ ∫
DR′

|gradp(�; �)|2 d� d�
sin�

6
∫ R′

0
K ′ ��

R� − �� d�¡+∞

and p∈H 1
−1(DR′).

Theorem 3.9
Let p∈C∞(]0; R[;D(�+)) be a solution to (20). If p∈L21(DR), then

• if �¿�?; p∈H 1
1 (DR′) for R′¡R,

• if �¡�?; p− d1�−1−	+1 u+1 (�)∈H 1
1 (DR′) for R′¡R.
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Proof
The fact that a function f∈L21(DR) belongs to H 1

1 (DR′) is equivalent to the convergence
of the integral

∫∫
DR′

|gradf|2�2 sin� d� d�. According to the value of � we set f=p or

f=p − d1�−1−	+1 u+1 (�); and applying to f a reasoning similar to the above one proves its
H 1
1 (D

′
R) regularity.

Lemma 3.10
If �¡�?, there exists �+ ∈Nd+ such that

�+(�; �)− 
(�)�−1−	+1 u+1 (�)∈H 1
1 (!)

Proof
Let u(�; �)= 
�−1−	+1 u+1 (�) and f=�+u. f vanishes everywhere except in a shell which
stands away from all corners, and is smooth there. De�ne w as the variational solution in
H
�
1
1 (!) to �

+w=f. As f∈L21(!); w is locally H 2
+ away from �b [2, p. 44], hence it satis�es

@rw=0 on �a by [2, Theorem II.2.1]. As, moreover, @ru|�a =0, the di�erence �+ = u − w
satis�es �+�+ =0 and the boundary conditions; hence �+ ∈Nd+.

3.3. Dimensions of the singular spaces

De�nition 3.11
Let the sets of geometrical singularities be

KE = {edges}; KO= {vertices}

KES = {j: Ej is a reentrant edge}
KOS = {j: Oj is a sharp vertex}
Kb

S =KES ; Ke
S =KES ∪KOS

Theorem 3.12
The spaces Nd+ and Nd− are �nite-dimensional, with

dimNd+ =#Ke
S ; dimNd−=#Kb

S

Proof
Let us introduce a cuto� function 
j for each singularity Aj; j∈KE ∪KO. (We take care that
their supports are all disjoint.) For any p∈Nd±, there holds by Lemma 3.1:

T
p=
def

p


1− ∑

j∈KE∪KO


j


 ∈C∞( �!)

If p∈Nd− and P=(p=r)e�, then T
p= rT
P�, where T
P∈ 
C∞( ��)⊂ 
H1(�) (Lemma 3.1),
so T
P� ∈H 1

−(!) and T
p∈H 1
−1(!) by Proposition 2.1.

If j∈KO; 
jp∈H 1
−1(!) by Theorem 3.8. Near an outgoing edge Ej; p is locally H 1,

hence 
jp∈H 1
−1(!). If j∈KES , there exists �−

j ∈Nd− such that wj= 
jp − cj�−
j ∈H 1

−1(!)

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:861–896



SOLUTION OF AXISYMMETRIC MAXWELL EQUATIONS 873

by Lemma 3.3. Summarizing, we have

p=T
p+
∑
j∈KO


jp+
∑

j∈KE\KES


jp+
∑
j∈KES

(cj�−
j + wj)=w +

∑
j∈KES

cj�−
j

with w in H 1
−1(!), as the sum of functions in H 1

−1(!), and in Nd+, as the di�erence
p−∑

cj�−
j of elements of Nd−. Thus w=0.

So, the (�−
j )j∈KES are a generating family in Nd−: on the other hand, they are obviously

linearly independent. Hence the dimension of Nd−.
The demonstration is very similar for p∈Nd+. Here T
p∈C∞( �!)⊂H 1

1 (!), and

p= T
p+
∑
j∈KOS

(cj�+j + wj) +
∑

j∈KO\KOS


jp+
∑

j∈KE\KES


jp+
∑
j∈KES

(cj�+j + wj)

=w +
∑
j∈KOS

cj�+j +
∑
j∈KES

cj�+j

where w is both in H 1
1 (!) and Nd+, hence w=0. The conclusion follows once more from

the obvious linear independence of (�+j )j∈KES∪KOS .

4. ANALYSIS OF THE STATIC MAXWELL EQUATIONS

4.1. The two div–curl problems

The electrostatic or Dirichlet problem is, for Fn ∈Jn=H0(div 0;�) and Gd ∈Ld=L2(�):
Find Ud ∈L2(�) such that

curlUd = Fn in � (27)

divUd =Gd in � (28)

Ud × n=0 on 	 (29)

The magnetostatic or Neumann problem is, given Fd ∈Jd=H(div 0;�) and Gn ∈Ln= {u∈
L2(�):

∫∫∫
� u d�=0}: Find Un ∈L2(�) such that

curlUn = Fd in � (30)

divUn =Gn in � (31)

Un · n=0 on 	 (32)

The fact that Gn has a mean zero value stems from (32). This condition is satis�ed by the
actual magnetic �eld, which is divergence free (cf. (87) below).
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We shall also need the scalar and vector potentials, which are associated to the Hodge
decomposition

Ud=n=−gradVd=n + curlAn=d=
def
Hodge(Vd=n;An=d) (33)

The vector potential A is the solution in L2(�) to the Neumann resp. Dirichlet problem

−�An=d = Fn=d in � (34)

divAn=d =0 in � (35)

An · n=0 on 	 (36)

(curlAn)× n=0 on 	 (37)

resp: Ad × n=0 on 	 (38)

The existence and uniqueness of the solutions to problems (27)–(29), (30)–(32) and (34)–
(38) can be proven by a saddle-point approach (see [10] for details). Notice the swap of the
boundary conditions, hence of the superscripts n=d, caused by the curl operator.
As for the scalar potential V , it is de�ned as the variational solution in Vd=H 1

0 (�), resp.
Vn= {u∈H 1(�):

∫∫∫
� u d�=0}, to the Dirichlet, resp. Neumann problem

−�Vd=n=Gd=n in �; V d=0; resp:
@V n

@n
=0 on 	 (39)

De�ning the spaces of potentials by

�d=n = {’∈Vd=n: �’∈Ld=n and; in the Neumann case; @n’=0}
Md=n = {M∈Xd=n: curlM∈Xn=d and divM=0}

and, as usual, by 
�d=n; 
Ld=n; : : : , the axisymmetric subspaces, the existence and uniqueness
results are summarized in

Theorem 4.1
The following mappings are isomorphisms of vector spaces:


�d=n ⊗ 
Mn=d Hodge−−−−−→ 
Xd=n div⊗ curl−−−−−→ 
Ld=n ⊗ 
Jn=d (40)

and so are �scalar : 
�d=n → 
Ld=n and �vector : 
Mn=d → 
Jn=d.

We shall also pay special attention to the divergence-free problem (i.e. G=0 in (28) or
(31)), which is of particular interest in the magnetostatic case:

Theorem 4.2
The following mappings are isomorphisms of vector spaces:


Mn=d curl→ 
X0d=n curl→ 
Jn=d (41)

with 
X0d=n= {u∈ 
Xd=n: div u=0}.
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In the remainder of this section, we examine the simpli�cation of the static problems induced
by the axial symmetry. As noted in Reference [1, Proposition 2.2] there is a decoupling of
meridian and azimuthal components in the divergence, curl and vector Laplacian operators;
as a consequence, each of the static problems is decoupled into two problems, concerning the
meridian and azimuthal components of the �eld U, and set in the meridian cut !. (For any
vector �eld w, its meridian and azimuthal components are de�ned as $m(w)=wm=wrer+wzez
and $�(w)=w�=w�e�.) To study these 2D problems, we introduce the following operators
in the meridian half-plane (r; z):

div u=
@ur

@r
+

@uz

@z
; div+ u=

@ur

@r
+

ur

r
+

@uz

@z

curl u=
@ur

@z
− @uz

@r
; curl− u=

@ur

@z
+

uz

r
− @uz

@r
; curlf= − @f

@z
er +

@f
@r
ez

Note that, in a 2D context, we denote by div the divergence in the cartesian plane (r; z), not
the trace of the 3D divergence operator, which is denoted div+. And the 3D curl operator is
expressed in terms of the 2D operators curl, curl and curl as

curl u=(curl um)e� + r−1curl(ru�) with curl um= r−1 curl−(rum) (42)

4.2. The general meridian �eld problem

The meridian component Um=Urer +Uzez of U satis�es div+Um=G and curl Um=F� (see
above). Introducing um= rUm; g= rG and f�= rF�, one has

div um= g in !; curl− um=f� in !; unm · ]; resp: udm · �=0 on �b (43)

Any vector �eld in 
H(curl; div;�) is 
H1 away from the boundary 	 [11]; hence its r-
component vanishes on the axis: U · ]|�a =Ur|�a =0; the same is true for um.
We shall treat in some detail the electrostatic case only. For the magnetostatic case, the

superscripts d and n and the boundary conditions on �b only are to be swapped: u · �=0 is
to be replaced with u ·]=0; V =0 becomes @	V =0, and so on. The boundary conditions on
the axis, which stem from the axial symmetry, are the same.
De�ning Wn= rAn

�; V d and Wn are related to udm by

udm= curlW
n − r gradVd def= hodge(Vd;W n) (44)

As a function of the source f�; W n is obtained as the solution to

−�−Wn=fn
� in !; Wn=0 on �a;

@Wn

@	
=0 on �b (45)

The boundary condition on �a stems from Proposition 2.1 and [1, Proposition 3.18]; on �b, it
is the trace of (37); the condition (36) only concerns the meridian components of An.
Similarly, Vd is the solution to

−�+Vd=Gd in !;
@V d

@	
=0 on �a; V d=0 on �b (46)
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The boundary condition on �a is justi�ed as in the proof of Lemma 3.10.
f� belongs to L2−1(!), and so does g. As for Ud

m, it belongs to


Xd
m = {Ud

m ∈L21(!)
2: div+Ud

m ∈L21(!) and curlU
d
m ∈L21(!) on U

d
m · �=0 and �b}

So, by Proposition 2.1, the variable udm belongs to the space

Ud= {ud ∈L2−1(!)
2: div ud ∈L2−1(!) and curl− u

d ∈L2−1(!) and u
d · �=0 on �b}

Finally, by [1, Propositions 3.13 and 3.19], the potentials Wn and Vd belong, respectively,
to �n− (de�ned in Proposition 2.3) and to

�d+ = {Vd ∈H 1
1 (!): �

+Vd ∈L21(!) and @	V d=0 on �a and Vd=0 on �b}
Theorem 4.3
For (f�; g)∈L2−1(!)×L2−1(!), i.e. G ∈L21(!), Eqs. (43), (45) and (46) have unique solutions
in Ud; �n− and �d+. As a consequence, Eq. (44) has a unique solution in �d+×�n−. Hence,
�+ and �− are isomorphisms, respectively, between �d+ and L21(!), and �

n− and L2−1(!),
and the mappings de�ned by (43) and (44) are isomorphisms between the relevant spaces.
These isomorphisms are linked by: �+ =div+ grad and �−= − curl− curl.
Proof
Consider the following diagram:


�d ⊗ 
Mn Hodge−−−−−→ 
Xd div⊗ curl−−−−−→ 
Ld ⊗ 
Jn

1⊗$�

� $m

� 1⊗$�

�

�d ⊗ 
Mn

�
Hodgem−−−−−→ 
Xd

m
div+ ⊗ curl−−−−−→ L21(!)⊗L21(!)

1⊗R

� R

� 1⊗R

�
�d+⊗�n− Hodge−−−−−→ Ud (1=r) div⊗ curl−−−−−−−−−→ L21(!)⊗L21(!)

(47)

where $m and $� are the meridian and azimuthal projections: they are surjective (onto)
morphisms by [1, Propositions 3.17, 3.19]. R is as in Proposition 2.1; I is the identity mapping,
or the trace operator in a meridian half-plane, which we (more or less) merge. Hodgem is
the meridian component of the Hodge operator. Straightforward calculations (see p. 875)
show that the diagram (47) is commutative. As (by Theorem 4.1) the �rst row is made of
isomorphisms, the same is true for the second and third rows. The last assertion, too, is
straightforward.

4.3. The divergence-free meridian �eld problem

To study it—in the magnetostatic case—let us introduce the divergence-face spaces:


X0n
m = {Bm ∈L21(!)

2: div+ Bm=0 in ! and curlBm ∈L21(!) and Bm · ]=0 on �b}
U0n = {v∈L2−1(!)

2: div v=0 in ! and curl−v∈L2−1(!) and v · ]=0 on �b}

and the space of potentials �n− as in Proposition 2.3. There holds the simpli�ed result:
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Lemma 4.4
The following mappings are isomorphisms:

curl : �d− →U0n; curl− :U0n →L2−1(!); �− : �d− →L2−1(!)

and are linked by −�−=curl− curl.

Proof
Consider this time the diagram


Md curl−−−−−→ 
X0n curl−−−−−→ 
Jd

$�

� $m

� $�

�

Md
�

1=r curl(r·)−−−−−→ 
X0n
m

curl−−−−−→ L21(!)

R

� R

� R

�
�d− curl−−−−−→ U0n

curl−−−−−−→ L2−1(!)

(48)

and show that it is commutative.

If we were interested in divergence-free electro‘static’ problems, similar results would hold,
with boundary conditions on �b swapped.

4.4. Space decomposition results for the meridian problems

Let us summarize the main results of Reference [1, Section 5] in the following:

Theorem 4.5
The regular subspaces 
Xd

R = 
XR ∩ 
H1(�); 
X0n
R = 
X0n ∩ 
H1(�). 
�d=n

R = 
�d=n ∩ 
H 2(�), and 
Mn=d
R

= {M∈ 
Xn=d: divM=0 and curlM∈ 
Xd=n
R } are closed within 
Xd; 
X0n; 
�d=n and 
Mn=d. 
Xd

R and

�d
R admit complementary subspaces isomorphic to Nd+. 
X0n

R and 
Md
R admit complementary

subspaces isomorphic to Nd−. And the complements of 
Xd
R and 
X0n

R are made of meridian
�elds.

Hence by Theorem 3.12, codim 
Xd
R =codim 
�d

R =#K
e

S and codim 
X0n
R =codim 
Md

R =#K
b

S .
The following technical result will be useful in order to analyse the space and space–time
regularity of the electromagnetic �elds. Let 
Mn=d

�R = {M∈ 
Mn=d
R : M ‖ e�}; for all M∈ 
Mn=d

R ,
both Mm and M� belong to 
Mn=d

R . Then

Proposition 4.6

Md=n
�R is algebraically and topologically equal to V2; d=n� de�ned as

V2; d�
def= {v∈ 
H2(�)∩ 
H1

0(�): v ‖ e�}

V2; n�
def= {v∈ 
H2(�): v ‖ e� and @	(rv�)|	 =0}
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Proof
Obviously, V2; d=n� ⊂ 
Md=n

�R . Moreover, it is easily proven that both � 
Md=n
�R and �V2; d=n� are

closed subspaces of 
L2(�). By using ‘very weak’ integration by parts formulae of [1, Lemma
5.12; 6, Lemma 4.16] one proves that [�V2; d=n� ]⊥ ⊂ [� 
Md=n

�R ]
⊥. The conclusion follows.

We now study the trace of these results in a meridian half-plane. For both div–curl problems,
there holds the following result:

Lemma 4.7
In Ud=n, the semi-norm (‖curl− u‖20;−1; ! + ‖div u‖20;−1; !)1=2 de�nes a norm equivalent to the
canonical norm; and so do the norms ‖curl− u‖0;−1; ! in U0d=n, ‖�+V‖0;1; ! in �d=n+ and
‖�−W‖0;−1; ! in �n=d−. With these norms, the isomorphisms of Lemmas 4.3 and 4.4 are
isometries.

The traces of the spaces 
Xd
R , 
�

d
R , 
Md

R , etc. are closed within Ud; �d+;�n−, and so on. One
�nds that the trace of 
Xd

R is

Ud
R= {u∈L2−1(!)

2: (@rur; @zur; ur=r; @zuz; @ruz − uz=r)∈L2−1(!)
5 and u · �=0 on �b}

For the vector potential, the trace of curlA∈ 
H1(�) is curlW ∈UR, i.e.

@2W
@r2

− 1
r
@W
@r

∈L2−1(!);
@2W
@r@z

∈L2−1(!);
@2W
@z2

∈L2−1(!) (49)

hence, the range of 
Mn
R is

�n−
R = {W ∈H 1

−1(!): W satis�es (49) and W =0 on �a and @	W =0 on �b}

The range of 
�d
R is �

d+
R =�d+ ∩H 2

+(!). Similarly, one de�nes Un
R; �

d−
R ; �n+

R by swapping
the boundary conditions on �b; and U0nR by imposing the extra condition div u=0.
By Proposition 4.6, the spaces �d−

R and �n−
R enjoy the following property:

Proposition 4.8
�d−

R and �n−
R are the range by R of closed subspaces in H 2

−(!); and the norms ‖�−W‖0;−1; !
and ‖W=r‖2;−; ! are equivalent on these spaces.

Explicit singular potentials. As we already know the codimensions of the regular spaces,
we just need to determine explicit complements. Let

�d+ =�d+
R ⊕�d+

S ; �d−=�d−
R ⊕�d−

S ; �n−=�n−
R ⊕�n−

S

be direct-sum decompositions of the various potential spaces. Thanks, respectively, to
[1, Theorem 5.3] and the isomorphisms of Lemma 4.4, there holds

Ud=Ud
R ⊕ r grad�d+

S ; U0n=U0nR ⊕ curl�d−
S

Moreover, Ud
R ∩ curl�n−

S = {0}; so, if we exhibit a su
cient number of linearly independent
functions in �n− that do not belong to �n−

R , we will have additionally obtained

dim�n−
S =#Ke

S and Ud=Ud
R ⊕ curl�n−

S
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a decomposition that will be useful in the analysis of time-dependent problems. These di�erent
splittings are the analogues, in axisymmetric geometry, of those exhibited by Costabel–Dauge
[4] in the 2D Cartesian case.
Using the notations of Section 3, we de�ne for each reentrant edge Ej the functions

Sd−
j (�j; �j) = 
j(�j)�

�j
j �

d−
j (�j); where �d−

j (�j)=

√
2�j
�
sin(�j�j) (50)

Sd+
j (�j; �j) = 
j(�j)�

�j
j �

d+
j (�j); where �d+

j (�j)=�d−
j (�j) (51)

Sn−
j (�j; �j) = 
j(�j)�

�j
j �

n−
j (�j); where �n−

j (�j)=

√
2�j
�
cos(�j�j) (52)

It is easy to check that these functions satisfy all the criteria that de�ne respectively �d−; �d+

and �n−. On the other hand, they are not in H 2(!Ej) because of the exponent �j¡1; hence
they fail to belong to the regularized subspaces.
For a sharp vertex Oj, let us introduce

Sd+
j (�j; �j) = 
j(�j)�

	j
j �

d+
j (�j); where �d+

j (�j)=Cd+
j P0	j (cos�j) (53)

Sn−
j (�j; �j) = 
j(�j)�

1+	j
j �n−

j (�j); where �n−
j (�j)=Cn−

j sin�j P1	j (cos�j) (54)

We recall that 	j= 	+j;1 is the unique root of P0	 (cos�=�j)=0 in the interval ]0; 1=2[. The Cj

are normalization factors in H±. Thanks to the expression [8, Eq. (8.5.2)] of the derivative
of the Legendre function, one shows that Sn−

j (�j; �j) satis�es the homogeneous Neumann
condition on �b, and that �n−

j is an eigenfunction of the operator �− with mixed boundary
conditions, with eigenvalue 	j (	j + 1). Then, using Equations (13) and (14) one shows that
�+Sd+

j =�−Sn−
j ≡ 0 near Oj. Elsewhere, these modi�ed Laplacians vanish except in a shell

where they are C∞ up to the boundary. In addition, thanks to the factor sin�j in �n−
j (�j),

there holds �−Sn−
j (�j; 0)=0, so �−Sn−

j ∈L2−1(!).
By Proposition 2.2, Sd+

j ∈H 1
1 (!), but S

d+
j =∈H 2

+(!); S
n−
j ∈H 1

−1(!), but S
n−
j =∈R[H 2

−(!)]. So
we have Sd+

j ∈�d+ and Sd+
j =∈�d+

R ; Sn−
j ∈�n− and Sn−

j =∈�n−
R .

Finally, the obvious linear independence of the Sj associated with di�erent geometrical
singularities, and the dimensions of the singular spaces, imply that (Sd+

j )j∈Ke
S
, (Sn−

j )j∈Ke
S
,

(Sd−
j )j∈Kb

S
, generate complements of �d+

R ; �n−
R and �d−

R respectively.
Explicit singular electric �elds. Near a reentrant edge Ej, one has

grad Sd+
j (�j; �j) =

√
2��j 
j(�j)�

�j−1
j [sin(�j�j)e�j + cos(�j�j)e�j ]

+

√
2�
�j


′j(�j)�
�j
j sin(�j�j)e�j
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curl Sn−
j (�j; �j) =

√
2��j 
j(�j)�

�j−1
j [sin(�j�j)e�j + cos(�j�j)e�j ]

+

√
2�
�j


′j(�j)�
�j
j cos(�j�j)e�j

These two types of singularities have the same ‘principal part’, i.e. they only di�er by an H1

term. Besides, (r=aj)grad Sd+
j still has the same principal part, since(

r
aj

− 1
)
grad Sd+

j (�j; �j)=�j cos�′
j grad S

d+
j (�j; �j) ≈ ��j

j ∈H1(!Ej)

In the absence of divergence constraint, we shall use a ‘practical’ singular �eld

Sd
j (�j; �j) =

√
2��j 
j(�j)�

�j−1
j [sin(�j�j)e�j + cos(�j�j)e�j ]

=
1
2

{
r
aj
grad Sd+

j + curl Sn−
j

}
+ wj with wj ∈Ud

R (55)

Let us now construct a singular �eld near a sharp conical vertex Oj. Using the di�erentiation
formulae for the Legendre functions [9, Equations (8.5.2) and (8.6.6)], we �nd

r grad Sd+
j (�j; �j) =Cd+

j 
j(�j)�
	j
j sin�j[	jP0	j (cos�j)e�j + P1	j (cos�j)e�j ]

+Cd+
j 
′j(�j)�

	j+1
j sin�jP0	j (cos�j)e�j

curl Sn−
j (�j; �j) = (	j + 1)Cn−

j 
j(�j)�
	j
j sin�j[	jP0	j (cos�j)e�j + P1	j (cos�j)e�j ]

+Cn−
j 
′j(�j)�

	j+1
j sin�j sin�j P1	j (cos�j)e�j

Here too, the two types of singularities have proportional principal parts, since

(	j + 1)Cn−
j r grad Sd+

j − Cd+
j curl Sn−

j ≈ �	j+1
j

so the r and z components of this �eld are in H 1
−1(!), and the �eld belongs to Ud

R. In the
absence of divergence constraint, we shall use the singular �eld

Sd
j (�j; �j) = 
j(�j)�

	j
j sin�j[	jP0	j (cos�j)e�j + P1	j (cos�j)e�j ]

=
1
2

{
r grad Sd+

j

Cd+
j

+
curl Sn−

j

(	j + 1)Cn−
j

}
+ wj with wj ∈Ud

R (56)

By a dimension argument, we conclude that the (Sd
j )j∈Ke

S
make up a basis of Ud

S , a complement
of Ud

R within Ud. Since the azimuthal component of any �eld in 
H(curl; �) is in 
H1(�)
(Proposition 2.1), we infer that the �elds Sd

j (�j; �j)=r span a complement of 
Xd
R within 
Xd.
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Explicit singular magnetic �elds. The space span {S0nj }j∈Kb
S
, where S0nj

def= curl Sd−
j ,

obviously complements U0nR within U0n. One has explicitly

S0nj (�j; �j) =
√
2��j 
j(�j)�

�j−1
j [− cos(�j�j)e�j + sin(�j�j)e�j ]

+

√
2�
�j


′j(�j)�
�j
j sin(�j�j)e�j (57)

The last term vanishes near Ej, and is of global H 1 regularity. It is necessary to preserve the
divergence constraint. If, however, we work within Un, i.e., without divergence constraint, or
if we just need local expressions, we can use the singular �elds

Sn
j (�j; �j) =

√
2��j 
j(�j)�

�j−1
j [− cos(�j�j)e�j + sin(�j�j)e�j ] (58)

= curl Sd−
j + wj with wj∈Un

R

We remark that Sn
j is Sd

j rotated of �=2: this is similar to the Cartesian geometry.
Like in the electric case, we infer that the �elds S0nj (�j; �j)=r span a complement of 
X0n

R

within 
X0n. If we work within 
Xn, i.e. without divergence constraint, we can use the �elds
Sn
j : because of their support, they belong to 
H(curl; div;�) but not to 
H1(�), and satisfy the
magnetic boundary condition.

4.5. The azimuthal �eld problem

The azimuthal component U�=U�e� satis�es curl U�=Fm, and because of the axial symmetry,
divU�=0. In the electrostatic case, U× n=0 implies U�=0 on 	.
Introducing u�= rU� and fm= rFm, Equation (27) resp. (30) becomes

curl u�= fm in ! (59)

In the electrostatic case, on has fm∈Fn= {f∈L2−1(!)
2 : div f =0 and ! and f · ]=0 on �b},

and by [1, Proposition 3.19], u�∈Vd−=H
◦
1
−1(!). In the magnetostatic case, fm∈Fd=

{f∈L2−1(!)
2: div f =0}, and u�∈Vn−=H 1

−1(!). The following diagram is commutative and
isometric (see p. 875):


X curl−−−−−→ 
J

$�

� $m

�

X�

1=r curl (r:)−−−−−−→ 
Jm

R

� R

�
V− curl−−−−−→ F

(60)
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We recall the absence of azimuthal singularities; the azimuthal component of any �eld in

H(curl; div;�) is automatically in 
H1(�), i.e. u�∈H 1

−1(!).

4.6. Space regularity of the electric and magnetic �elds

De�nition 4.9
The maximal and minimal exponents of singularity are:

�e
m = minSe; �e

M = maxSe; where: Se= {�j; j∈KES : 	j + 1=2; j∈KOS}
�b
m = minSb; �b

M = maxSb; where: Se= {�j; j∈KES}

Theorem 4.10
There holds: 
Xd

m ⊂Hs
1(!)

2, i.e. Ud ⊂Hs
−1(!)

2, or 
Xd∈ 
Hs
(�), i� s¡�e

m; similarly, 
X0n
m ⊂

Hs
1(!)

2, i.e. U0n ⊂Hs
−1(!)

2, or 
X0n ⊂ 
Hs(�), i� s¡�b
m.

Proof
For any Ud∈ 
Xd, its azimuthal component is in 
H1(�); so the global space regularity will be
determined by the singular part of its meridian component. We have: 
Xd= 
Xd

R ⊕ span{Sd
j =r; j∈

Ke
S }. By Proposition 2.2, the formula (55) proves that the Sd

j associated to reentrant edges
are in Hs(!Ej)

2 i� s¡�j. Then, because of their support, Sd
j ∈Hs

−1(!)
2, and Sd

j =r∈Hs
1(!)

2 =
Hs
+(!)×Hs

−(!). Similarly, for conical vertices, (56) proves that Sd
j ∈Hs

−1(!)
2 and Sd

j =r ∈
Hs
1(!)

2 =Hs
−(!)×Hs

+(!), i� s¡	j + 1=2.
The conclusions follow. The proof in the magnetic case is similar (and simpler).

5. ANALYSIS OF THE MODIFIED WAVE EQUATION

Setting q=!× ]0; T [; �a=b= �a=b × ]0; T [; we consider the evolution problem



u′′(t)−�−u(t)=f(t) in q

u=0 on �a; u=0; resp: @	u=0 on �b

u(0)= u0; u′(0)= u1 in !

(61)

We are mainly interested in the decomposition into regular and singular parts, and in the
space–time regularity, of the solution to (61). This study, carried out in Subsections 5.1 and
5.2, closely parallels and relies upon the similar work on the standard Laplacian and the
standard wave operator by Grisvard [8, Paragraphs 2.5.2 and 5.3]; so many proofs will be
sketched or even omitted.
Let H =L2−1(!); V−1 =H

◦
1
−1(!) or H 1

−1(!), A the unbounded operator −�− on H , and
DA=�d=n− its domain. As A is a strictly positive self-adjoint operator with compact inverse,
we de�ne the power A#; 06#61, by interpolation in the usual way; in particular, V−=DA1=2 .
Then by adapting [8, Theorem 5.1.3], we have the basic result of
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Theorem 5.1
Assume f∈L1(0; T ;V−); u0∈DA and u1∈V−. The problem (61) admits a unique solution u∈
C0(0; T ;DA)∩C1(0; T ;V−), depending continuously on the data f; u0; u1 in their respective
spaces. If, moreover, f∈C0(0; T ;H), then u∈C2(0; T ;H).

The spaces Cm(0; T ;X ), C0; �(0; T ;X ), Lp(0; T ;X ); W s;p(0; T ;X ), where X is some Banach
space of functions over ! or �, are the usual ones; the time regularity de�ning the C-spaces
is assumed to extend up to t=0 and T .

5.1. Estimates with parameter for �−

Given 
¿0, we study the variational solution in Vd−=H
◦
1
−1(!) resp. Vn−=H 1

−1(!), in the
sense of Proposition 2.3, to the Dirichlet, resp. Neumann problem

−�−u+ 
2u=f in !; u=0 on �a; u; resp: @	u=0 on �b (62)

If f∈L2−1(!), u belongs to �
−=�d−, resp. �n−; in this section, we shall usually omit the

index d or n: and we write Sj= Sd−
j or Sn−

j , �j=�d−
j or �n−

j ; 	j= 	+j;1 : : : :
The relevant sets of geometrical singularities are Kb

S in the Dirichlet case and Ke
S in the

Neumann case; in this section, we write KS to cover both cases. u is split onto �−=�−
R ⊕�−

S :

u= u∗R(
) +
∑
j∈KS

cj(
)Sj with u∗R∈�−
R (63)

It is indeed more convenient to use the following decomposition:

u= uR(
) +
∑
j∈KS

cj(
)e−
�jSj with uR∈�−
R ; (64)

which holds with the same cj(
), since one easily checks that (1 − e−
�j)Sj∈�−
R . The main

goal of this subsection is to obtain estimates of the various terms in (64) as 
→∞.
For a given 
, the mapping f �→ u is linear and continuous, and so is the projection on the

closed subspace spanned by e−
�jSj: so the mapping f �→ cj(
) is a linear continuous form on
L2−1(!), and there exists gj(
)∈L2−1(!) such that

cj(
)=
∫ ∫

!
fgj(
)

d!
r

(65)

Obviously, gj(
)∈N−

 , the orthogonal of (�

− − 
2I)�−
R within L2−1(!).

We shall now give a characterization of N−

 (Proposition 5.2) and local expressions for a

basis of this space (Lemma 5.3). Then, we shall give a representation formula for cj(
) in
Proposition 5.4, which will allow us to give the desired bounds in Theorem 5.7.
As a consequence of References [1, Lemma 5.12; 6, Lemma 4.16], we have the following

‘very weak’ integration by parts formulae for �−. If p∈L2−1(!); �
−p∈L2−1(!), and w∈�d−

R ,
resp. w∈�n−

R and w|�i belongs to the suitable trace space, there holds∫ ∫
!
{p�−w − w�−p}d!

r
=
∑

i

〈
p;

@w
@	

〉
on �i

(66)
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resp. ∫ ∫
!
{p�−w − w�−p}d!

r
=−

∑
i

〈
@p
@	

; w
〉
on �i

(67)

the duality brackets on the right-hand sides being taken between the suitable spaces. In par-
ticular, the hypotheses of (67) are automatically satis�ed when the trace of w vanishes on all
sides �i except one. As a consequence of these formulae, one has

Proposition 5.2
Let v∈L2−1(!); v belongs to N−


 i�

�−v− 
2v=0 in !; v=0 on �a; v; resp: @	v=0 on �b (68)

The boundary condition is understood in the suitable space (see above) on �b, and in the
strong sense on �a.

Lemma 5.3
For the reentrant edge Ej, resp., in the Neumann case, a sharp vertex Oj, let uj∈L2−1(!) be
the function

uj(�j; �j)= 
j(�j)e−
�j�−�j
j �j(�j) (69)

resp.

uj(�j; �j)= 
j(�j)e−
�j�−	j
j �j(�j) (70)

Then there exists vj∈N−

 such that −wj= vj − uj∈V−.

Proof
For the edges, it is similar to that of Lemma 3.3. For a sharp vertex, checking that fj=�−uj−

2uj∈Lp

1−p(!) for p¡p?=3=(2+	j) is straightforward. Since 	j¡1=2, p?¿6=5 and one can
de�ne wj as the variational solution in V− of �−wj − 
2wj=fj by Proposition 2.3. Then,
vj= uj − wj is in L2−1(!) and satis�es (68).

Remark 5.1
By a dimension argument, the (vj)j∈KS make up a basis of N

−

 .

Proposition 5.4
The coe
cient cj(
) in (64) is explicitly given by

cj(
)=− 1
2�j(
)

∫ ∫
!
fvj

d!
r

(71)

where �j(
) satis�es, for 
 large enough,

0¡�min6�j(
)6�max (72)

and the constants �min and �max depend only on the geometry, not on 
.
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Proof
Using decomposition (63), we calculate

I =
∫ ∫

!
fvj

d!
r
=
∫ ∫

!
vj(�− − 
2I)u

d!
r

=
∫ ∫

!
vj(�−1 − 
2I)

{
u∗R(
) +

∑
k

ck(
)Sk

}
d!
r

But u∗R(
)∈�−
R and vj∈N−


 , so (�
− − 
2I)u∗R(
) and vj are orthogonal in L2−1(!). Then, the

orthogonality of vj and (�− − 
2I)Sk for j �= k (see next lemma) implies I =−2�j(
)cj(
).

Lemma 5.5
There holds

I=
def
∫ ∫

!
vj(�− − 
2I)Sk

d!
r
=−2�j(
)�jk (73)

and �j(
) satis�es the bound (72).

Proof
Orthogonality. The integral

I1 =
∫ ∫

!
uj(�− − 
2I)Sk

d!
r

vanishes for j �= k since uj and Sk have disjoint supports. Moreover, using Proposition 2.4 and
the variational de�nition of wj, we calculate

I2 =
∫ ∫

!
wj(�− − 
2I)Sk

d!
r
=
∫ ∫

!
Sk(�− − 
2I)wj

d!
r

=
∫ ∫

!
Sk(�− − 
2I)uj

d!
r

(74)

which vanishes again for j �= k. So we are left with the case j= k, and we drop the subscript j.
It stems from (74) that

I = I1 − I2 =
∫ ∫

!
{u(�− − 
2I)S − S(�− − 
2I)u}d!

r

=
∫ ∫

!
{u�−S − S�−u}d!

r
(75)

We shall examine the cases of a reentrant edge and a sharp vertex.
Edge singularity. We write (75) as

I =
∫ ∫

!
{u�S − S�u}d!

r
−
∫ ∫

!

{
u
@S
@r

− S
@u
@r

}
d!
r2
=
def

I3 − I4
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In the region where u and S are non-zero, there holds 0¡Rmin6r6Rmax, hence it is enough
to estimate the integrals

I ′3=
def
∫ ∫

!
{u�S − S�u} d! and I ′4 =

def
∫ ∫

!

{
u
@S
@r

− S
@u
@r

}
d!

Grisvard [8, p. 66] has calculated I ′3 =−2�; hence, −2�=Rmin6I36− 2�=Rmax.
Now let us estimate I ′4. In the Dirichlet case, a straightforward calculation yields

u
@S
@r

− S
@u
@r
=
2�
�
e−
�
(�)2�−1 cos�′ sin2(��)(2�+ 
�)

and thus

I ′4 =
2�
�

∫ �=�

�=0
cos(�+ �0) sin

2(��)d�
∫ +∞

�=0
e−
�
(�)2(2�+ 
�) d�=

def
k1J (
)

where k1 depends only on the geometry. Moreover,

06J (
)=
∫ +∞

s=0
e−s


(
s



)2
(2�+ s)

ds


6
1



∫ +∞

s=0
e−s(2�+ s) ds=

def
k2=


where k2 is independent of 
. So, I4 =O(
−1). This is still true in the Neumann case: the
only change concerns the angular part of the integrand, which is once more bounded and
independent of 
. The estimate (72) follows.
In fact, one can prove that I is independent of 
: I =−2�=a. This calculation uses a

generalized version of (4) and an approximation of ! which avoids the singularity.
Conical singularity. Using (14) and �−�= 	(	+ 1)�, we calculate

u�−S − S�−u=
{
e−
��−	
(�)

d2

d�2
[�1+	
(�)]− �1+	
(�)

d2

d�2
[e−
��−	
(�)]

}
�(�)2

Using the normalization of �(�) and an integration by parts formula in �, Equation (75)
yields

I =
[
e−
��−	
(�)

d
d�
[�1+	
(�)]

]+∞
0

−
[
�1+	
(�)

d
d�
[e−
��−	
(�)]

]+∞
0

=−2	

This value is constant, so it satis�es (72).

In close analogy with Lemma 2.5.7 in [8], and using techniques similar to that of the proof
of Lemma 5.5, we obtain

Lemma 5.6
The function wj de�ned in Lemma 5.3, associated with a reentrant edge Ej, resp. a sharp
vertex Oj, satis�es for 
 large enough

‖wj‖0;−1; !6K
�j−1; resp: ‖wj‖0;−1; !6K
	j−1=2
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Theorem 5.7
There exists a constant K such that the di�erent terms in (64) satisfy, for 
 large enough

‖uR(
)‖�−
R
+ 
‖uR(
)‖1;−1; ! + 
2‖uR(
)‖0;−1; !6K‖f‖0;−1; ! (76)

(for a reentrant edge) |cj(
)|6K(1 + 
)�j−1‖f‖0;−1; ! (77)

(for a sharp vertex) |cj(
)|6K(1 + 
)	j−1=2‖f‖0;−1; ! (78)

Proof
Step 1. Let us �rst prove the estimates for cj(
). One has

cj(
)=− 1
2�j(
)

∫ ∫
!
fvj

d!
r
=− 1

2�j(
)

∫ ∫
!
f(uj − wj)

d!
r

Hence by the Schwarz and triangle inequalities

|cj(
)|6 1
2�j(
)

‖f‖0;−1; ! ×{‖uj‖0;−1; ! + ‖wj‖0;−1; !} (79)

The estimate for ‖wj‖0;−1; ! was obtained in the previous lemma, and simple calculations show
that ‖uj‖0;−1; !=O(
�j−1) or O(
	j−1=2). Then (77), resp. (78) follows from (79) and estimate
(72) for �j(
).
Step 2. To obtain (76), we shall consider: fR=−(�− − 
2I)uR and prove the bound

‖fR‖0;−1; !6K‖f‖0;−1; ! (80)

One has

fR=f + (�− − 
2I)
∑
j∈KS

cj(
)e−
�jSj

so it is enough to bound each cj(
)(�− − 
2I){e−
�jSj}. By adapting the proof of [8, Lemma
2.5.9], one can show that

‖(�− − 
2I){e−
�jSj}‖20;−1; !=O(
2−2�j) or (
1−2	j)

Then we use (77) or (78) to estimate

‖cj(
)(�− − 
2I){e−
�jSj}‖20;−1; !=O(1)‖f‖0;−1; !
Estimate (80) follows.
Step 3. On the other hand, there holds

‖(�− − 
2I)uR‖20;−1; != ‖�−uR‖20;−1; ! − 2
2(�−uR | uR)0;−1; ! + 
4‖uR‖20;−1; !
According to (3), the scalar product in the second term, with its minus sign, is equal to
‖grad uR‖20;−1; !, which is a norm equivalent to ‖uR‖21;−1; !. As for the �rst term, it is a norm
equivalent to the canonical norm of �−

R (Lemma 4.7). Hence, by (80)

‖uR(
)‖2�−
R
+ 2
2‖uR(
)‖1;−1; ! + 
4‖uR(
)‖0;−1; !6K1‖fR‖20;−1; !6K2‖f‖20;−1; !

which is equivalent to (76).
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5.2. Space–time regularity of the solution to the wave-like problem

The solution to (61) belongs to �− at any time, hence we have the decomposition

u(t)= u∗R(t) +
∑
j∈KS

cj(t)Sj with u∗R(t)∈�−
R (81)

It stems from the continuity of projections onto closed subspaces that

u∗R∈C0(0; T ; �−
R ); cj∈C0(0; T ;R)

Moreover, we have the more precise result of

Theorem 5.8
De�ne �M and �m as �b

M and �b
m in the Dirichlet case, and �e

M and �e
m in the Neumann case.

Then, the di�erent terms in (81) satisfy

u∗R∈C0;1−�M−�(0; T ;R[H 1+�M+�
− (!)]); cj∈C0;1−�M−�(0; T ;R) for �¿�¿0

u∈C0;1−�M−�(0; T ;R[H 1+�m−�′
− (!)]) for �; �′¿0

Proof
By Theorem 5.1 u∈C0(0; T ;DA)∩C1(0; T ;DA1=2). By convexity, it follows that
u∈C0; �(0; T ;DA1−�=2) for 06�61. Now, let �¡1 − �M and 1 + �M¡s¡2 − �. Applying
Lemma 5.9 (see below), we split u on the direct sum E=R[Hs

−(!)] + span{Sj; j∈KS}.
As �−

R ⊂R[H 2
−(!)]⊂R[Hs

−(!)], the components of u in the two direct sums �
−
R ⊕ span{Sj}

and R[Hs
−(!)]⊕ span{Sj} are the same. This shows u∗R∈C0; �(0; T ;R[Hs

−(!)]) and
cj∈C0; �(0; T ;R).
Finally, we note that u∗R and all the Sj belong to R[H 1+�m−�′

− (!)], hence
u∈C0;1−�M−�(0; T ;R[H 1+�m−�′

− (!)]).

Here is the announced technical lemma:

Lemma 5.9
Let #¿(1 + �M )=2; then for any s¡2#:

DA# ⊂ E≡R[Hs
−(!)] + span{Sj; j∈KS} (82)

Proof
The regularity of the Sj in the scale R[Hs

−(!)] is given by Proposition 2.2. Equations (50)
and (52) show that the edge functions belong to Hs(!)—or R[Hs

−(!)] by a support ar-
gument—i� s¡1 + �j. Similarly, the vertex functions Sj belong to R[Hs

−(!)], 1¡s¡2, i�
Sj=r ∈Hs

−(!)= {w∈Hs
1 (�): w|�a =0}. Since

Sj
r
=

�1+	j
j �j(�j)
�j sin�j

=�	j
j P1	j (cos�j) (83)

this holds i� s¡	j + 3=2: the condition Sj=r|�a =0 is ensured by the Legendre function.
Hence for 1 + �M¡s¡2#, the space E is a direct sum, which we equip with the product

topology; and it is enough to prove (82) in this case. We follow Lemmas 5.3.2 and 5.3.3 of
[8]. First, we show that

‖(A+ tI)−1‖H→E=O(t s=2−1) (84)

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:861–896



SOLUTION OF AXISYMMETRIC MAXWELL EQUATIONS 889

as t→+∞. Let f∈H and u=(A + tI)−1f: the decomposition (64) and the estimates (76)
and (77) hold, with 
=

√
t. One also has the decomposition (63)

u=


uR +

∑
j∈KS

cj(e−�j
√

t − 1)Sj

+ cjSj (85)

As the bracket belongs to �−
R ⊂R[H 2

−(!)]⊂R[Hs
−(!)] (Proposition 4.8). Equation (85) coin-

cides with the decomposition of u in the direct sum E. Then we use Sobolev injections and
interpolation arguments to show that the R[Hs

−(!)] norm of the bracket is O(t s=2−1); as cjSj
decays faster, (84) is proven.
Finally, consider u∈DA# and write u=A−#A#u, i.e.

u=
sin �#

�

∫ +∞

0
t−#(A+ tI)−1A#u dt

By (84), the norm of the integrand in E is O(t s=2−1−#)‖A#u‖H , and the integral converges for
s¡2#.

6. ANALYSIS OF THE TIME-DEPENDENT MAXWELL EQUATIONS

6.1. The Maxwell equations

Given T¿0, let Q=�× ]0; T [ and �=	× ]0; T [; let c and �0 be the speed of light and the
dielectric permittivity; % and J the source terms (charge and current densities). First, there
are the evolution equations

@E
@t

− c2 curlB=− 1
�0

J;
@B
@t
+ curlE=0 in Q (86)

Then, the constraint equations, viz. divergence and boundary conditions:

divE=
%
�0

; divB=0 in Q (87)

E× n=0; B · n=0 on � (88)

The charge conservation equation,

@%
@t
+ divJ=0 in Q (89)

appears as a compatibility condition for the �rst equation in (86), given the �rst in (87). Last,
initial conditions are provided to close the system of equations,

E(0)=E0; B(0)=B0 in � (90)

The existence and uniqueness of the electromagnetic �eld can be proven under suitable as-
sumptions on the data and the initial conditions, cf. [1, Theorem 6.1]. In the axisymmetric
case, we have:
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Proposition 6.1
If %, J and (E0;B0) are axisymmetric, so is the solution to (86)–(90). And, provided that
J∈C1(0; T ; 
L2(�)) and that %∈C0(0; T ; 
L2(�)), there holds

E∈C0(0; T ; 
Xd)∩C1(0; T ; 
L2(�)); B∈C0(0; T ; 
X0n)∩C1(0; T ; 
L2(�)) (91)

6.2. Reduction to two-dimensional problems and basic regularity results

We now examine the simpli�cation of the time-dependent Maxwell problem (86)–(90) in-
duced by the axial symmetry. Similarly to the static problems (see Section 4), there is a
decoupling of meridian and azimuthal components: namely, the problem (86)–(90) is decou-
pled into two sub-systems:

• the ‘�rst system’ links the meridian electric �eld and the azimuthal magnetic �eld;
• the ‘second system’ links the azimuthal electric and meridian magnetic �elds.

Like in Section 4, it is convenient to introduce the product by r of the ‘natural’ variables

u= rE; v= rB; f =(r=�0)J; g= r%=�0

The following forms for the two systems are obtained through simple calculations.
The �rst system. The evolution and constraint equations are:

@um
@t

− c2 curl v� =−fm in q (92)

@v�
@t
+ curl− um =0 in q (93)

div um = g in q (94)

um · ] = 0 on �a; um · �=0 on �b (95)

The compatibility condition between fm and g reads

div fm +
@g
@t
=0 in q (96)

As for the initial data, they are

um(0)= um0 = rE0m; v�(0)= v�0 = rB0� in ! (97)

they satisfy

div um0 = g(0) in !; um0 · ]=0 on �a; um0 · �=0 on �b (98)
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The second system. The evolution and constraint equations read:

@u�

@t
− c2 curl− vm =−f� in q (99)

@vm
@t
+ curl u� =0 in q (100)

div vm =0 in q (101)

u�=0 and vm · ]=0 on � (102)

There is no compatibility condition for this problem. The initial data are:

vm(0)= vm0 = rB0m; u�(0)= u�0 = rE0� in ! (103)

they satisfy

div vm0 = 0 in !; vm0 · ]=0 on �; u�0 = 0 on � (104)

Basic regularity results. Combining Proposition 6.1 with the results of Sections 2.2 and 4,
we obtain the following regularity result:

(um; v�)∈C0(0; T ;Ud ×H 1
−1(!))∩C1(0; T ;L2−1(!)

2×L2−1(!)) (105)

(vm; u�)∈C0(0; T ;U0n ×H
◦1
−1(!))∩C1(0; T ;L2−1(!)

2×L2−1(!)) (106)

The rest of this section is devoted to the improvement of this result, as announced in Reference
[12]. For the azimuthal components, there holds by interpolation:

(u�; v�)∈C0;1−�(0; T ;H
◦�
−1(!)×H�

−1(!)) for 0¡�¡1 (107)

We now focus on the meridian components and their splitting, valid at any time, into a
regular and a singular part, the latter being chosen within the explicit singular spaces of
Section 4.4:

um(t) = uR(t) +
∑
i∈Ke

S

�i(t)Sd
i (108)

vm(t) = vR(t) +
∑
j∈Kb

S

�j(t)S0nj (109)

By the continuity of projections, there holds: (uR; vR)∈C0(0; T ;Ud
R ×U0nR ) and, for (i; j)∈Ke

S
×Kb

S , (�i; �j)∈C0(0; T ;R×R).
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6.3. Regularity in time of the singular coe�cients and global space–time regularity of the
�elds

The �rst system. We consider the Hodge decomposition, valid at any time:

um(t)= curlW (t)− r gradV (t)= hodge(V (t); W (t)) (110)

If we assume: ∀t, V (t)∈�d+ and W (t)∈�n−, the results of Subsection 4.2 allow us to state
that they are uniquely de�ned and satisfy

(V;W )∈C0(0; T ; �d+×�n−)∩C1(0; T ;Vd+×Vn−) (111)

Combining (110) with (94) and (95) shows that, for all t, V (t) is the variational solution to

−�+V (t)=
%(t)
�0

in !; V (t)=0 on �b;
@V (t)
@	

=0 on �a (112)

Obviously, the time regularity of % and V are related:

Proposition 6.2
If %∈Cm(0; T ; [Vd+]′) resp. Ws;p(0; T ; [Vd+]′) or C0; �(0; T ;L21(!)), then V ∈Cm(0; T ;Vd+)
resp. Ws;p(0; T ;Vd+) or C0; �(0; T ; �d+).

Let us now look for the equation satis�ed by W (t). Plugging (110) into (92) and (93)
yields

@v�
@t

−�−W =0 (113)

curl
(
@W
@t

− c2v�

)
=−fm + @

@t
(r gradV ) (114)

The right-hand side of (114) is divergence free, thanks to (96) and (112). Hence, there exists
a function � such that curl �=−fm + @t(r gradV ). But the left-hand side of (114), by (111)
and (105), is at any time in L2−1(!)

2. Hence, it has a unique potential in H 1
−1(!), and we

can choose �= @tW − c2v�. Combining this equation with (113) yields

@2W
@t2

− c2�−W =
@�
@t
=
def

 (115)

Proposition 6.3
Assume jm ∈W 1;1(0; T ; 
L2(�)), hence fm ∈W 1;1(0; T ;L2−1(!)

2). Then there exists a strong so-
lution W (t)∈C1(0; T ;Vn−)∩C0(0; T ; �n−) to the evolution equation (115), supplemented with
the boundary and initial conditions


W =0 on �a; @	W =0 on �b

W (0)=W0; W ′(0)=W1 in !
(116)

where the initial conditions satisfy

W0 ∈�n−; W1 ∈H 1
−1(!); curlW0 − r gradV (0)= um0; W1 = c2v�0 + �(0) (117)
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Proof
jm ∈W 1;1(0; T ; 
L2(�)) implies @t%∈W 1;1(0; T ; 
H−1(�)) by (89) and @tV ∈W 1;1(0; T ;Vd+) by
Proposition 6.2. Hence curl �=−fm+@t(r gradV )∈W 1;1(0; T ;L2−1(!)

2), �∈W 1;1(0; T ;H 1
−1(!)),

and �nally  ∈L1(0; T ;H 1
−1(!)). Hence the existence of W by Theorem 5.1. Now (117) is

clear, since � and @t(r gradV ), as W 1;1 functions of time, are continuous up to t=0, like um
and v�.

Conversely, checking that V and W de�ned, respectively, by (112) and (115)–(116) satisfy
(110), provided (117) holds, is straightforward. Thus, we can apply the results of Section 5.
We set

V (t) = VR(t) +
∑
i∈Ke

S

�d
i (t){�d

i S
d+
i } (118)

W (t) =WR(t) +
∑
i∈Ke

S

�n
i (t){�n

i S
n−
i } (119)

As stated in Subsection 4.4, we can choose the constants �d
i and �n

i so as to have

−r grad{�d
i S

d+
i }+ curl{�n

i S
n−
i }=2Sd

i + 2w
+
i ; w+i ∈Ud

R

−r grad{�d
i S

d+
i } − curl{�n

i S
n−
i }=2w−

i ∈Ud
R

Combining (110) with (118) and (119), we �nd

um(t) = curlWR(t)− r gradVR(t) +
∑
i∈Ke

S

{(�d
i (t)− �n

i (t))w
−
i + (�

d
i (t) + �n

i (t))w
+
i }

+
∑
i∈Ke

S

(�d
i (t) + �n

i (t))S
d
i

Comparing this equation to (108), we infer

uR(t) = curlWR(t)− r gradVR(t) +
∑
i∈Ke

S

{(�d
i (t)− �n

i (t))w
−
i + �i(t)w+i } (120)

�i(t) = �d
i (t) + �n

i (t) ∀i∈Ke
S (121)

Theorem 6.4
Assume that the sources enjoy the following space–time regularity:

%∈C0;1−�e
M−�(0; T ;L21(!)) ∀�¿0 and fm ∈W 1;1(0; T ;L2−1(!)

2)

Then the following regularity results hold:

�i ∈C0;1−�e
M−�(0; T ;R) ∀�¿0 (122)

um ∈C0;1−�e
M−�(0; T ;H�e

m−�′

−1 (!)2) ∀�; �′¿0 (123)
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Proof
The projection onto closed subspaces, such as �d+

R , span Sn−
i , etc., is smooth. Hence, the

assumed regularity of %, together with Proposition 6.2, yields

VR ∈C0;1−�e
M−�(0; T ; �d+

R ); �d
i ∈C0;1−�e

M−�(0; T ;R)

and Theorem 5.8 implies

WR ∈C0;1−�e
M−�(0; T ;R[H 1+�e

M+�
− (!)]); �n

i ∈C0;1−�e
M−�(0; T ;R)

So, under the above hypotheses, �i ∈C0;1−�e
M−�(0; T ;R).

Moreover, we know from Theorem 4.10 that for all t, um(t)∈H�e
m−�′

−1 (!); and this space

regularity is optimal. Since �d+
R ⊂H 2

+(!)⊂H 1+�e
m−�′

+ (!), one has

−r gradVR ∈C0;1−�e
M−�(0; T ;R[H�e

m−�′

1 (!)2])=C0;1−�e
M−�(0; T ;H�e

m−�′

−1 (!)2)

by Proposition 2.1. The same proposition yields

WR ∈C0;1−�e
M−�(0; T ;R[H 1+�e

m−�′

− (!)])⊂C0;1−�e
M−�(0; T ;H 1+�e

m−�′

−1 (!))

thus curlWR ∈C0;1−�e
M−�(0; T ;H�e

m−�′

−1 (!)2). Then (123) follows from (120).

Corollary 6.5
Under the hypotheses of the above theorem, there holds

E∈C0;1−�e
M−�(0; T ; 
H�e

m−�′(�)) (124)

Proof
It stems from (123) that Em ∈C0;1−�e

M−�(0; T ;H�e
m−�′

1 (!)2), where H�e
m−�′

1 (!)2 =
H�e

m−�′

− (!)×H�e
m−�′
+ (!) is the meridian component of 
H�e

m−�′(�). On the other hand, u� sat-

is�es (107); taking �=�e
m − �′ yields u� ∈C0;1−�e

m+�′(0; T ;H�e
m−�′

−1 (!)) or E� ∈C0;1−�e
m+�′(0; T ;

H�e
m−�′

− (!)). The conclusion follows.

The second system. According to Section 4.3, we set at any time

vm(t)= curl’(t) (125)

with ’(t)∈�d−. It stems from the regularity (106) of vm, and Section 4.3 that

’∈C0(0; T ; �d−)∩C1(0; T ;Vd−) (126)

Let us look for the equation satis�ed by ’. It follows from (100) that curl(@t’ + u�)=0.
Since u� ∈Vd−, we infer u�=−@t’, and (99) becomes

@2’
@t2

− c2�−’=f� (127)

Given (126), Theorem 5.1 implies:
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Proposition 6.6
If j� ∈L1(0; T ;H 1

−(!)) and j�|�=0—hence f� ∈L1(0; T ;H
◦
1
−1(!))—’ is the strong solution

in C0(0; T ; �d−)∩C1(0; T ;Vd−) to the evolution equation (127), supplemented with the initial
and boundary conditions {

’=0 on �

’(0)=’0; ’′(0)=’1 in !
(128)

where the initial conditions satisfy
’0 ∈�d−; ’1 ∈Vd−; curl’0 = vm0; ’1 =−u�0 (129)

The proof is similar to Proposition 6.3, and simpler. Conversely, checking that ’ solution
to (127) and (128) satis�es (125), provided (129) holds, is straightforward. To apply the
results of Section 5, we set

’(t)=’R(t) +
∑
j∈Kb

S

�j(t)Sd−
j (130)

We recall that curl Sd−
j =S0nj . Comparing (125) and (130), one sees that the singular

coe
cients �j(t) are indeed the same as in (109), and that vR(t)= curl’R(t).

Theorem 6.7
Assume that the current f� belongs to W 1;1(0; T ;Vd−). Then the following regularity results
holds:

�j ∈C0;1−�b
M−�(0; T ;R) ∀�¿0 (131)

vm ∈C0;1−�b
M−�(0; T ;H�b

m−�′

−1 (!)2) ∀�; �′¿0 (132)

Proof
By Theorem 5.8

’R ∈C0;1−�b
M−�(0; T ;R[H 1+�b

M+�
− (!)]); �j ∈C0;1−�b

M−�(0; T ;R)

Moreover, we know from Theorem 4.10 that for all t, vm(t)∈H�b
m−�′

−1 (!); again, this space
regularity is optimal. But

’R ∈C0;1−�b
M−�(0; T ;R[H 1+�b

m−�′

− (!)])⊂C0;1−�b
M−�(0; T ;H 1+�b

m−�′

−1 (!))

by Proposition 2.1, hence, curl’R ∈C0;1−�b
M−�(0; T ;H�b

m−�′

−1 (!)2). As �j is an element of
C0;1−�b

M−�(0; T ;R), this implies (132).
Corollary 6.8
Under the hypotheses of the above theorem, there holds

B∈C0;1−�b
M−�(0; T ; 
H�b

m−�′(�)) (133)

Proof
Similar to Corollary 6.5.
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