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Abstract

In this paper, we present a method to solve numerically the axisymmetric time-dependent Maxwell equations in a
singular domain. In [Math. Methods Appl. Sci. 25 (2002) 49; Math. Methods Appl. Sci. 26 (2003) 861], the mathematical
tools and an in-depth study of the problems posed in the meridian half-plane were exposed. The numerical method and
experiments based on this theory are now described here. It is also the generalization to axisymmetric problems of the
Singular Complement Method that we developed to solve Maxwell equations in 2D singular domains (see [C. R. Acad.
Sci. Paris, t. 330 (2000) 391]). It is based on a splitting of the space of solutions in a regular subspace, and a singular one,
derived from the singular solutions of the Laplace problem. Numerical examples are finally given, to illustrate our
purpose. In particular, they show how the Singular Complement Method captures the singular part of the solution.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the recent years, an ever-growing number of engineering problems requiring to model and to simulate
numerically devices working with or within electromagnetic fields have come out. The mathematical models
describing the physics of these devices are based on Maxwell equations, in the steady-state or time-
dependent form, often coupled with other equations.
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Moreover, many structures that are to be modeled have a complex three-dimensional geometry and
often present a surface with edges and/or corners. These geometrical singularities can generate very strong
fields that have to be taken into account. They can be desired, as an active part of the device (e.g., to extract
electrons from a cathode), or the consequence of a priori constraints on the design. In that case, the induced
negative effects (e.g., destructive effects) have to be controlled.

However, three-dimensional computations are very expensive. In a number of cases, one reduces the
problem to two-dimensional equations by assuming that the geometry and the data and initial conditions
are independent of one of the coordinates.

As a first step, we considered in a previous paper [4] problems independent of the transverse variable z,
which can be reduced to two-dimensional Cartesian ones. We proposed a method, called the Singular
Complement Method (latter referred to as the SCM), which allows to solve Maxwell equations in a non-
smooth and non-convex domain, that is a singular domain.

In this paper, we consider the case of an axisymmetric situation. Indeed, while the geometry of real
devices is not very often Cartesian, it is much more common to have an axial symmetry, at least ap-
proximately or locally. Moreover, it is a common practice to approximate problems by their axisymmetric
counterpart. In other words, the axisymmetric situation can be viewed as an intermediate between a full
three-dimensional problem and a two-dimensional one.

Recall briefly the principle of the SCM: the space of solutions V is split with respect to regularity in a
regular subspace Jz and a singular one V5, namely V = I & Vs. When the domain is convex or smooth, that
is regular, there is no singularity in the solutions of the Maxwell equations, so that Vs = {0} and Iz = V.

Thus, in this case, one can take advantage of this regularity to discretize the electromagnetic fields by the
P; Lagrange FEM (cf. [5]), instead of the ‘usual’ edge FEM [20,21]. As a matter of fact, the former dis-
cretization includes two key ingredients, which the latter lacks ':

e For the time-dependent Maxwell equations, the mass matrix can be lumped, with no loss in precision,
thus leading to very inexpensive numerical schemes.

e The numerical electromagnetic field is continuous, so the method can be used in conjunction with a par-
ticle-pushing scheme, to solve the coupled Vlasov—Maxwell system of equations.

Alternative approaches, such as Finite Volumes [17], also lack the crucial continuity property of the
numerical approximation, and moreover require some charge correction at every time-step.

In general, when the domain is singular, Vi is strictly included in ¥ (and Vr # V), and one cannot
capture numerically the singular part of the solution with the help of the Lagrange FEM only, since the
solution cannot arise as a limit of regular fields. In particular, mesh refinement techniques do not work.

The principle of the SCM being to enlarge the space of test-functions, it is therefore required that one
adds a singular complement to be able to compute an approximation of the solution. One discretizes the
regular part with the P, Lagrange FEM, which means a P, approximation component by component,
taking into account the boundary condition. To approximate the singular part, the idea we develop further
is to relate the singular electromagnetic fields to singular solutions to the Laplace operator. In the axi-
symmetric situation, all the mathematical tools and characterizations of the singular subspaces of solutions
have been carried out and exposed in previous papers [2,3]. For time-dependent problems, another ad-
vantage of the SCM is that no mesh refinement is needed, so one can use explicit methods without dete-
riorating the time-step.

Note that we assume that the medium is homogeneous. The extension to heterogeneous media can be
dealt with in a similar manner. For that, one can choose the FEM framework developed in [6], in order to
handle jumps across interfaces between different media. And, as far as the SCM is concerned, one has to
compute the singular solutions of elliptic operators with piecewise constant coefficients (see [§]).

! Mass lumping techniques are however available for specially designed edge FEM [13].
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This paper is organized as follows. Section 2 recalls the time-dependent Maxwell equations in an axi-
symmetric domain. A decomposition in regular and singular parts is presented in Section 3, where the
difference between the electric and the magnetic case is pointed out. A characterization of the fields is given
leading to constructive methods of solution. The numerical method is developed in Section 4: the “‘singular
lifting” approach for solving the singular electromagnetic fields, coupled to a time-dependent variational
formulation. Section 5 is concerned to the extension of the method to the Silver—Miiller boundary con-
dition. In Section 6, we present some numerical results of both electric and magnetic cases, to illustrate the
efficiency of the SCM in an axisymmetric geometry. In particular, a comparison with a Finite Volume
approach [17] is performed.

2. Maxwell equations in an axisymmetric domain
2.1. The Maxwell equations
Let Q be a bounded and simply connected Lipschitz domain, I' its boundary, and n the unit outward

normal to I'. If we let ¢ and &, be, respectively, the speed of light and the dielectric permittivity, the time-
dependent Maxwell equations in vacuum read

06 1

- _ 1% = — — 1

5, —ceur B ” 7, (1)

04

E—l—curléa = 07 (2)
)

divé”':z, (3)
=)

div# =0, (4)

where & is the electric field, # is the magnetic flux density, and # and ¢ are the charge and current
densities. These quantities depend on the space variable x and on the time variable ¢.

These equations are supplemented with appropriate boundary conditions. In order to simplify
the presentation, let us assume first that the boundary is a perfect conductor. In Section 5, the extension to
the Silver—Miiller boundary condition will be handled: it can model either an absorbing medium outside the
domain or an incident wave. For the moment, let us consider the boundary conditions

&xn=0 onl, (5)
#-n=0 onl. (6)

The charge conservation equation is a consequence of Maxwell equations and reads
oR .
—+div # =0. (7)
ot

Last, initial conditions are provided (for instance at time ¢ = 0)

&00) =&, B(0) = R, ®)
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where the couple (&, %,) depends only on the variable x and satisfies the divergence and boundary con-
ditions at the initial time
#(0)

dngo = )8 s divé?o = 07
50

Eoxn=0 onl, By-n=0 onl.

2.2. Reduction to two-dimensional problems

Now we make the supplementary assumption that Q is an axisymmetric domain limited by the surface of
revolutzon I'. We denote by w and y, their intersections with a meridian half-plane (see Fig. 1). One has
y M ow = v, U7,, where either y, = () when y, is a closed contour (i.e., Q does not contain the axis), or y, is
the segment of the axis lying between the extremities of y,. v is its unit outward normal and t the unit
tangential vector such that (z,v) is direct.

Moreover, it is assumed that 7, is a polygonal line with edges (7;), ;. The off-axis corners of y,
generate circular edges in I', whereas the extremities are conical vertices of I'.

The natural coordinates for this domain are the cylindrical coordinates (r, 0,z), with the basis vectors
(e, ep,e.). A meridian half-plane is defined by the equation 6 = const., and (r,z) are Cartesian coordinates
in this half-plane.

(Eor any vector field d u, we denote by u,, and uy the meridian and azimuthal components of u, with
u, = u,e, + u.e. and ug = ugeg. The fact that there is a symmelry of revolution means that the scalar (resp.,
vector) fields are entirely characterized by their “trace” in w, i.e., the datum of their value in a meridian
half-plane (resp., by the trace of their cylindrical components). Obviously, this is equivalent to the van-
ishing of all derivatives with respect to 0 of these fields or components. In the following, it is thus assumed
that 9y- = 0.

The formulae for the gradient, divergence, and curl operators in cylindrical coordinates are given in
Appendix A. In the axisymmetric case, we have the following expressions (by using 0y- = 0):

02
~ n/]SZ v
T
< E3 yh
v, - Y
1t/0c3 3
(0]
Ez
o v,
n/ﬁ] E1
yl
0 T

Fig. 1. The domains Q and w.
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of of .12 Ou,

gradf = ger +&ez7 divu = , ar(””r) + 0z’ ©)
o? 10 o?

Af:_f_i___f+_f. (10)

orr  ror 0z

The curl operator is given by the formula

Ouy Ou, Ou, 1/0
curlu = (—g)er—F <§—E)e9+;<§(m0)>ez. (11)

Now, if u,, = (u,,u.) is a meridian vector field, curlu,, is azimuthal. It is thus convenient to introduce the
roman type notation

curlu,, = Ouy _ u;
"\ or )

In the same way, if uy is azimuthal, curluy is meridian and we set, with the bold type notation,

6u9 10
lug = —— - = .
curluy % e + 5 (rup)e.

For this reason, it is possible to decouple the Maxwell system (1)—(4) into a couple of problems, involving
different components of the fields & and 4. Let us denote by E,, = (E,, E.) (resp., J,, = (J,,J.)) the meridian
components of & (resp., ,#) and by By the azimuthal component of 4. Given the expression of differential
operators in cylindrical coordinates, the first system of unknowns (E,,, By) reads as follows in wx 0, T|[:

JE, 2 _ 1
6_tm — c*curl By = 75(],,,,

%+curlEm =0, (12)
divE, =2,
with the perfect conductor boundary condition

E, -t=0 ony,. (13)
On the axis y,, symmetry considerations yield

E, - v=E.=0, By=0 on 7,. (14)
We also have the initial conditions

E,(0) = E,o, Bo(0) = Bp. (15)
Finally, the charge conservation equation is written as

g
o

By also introducing B,, = (B,,B.) the meridian components of # and E, (resp., Jy) the azimuthal
component of & (resp., #), the second system of unknowns (Ey, B,,) is written as

+divJ, = 0. (16)

OBy _ 2 - _ 1
52— ccurl B, = Sl)J(),

%—&-curlEo =0, (17)
divB,, =0,
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with the perfect conductor boundary conditions

B, v=0, Ey=0 on y,, (18)
and the symmetry conditions on the axis y,

B, v=B.=0, E;=0 on y,. (19)
For the initial conditions, we have

B,.(0) =B,o, Ey(0)=Eg. (20)

For this system, there is no charge conservation equation.

2.3. A variational formulation

Both systems can be equivalently formulated as systems of second order in time. In the first one, the
Ampere equation (1) and the Faraday equation (2) can be written as

> E, 12,

61‘2 +c CurlCurlEm = —S—OF, (21)
PBo ., courlcurl By = Leurl (22)
22 c curlcurl By = " curlJ,,,

whereas in the second one, one obtains

PEy, 1 aJy

W—f—c curlcurl £y = T (23)

B, + c*curl curlB,, = 1 rlJ, (24)
ap T ¢ curleurlB, = ” curlJy,

the other equations, boundary or initial conditions being unchanged. In addition, each of these second
order in time systems has to be closed with a supplementary initial condition. Namely

OE,, . 1 0By B
ot (O) = CuI’lBgo — %Jm(o), E (O) = —curl Em07
for the first one, and
0E, 1 0B,

> (0) = c*curl B, — ng(O), a (0) = —curl Eg,
for the second one.

We now introduce a variational formulation of these problems, which can be applied independently of
the (non) convexity of w. Recall first that, to obtain control on the divergence of the fields, we have de-
veloped a method where the Maxwell equations are reformulated as a constrained problem, with associated
Lagrange multipliers [5]. We thus set ¢ the Lagrange multiplier of the constraint divE, = %/¢, and  the
Lagrange multiplier associated to divB,, = 0.
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Let us define now the following functional spaces:

o) = {f:w—> R;/fzrdrdz< —l—oo}, 1100 = (/fzrdrdz) 1/2,

H) () = {f € L}(); / lgrad f’rdrdz < +o00f, 1l = (U1, + leradfi,)",

2 12
o) = {1 ety [ Lara< voch W= (W5, +121.)

H,o(w) = {f € H,(»); f=0on7y,}.
This allows to define the usual vector Sobolev spaces

L}(0) = L}(0) x L;(w),

H'(0) = {v= (v,,v.) € L*(0); v, € H () and v. € H'(w)}
and the classical spaces for the Maxwell equations
H(curl,w) = {v € L}(w); curlv € L}()}, H(div,0) = {v € L}(w); divv € L}(w)}.

This allows to define the corresponding subspaces with the vanishing tangential trace Hy(curl, w) and
normal trace Hy(div, ), and finally the spaces of solutions
X := Hy(curl, ) " H(div, w), Y := H(curl, w) N Hy(div, ®)

endowed with the norms ||v||x = [|v]ly = (||cur1v||(2)_w + ||divv||aw)l/2

From now on, in the rest of this paper, we drop the subscripts m and 6 for meridian and azimuthal fields,
respectively (for instance E instead of E,, B instead of By, etc.), since there is no ambiguity. Hence, the
system (12) can be written in the following variational form:

Find (E,B,¢) € X x H! () x L*(w) such that

)
/aaz Frdrdz + ¢ /CurlEcurlFrdrder/¢d1VFrdrdzff—/ —-Frdrdz VFeX, (29)
1
W Crdrdz+c /CurlB-curlCrdrdZZS—/J-CurlCrdrdz VC € H) (w), (26)
» » 0 Jo
/divKrdrdz:gl /%qrdrdz Vg € L} (). (27)
) 0 Jo

For the second system (17), one has, in a similar way
Find (B,E, ) € Y x H! (w) x L*(w) such that

/— Crdrdz + ¢ /curchurlCrdrder wdivCrdrdz:—gl/qurlCrdrdz vC ey,
) w 0 Jo

(28)
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O’E ) 1 foJ |
ﬁFrdrdz +c¢” | curlE-curl Frdrdz = T aFrdrdz VF € H, (), (29)
/ divBgrdrdz =0 Vg € L(w). (30)

Recall that the systems (25)—(27) and (28)—(30) are decoupled, cf. Section 2.2.

The azimuthal components (E,B), as the solution of a scalar wave equation, always belong to an
H'-style space, namely H!(w), even in a singular domain (see [3]), and an approximation by a P
Lagrange finite element method is well adapted. On the contrary, the meridian electric and magnetic
fields (E,B) do not always belong to an H'-style space as it would be automatically the case in a
regular domain.

3. A decomposition in regular and singular parts

The underlying principle of the method consists in relating the singular solutions of Maxwell equations
to those of the Laplace problem, the properties of the latter having been investigated in a detailed manner
[3]. Let us briefly recall, without proof, some useful results in order to understand the construction of the
numerical method [3].

We introduce the “regularized” spaces of solutions

Xg :=XNH'(w) and Yg:=YNH (o).
These are the natural spaces of solutions in a regular domain. From the following property
Proposition 3.1. The regularized spaces Xg and Yr are closed, respectively, within X and Y.
we can split these spaces as
€1 €
X=Xg®Xs and Y=YraDYs, (31)

where Xgs and Yg are the spaces of the singular elements. When the domain is singular, Xg # {0} and
Ys # {0}. More precisely, let f* be the solution to the following equation, which involves a Legendre
function: Pyjy(cosn/f™) = 0. Its value is f* ~ 1.3771, or (n/B”) ~ 13043, and we have (see [3] for a
proof).

Proposition 3.2. The spaces Xs and Ys are of finite dimension, namely

. . . . Tc
dim Xg = Ng = number of conical points with vertex angle > ﬁ—ﬁ + number of reentrant edges,

dim Ys = Np = number of reentrant edges. (32)

By introducing now (xg),_, 5. and (¥4) i—1n, the bases of Xs and Ys, the meridian electromagnetic fields
solution of the Maxwell equations can be decomposed into

E() = Ex() + 3O K05, (33)
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B(1) = Ba() + > 9/(0vh (34)

where (x'),_, . and (¢'),_, y, are smooth functions in time (at least continuous, cf. [3]).
We have now to characterize the singular parts on one hand, and the regular ones on the other.

3.1. A characterization of singular fields

This section describes the relationship between the singular electric and magnetic fields and the scalar
singularities of Laplace-like operators. As it is proved in [3], other decompositions in regular and singular
parts are possible, and can be better adapted to computations than (31). For instance, in the magnetic case,
the divergence-free condition on the magnetic field allows us to use the natural subspace W of Y defined
hereafter. For similar reasons, it is more convenient for the electric field to use another decomposition of
the space X , as we will see in the following.

3.1.1. Magnetic case
Due to the divergence-free condition on the magnetic field, let us now introduce the subspace W of Y as
W={weY:divw=0}, with norm|curlw]],,. (35)

Then, if we define Wy = W N H' () the space of regular (divergence-free) fields, we proved in [2] that Wy, is
closed in W. Let Wy be its orthogonal, i.c.

W = W & W (36)

The dimension of Wg is also Np, and any ws € Wy is a meridian field that can be characterized as the
solution to

curlws = P in o, (37)

divwg =0 in o, (38)

ws-v=0 on . (39)
Here, Ps is a function that belongs to L?(w), but not to H!(w) or H!(w), such that

APs=0 inw, (40)

Ps=0 ony, (41)

where the Laplace-like operator A’ is defined as

P P 10Ps P

APy =—=— -2,
s or? 0z2 r or r?

3.1.2. Electric case

Except in the particular case of a charge-free problem, the electric field does not satisfy a divergence-free
condition. Contrary to the magnetic case, it is not so fruitful to consider here the divergence-free subspace
of X. Moreover, both the reentrant edges and the conical points with a sufficient large vertex angle
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contribute to the singular part of the solution as well. This increases the difficulty to compute (but not to
characterize) the singular fields.

Under these circumstances, it is better to relax the orthogonality of the decomposition (31), by choosing
singular fields vg such that curl vg = 0, in order to ease the computation of the singular fields. Instead of the
decomposition of Proposition 3.2, we should rather use the (non-orthogonal) decomposition

X = Xy & grad s, (43)

where we denote by ®@g the space of the primal singularities of the Laplacian, i.e., solutions of a Laplace
problem that belong to H'(w) but lack an H?-style regularity. More precisely, ¢g € s is characterized by
the system

—A¢ps=ps In o, (44)
$s =0 on y,, (45)
% =0 ony,, (46)

where A is the trace of the three-dimensional Laplace operator in the meridian half-plane, defined by (10).
There remains now to specify the right-hand side ps of Eq. (44), which is a scalar function of regularity L?
(and not H!), satisfying the same equations as ¢g, namely

Aps =0 in o, (47)
Ps = 0 on Vbs (48>
)

% =0 on Va- (49)

It is called a dual singularity of the Laplacian. Finally, it is sufficient to take

vs = —grad ¢ in o, (50)
which can be equivalently characterized by

curlvs =0 in w, (51)

divvs = ps in o, (52)

vs-t=0 on 7y, (53)

vs-v=0 onvy,. (54)

Remark 3.3. If one wants to keep the orthogonality (for the norm v—{||curl v||(2)_’w + ||div vHéw}l/ %), which is
equivalent to the canonical norm), it is possible to orthogonalize the decomposition (43). Subtracting to vg
its orthogonal projection nvg on Xg, we define x5 by xs = (I — m)vs, with

curlxg = —curl(nvg) in w (since curlvg = 0),
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divxs = ps — div(mvs) in @ (since divvs = ps),

and mvs € Xg is such that (vs —mvs,v)y =0 Vv e Xg. This is no difficulty (see [16] for a similar
approach).

3.2. A characterization of regular fields

We now present the finite element approximation we actually used (without SCM) in the case of regular
domains, that is when X = X and Y = Yg. Indeed, in the case of singular domains, the characterization of
the regular fields Ex and By is still derived from this finite element approximation. We just have to modify
the right-hand sides where the singular fields Eg and Bs appear, and to add some singular equations (see
(88)—(90)).

As can be expected, a first characterization of the regular fields Ex and By is obtained by writing the
same variational formulations as (25)—(27) for (Eg, B, ¢), and as (28)—(30) for (Bg, E, ), where, in this case,
EEER andBEBR.

Let us introduce now a second variational formulation whose form appears more appropriate for
the numerical computation: the augmented Lagrangian formulation. As in [5], one can equivalently
add the equation of divergence (27) in (25) for the Er field, and (30) in (28) for the By field. Now
taking into account the property (see [12] or [2], Corollary 4.8, for the following axisymmetric ex-
pression).

Proposition 3.4. For any u,v € Xg, we have
/curlu -curlvrdrdz + / divudivvrdrdz = / Vu: Vvrdrdz + / u,v,v,dy, (55)

where u, stands for u-v, v, denotes the radial component of the normal v, and the double dots : are the
contracted product of two 2 x 2 tensors. We obtain
Find (Eg, B, ¢) € Xg x H! (w) x L*(w) such that

’E
/6 R -Frrdrdz + ¢ /VER VFrrdrdz + ¢ /ER vFy - vv,dy+/<;’>d1VFerrdz

o P
1 oJ
= — ; 5 Ferrdz + J?le Ferrdz VFR S XR, (56)
0
1
5 9B crdrdz + ¢ /curlB ~eurl Crdrdz = — / J-curlCrdrdz VC € H! (o), (57)
[0) ® 50 Jw
. 1
/leERqrdrdz == /%qrdrdz Vg GLf(a)), (58)
w 0 Jow

which characterizes the regular electric field.

We now turn to the regular magnetic field Bgr. First, using similar arguments as above, the augmented
Lagrangian formulation can be written. Then, with the help of the analogous of (55) in Yr (the term
ﬁ u,v,v,dy is replaced by ﬁ uyvgv,dy, cf. [2]), we obtain the variational formulation which characterizes the
regular magnetic field.
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4. The numerical method

Starting from the above decomposition, it is possible to build a method, which allows to compute nu-
merically the solution: this is the SCM, that can be summarized in two steps:

1. Determination of bases of the singular spaces. We first compute an approximation of bases of the singular
spaces by solving static problems. The computations are carried out only once as an initialization pro-
cedure.

2. Solution to the time-dependent problems. It will then be enough to couple a classical Finite Element for-
mulation (which can be already available) for the regular parts, and a low-dimensional linear system, for
the singular parts.

Remark 4.1. This complement method can be easily included into already existing codes, without the costly
procedure of rewriting them entirely. Thus, it provides an extension of the range of a code to the case of
singular domains, or it can improve the efficiency of a code that can already handle singular domains.

Those steps are enumerated in the following sections.
4.1. Magnetic case: determination of ws, a basis of Wy

4.1.1. Principle of the method
For the sake of simplicity, let us assume that the number of reentrant edges is equal to 1. The method to

compute wg is based on the characterization of the previous section. The algorithm is as follows:

e First step. We look for Ps, a non-vanishing element of L?(w) solution to (40), (41).

e Second step. Our task is now to compute ws which satisfies (37)—(39). With a Lagrange finite element
method, it is more convenient to invert a Laplacian operator (i.e., A') than a rotational one (i.e.,
curl). For this reason, instead of using the direct solution to (37)—(39), we make use of the property
(see [2]) that, to ws € Ws, there corresponds one and only one potential g in H!(w) such that

—AYs=Ps in o, (59)

s =0 ony. (60)

Now, as Vg is sufficiently smooth, one can easily solve this problem with the help of a variational for-
mulation. The computation of ws € Wy then stems from the identity ws = curlysg.

4.1.2. A numerical solution obtained by “‘singular lifting”

In a two-dimensional Cartesian geometry, a method was proposed in [4] to compute Ps through a local
analytical expression defined as a series. In an axisymmetric domain, such an expression is only available as
a double series. This makes the use of this approach very difficult. The “singular lifting”” approach uses the
property that there exist bases of such singular complement spaces made of fields regular everywhere except
near the geometrical singularities. So it is sufficient to know the most singular part of the singularities
(called the principal part) in the neighborhood of the reentrant edges (cf. [18]).

In the neighborhood of the reentrant corner £ of the meridian domain w (see Fig. 2), that is near the
reentrant edge of the axisymmetric domain £, the solution Ps can be split into

Ps=P)+P°, P)=psin(xp), P°of H'-style regularity,

where (p, ¢) denotes the local polar coordinates centered at the reentrant corner (see Fig. 2). The “singular
lifting” method consists in solving the problem in P’:
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r

Fig. 2. Local coordinates near a reentrant corner.

Find P° in the suitable space such that

—ANP'=AP) ino, (61)

P)=—P) ony. (62)

In most geometries (2D Cartesian or 3D polyhedral), the solution P° can be computed by a variational
formulation. In those cases, it is justified by the following reasons:

1. The sufficient regularity of P°.

2. The most singular terms of A'P) cancel, so that it belongs to H~' (instead of H~?).

3. PO has a vanishing trace on the two segments of y that meet at the reentrant corner.

In the axisymmetric case however, there is a supplementary condition: Pg has to be regular (i.e., H!) near
the z-axis, that is Pg has to vanish near the z-axis. Unfortunately, P0 does not fulfill such a requirement. A
first remedy is to multiply PO by a regular cut-off function #, that is a regular function depending only on p
such that # = 1 near the reentrant corner and n = 0 near the z-axis. Nevertheless, some numerical exper-
iments (see for instance [16]) have shown that it is difficult to obtain good and robust numerical results by
using a cut-off function, as this involves numerical instabilities well known for singular function methods (see
for example [7]) and leads to high values of the constant in the error estimates. To overcome this difficulty,
we actually use the following decomposition of Ps:

Ps=P,+P, P, = 2 p~*sin(ag), (63)

where P is a second function, which is regular everywhere in w, i.e., Pe H,L(w) and a denotes the distance
between the reentrant corner and the the z-axis (see Fig. 2).

Remark 4.2.
1. The function r/a is nothing but the particular cut-off function that constrains the principal part to vanish
on the z-axis (and not elsewhere).
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2. Instead of multiplying p~*sin(a¢) by r/a, one could use the decomposition
Py = (Pg(raz) 7Pg(0az)) +15,7

such that P’ is a regular variational solution of a problem similar to (64). But the corresponding right-
hand side A'(P{(r,z) — P(0,z)) would be more difficult to handle.

First step: computation of Ps. The problem to solve reads
Find P € H}(w) such that

CNP = APy =~y sin((a 4 )+ ¢y) in o) (64)
a

P,=—P, ony, (65)

which can be written in a variational form

. p .
/{gradP-grad<p+r—Zo}rdrdz:—/A'P(prdrdz

3 .
= _;“ p~*Vsin((o+ 1) + d)prdrdz, where ¢ € H' (o).

w

(66)

The problem (66) is well posed.

In order to solve it numerically, a triangular mesh of w is provided, and the space of solutions is dis-
cretized with the help of P, Lagrange Finite Elements. Let ¥, be the space of H'-conforming Finite Element
functions thus generated, and let P, be the associated discrete solution. It can be written in the form
P, = 25\21 PJ;, where (1), <i<y, are the basis functions of V,. After the discretization, the variational
formulation (66) can be written as a linear system:

KP =B, (67)

with [ a stiffness matrix suitably modified at the Dirichlet nodes, P the vector of RV of entries (P;);, and B
the vector of R™ obtained after the numerical integration of the right-hand side of (66). '

Second step: computation of ws.

Computation of the potential 5. As mentioned earlier on, ws is computed via its scalar potential .
One solves first system (59), (60). As g belongs to H!(w), it can be numerically solved by the H'-
conforming Finite Element method previously used for P, without requiring any kind of extra singular
function. Nevertheless, the computation of wg will be then obtained (in the following step) by applying
the curl operator. This cannot be obtained via an H'-conforming method, due to the singularity of wsg.
For this reason, we also use a decomposition of ¥ in a regular and a singular part (similar to (63) for
Ps), that is

Vs = 0y Wy = - p" sin(o), (68)

where the regular part 1& is of H?-style regularity and 6 is a constant to be determined. Following [19], one
can obtain an exact expression for the constant J,

0= 1 /Pszrdrdz. (69)

Ta
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We then compute  like P in the previous paragraph. A good approximation of & can easily be obtained
without any mesh refinement, cf. [11].

Computation of ws. One simply gets wg by applying the curl operator to g decomposed into regular and
singular parts (see (68)), so we have

Ws = curltﬁ + ocurl wpdéfv? + owp. (70)

The singular part w, is obtained analytically and reads

el —a cos((a—1)¢ — ¢)
Wo =P (%psin(a¢)+a§sin((fx Do — ¢o) ) (71)
The regular part w is variationally computed as the solution to
/v~v ~rdrdz = /curhﬁ -prdrdz Ve a vector test function. (72)

This leads to solve, after discretization, the following linear system
M 0. _-=
(0 M)ww, (73)

where R denotes the curl matrix associated to the term f( , curltﬁ - @rdrdz, and w stands for the vector of
RV of scalar entries (w)) ; associated to

Np
~ Woi_
W= (W; ‘>Al~. (74)

i=1

Remark 4.3. The “‘singular lifting” method only requires the knowledge of the principal part of the
singular function. Moreover its implementation is still rather straightforward in the case of several reen-
trant corners.

4.2. Electric case: determination of vs, a basis of grad &g

4.2.1. Principle of the method
In this case, recall that there exist two kinds of geometrical singularities: the reentrant edges and the

conical vertices with a sufficiently great vertex angle. Both cases will be treated in parallel, and only major

differences will be detailed. Here again, for the sake of simplicity, we consider a domain w with only one

reentrant edge and one conical point of vertex angle (1/f) > (n/"). How to compute vs is based on the

characterization (50). The framework of the algorithm is as follows:

o First step. We look for two non-vanishing elements p¢ (for the edge) and pg (for the conical point) that
belong to L?(w) and satisfy (47)-(49).

o Second step. Our task is now to compute the singular basis elements v§ and v§, which satisfy (51)—(54)
with p§ and p§ as respective right-hand sides. As for the magnetic case, it is more convenient to invert
a Laplace operator A than a divergence operator div. Instead of using the direct solution to (51)—(54),
we make use of the property (see [2]) that, to v§ and v, there corresponds, respectively, one and only
one potential ¢g and ¢ in H!(w) such that (44)—(46) is verified. Now, as these potentials are sufficiently
smooth, one can easily solve these problems with the help of a variational formulation. The computation
of v§ and vg € grad &g then stems from the identities v§ = —grad ¢ and v§ = —grad ¢g.
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4.2.2. A numerical solution obtained by “‘singular lifting”

In the electric case, the numerical approach proposed in [4] could be used for the conical point, as local
analytical expressions of p§, ¢¢ and v§ as a series are available (see [3]). However, like in the magnetic case,
such expressions are available only as a double series for the edge singularity. Moreover, the easiness of
implementation of the singular lifting method led us to prefer this approach for both conical point and edge
singularities.

In the neighborhood of the reentrant corner and of the conical point (with superscript e and c, re-
spectively), the solution of the A problem can be split into

ps=py+p° and pg=p;+p, (75)

where the principal parts pj, and pj are only in L?(w), and the remainders p° and p° are in H' (o).
For the reentrant corner, one has for p, an expression similar to the magnetic case (in the same local
polar coordinates (p, ¢), see Fig. 2), that is

P, = p~*sin(ag).

For the conical point, we introduce (see Fig. 3) new local polar coordinates (p, ¢) centered at the conical
point C, with the origin of ¢ on the z-axis.
One obtains for p; the following local expression

Py =p ' "P(cos ),

where P, denotes the Legendre function of index v and v €]0,1/2] is given by P,(cos(n/f)) = 0.

Remark 4.4. Contrary to the magnetic case, the variable p is well adapted for a finite element discretisation.
No problem occurs near the z-axis and multiplying by a well-chosen cut-off function is useless.

/B

7

Fig. 3. Local coordinates near a reentrant conical point.
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First step: computation of p§ and p§. Let us consider for example the computation of p§. Let us use the
decomposition (75) together with the property that Py = p~17"P,(cos ¢) verifies

Ap, =0,

op

~P_9 v .
oy on y,

The problem to solve reads
Find p°* € H! () such that

—AF =0 in o, (76)
P'=—p, ony, (77)
aaiv =0 ony,. (78)

It can be written in the variational form, as previously, with the help of a suitable lifting of the trace Pyjy,- 10
order to solve it numerically, Lagrange Finite Elements are used again. The variational formulation can be
written, after discretization, as the following linear system:

Kp = b, (79)
with obvious notations.

Remark 4.5.

1. The non-homogeneous Dirichlet boundary condition only requires the computation of p~!="P,(cos ¢)
on the edges y, of the boundary 7,, except for the one with an extremity on the conical point (i.e.,
¢ = n/p).

2. Note that the stiffness matrix IK° is a part of the matrix K introduced for the magnetic case, which is an
interesting property from a computational point of view.

The computation of p§ is performed in the same way.

Second step: computation of v§ and vg.

Computation of the potentials ¢ and ¢5. Here again, we expose the computation of ¢g; ¢g can be ob-
tained in a similar way. As mentioned earlier on, v§ is computed via its scalar potential ¢g. One solves first
the system (44)—(46). As ¢5 € H!(w), it could be numerically solved by the H'-conforming Finite Element
method previously used for p¢, without requiring any kind of extra singular function. Nevertheless, the
computation of v§ would then be obtained (in the following step) by applying the grad operator, which
cannot be made by a H'-conforming method, due to the singularity of v§. For this reason, we prefer to use a
decomposition of ¢g in a regular and a singular part, that is

¢s = ¢y + 9%, @) = p'P(cos P), (80)

where the regular part ¢~)C is of H?-style regularity and &° is the singular coefficient which can be evaluated
(for instance as in [19]) to obtain

56— J, () rdrdz (81)

(1+2v) [I7(P.(cos §))* sin pdep

We then compute ¢° as we did for ¥ in the magnetic case.
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Computation of v§ and v§. One simply gets v§ and v§ by applying the —grad operator to ¢¢ and to ¢q,
respectively, decomposed into regular and singular parts. So we have

= —grad ¢° — 6°grad by Ege 4 oV, (82)

vi = —grad ¢ — 0°grad ¢ = Llge 4 5. (83)

The singular parts v; and v; are obtained analytically and read

e _ ool %Sin((a_ 1)¢_¢0)
= (e b)) &Y

A4

e 1 P(cosg)cos¢p — P! (cos¢)sin ¢
p = VP 1<P‘,(cos ¢)sin ¢ + P (cos ¢) cosqS)' (85)

The regular part v¢ is variationally computed as the solution to

/V° ~ordrdz = — / grad ¢¢ - @rdrdz VY vector test function ¢. (86)

w

After discretization, that leads to solve the following linear system:

("6” ,3”) — _G{. (87)

Above, G denotes the gradient matrix associated to the term | grad ¢° - prdrdz, and ¥ stands for the
vector of R*™ of entries (1), defined like in (74).

One can use a similar var1at10nal formulation and perform the same discretization for v¢. This is no
difficulty.

4.3. Solution to the time-dependent problem

In what follows, we focus on the electric field formulation. Indeed, contrary to the magnetic case, the
electric field does not satisfy (in general) the divergence-free condition and the coupling between the regular
and the singular part of the solution is “stronger”. For the divergence-free magnetic field, there is no
difficulty to write the formulation. It can be easily deduced from the electric one or from the one presented
n [4] for a Cartesian geometry (also in a divergence-free case).

A new variational formulation of the problem (25) and (27) is introduced (we do not consider the
computation of B which is regular), using the (non orthogonal) decomposition of the space
X = Xg @ grad ®s, and of the solution E(¢) = Eg(¢) + >, «’(¢)vi. We add to the space of test functions Xz
the functions (v”s)i:LNE. With this decomposition, the variational formulation (25) and (27) becomes

Find (Er,%,$) € Xg x R"® x L2(w) such that

O’E )
5 2R Frrdrdz + Z /v’S - Frrdrdz + & / VERr : VFrrdrdz + cz/ER -vFg - vy dy
(0] 1:1 w w }'
1 oJ

2
+/¢diVFerrdz= - E-Ferrdz—i—(;—/%divFerrdz VFr € Xg, (88)
w 0 Jo 0 Jw



F. Assous et al. | Journal of Computational Physics 191 (2003) 147-176 165

Ng

: ; 1

/diVERqrdrdz+ E K’/divv’sqrdrdzzs—/%qrdrdz Vg € L} (o), (89)
w i—1 0 Jo

supplemented with the Ng additional equations, obtained by taking (v), ;. w; as test functions. One gets

O’Er
62

[0} i=1

vsrdrdz—&—z /v§~v§rdrdz+/q5divv§rdrdz:—— 6_ virdrdz, 1<j< Vg

(90)

Above, (k)" denote the second derivative of x’(¢) with respect to the time variable. The set of equations
(88)—(90) is the system we now have to solve, to be compared to (56) and (58) in the case of a regular
domain.

Starting from the variational mixed formulation (88)—(90), we are now ready to derive a Finite Element
+ Singular Complement approximation. Let X} C Xg and Q" C L*(w) be the spaces of discretized test
functions, that are chosen in such a way that the discrete inf-sup condition is satisfied [10]. Recall that we
actually used the modified Taylor-Hood element. It leads to a diagonal mass matrix (i.e., the usual mass
lumping, obtained by using an appropriate quadrature formula). This element requires the definition of two
levels of meshes. A coarser triangulation of the domain o is first defined, and then, a finer one is obtained
by dividing each triangle K,, into four subtriangles Kj, of equal surface. Then, the approximation spaces for
the vector fields is made of functions which are componentwise P;-conforming on the finer triangulation. At
the same time, the approximation space for the Lagrange multipliers consists of the Pj-conforming finite
element on the coarser grid.

Let now E"(r) = El (1) + S0 k(¢)ve’ be the discrete solution. Like in (74), one has

EA(1) = 2]:: @QZ(;)U) ) A

By using the same decomposition on each quantity defined on the finer or on the coarser mesh, the semi-
discretized variational formulation is written (with the addition of the index 4) in the same way as (88)—(90).
It can be then written equivalently as the following linear system:

2

. . . d
— MyEr + M, & + * (K, + K,)Er + L,¢p = —M,J + [LwR (91)
der e dt
¢\ E + MR+ L = — LRCEVIN (92)
dt2 sr=R s s & dt
B tn o2 1 cp
LoEr + Lk = — MR, (93)

~0

where K, and K, denote the matrices associated to the terms f VER : VFrrdrdz and f ER - vFR - vv,.dy,
respectively, L, denotes the matrix associated to the term f ¢div Frrdrdz. The matrix M,S is a rectangular
one, coming from the integral over  of the product of the N singular functions vi by the basis functions of
X}, and & stands for the vector of RM: of entries x’(¢). Then M is the “‘singular’” mass matrix associated to
the term [ vi-vgrdrdz, and L, the “singular gradient matrix” resulting from the discretization of
f div vsqr drdz. Finally, M, is the transpose of M., and the superscript ¢ recalls that the mass matrix M is
defined on the coarser mesh. For the singular matrices, the computation must be carried out precisely in the
neighborhood of the reentrant corners. This point will be detailed in Section 4.4.
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We then perform a time discretization involving a second-order explicit (leap-frog) scheme. Here the
notation X” (resp., X1y stands for a variable X at time ' = nAt (resp., "' = (n + 1)Af), where At is the
time-step. F",G",H" is the set of quantities known at time #* for each equation of the scheme (91)—(93),
which can be rewritten as

Mo Ex + M + L™ = F, (94)
M, B + MR+ L = G (95)
LB+ Lt = A, (96)

To solve this linear system, a convenient way is to decouple #"*' and the unknowns (E"R+1 , $"+1). In [4], we
proposed a solver based on the same idea, for a two-dimensional Cartesian divergence-free Maxwell system
of equations, in the case of a single reentrant corner. The method we will develop here is more general, since
it is well suited for a domain with several reentrant corners, and for a problem with a non-vanishing
divergence.

Substituting (94) —M,M_' (95) for Egs. (94) and (96)—'L,M_'(95) for Eq. (96), we obtain a system
where #¥"*! does no appear any more. It is written as (where the superscript ~ denotes the quantities ob-
tained after these algebraic manipulations)

MEL! + L™ = F", (97)

[[E?{H ! [LSMS_I[LS(EH] - g (98)

It remains now to invert this system. Following the idea we developed for regular domains (see [5]), this is
achieved with the help of an Uzawa algorithm (see for instance [14]). Compared to the unmodified system —
that is the system obtained in a regular domain — it requires essentially two modifications. The first one is
the computation of the matrix M;l. M, being a symmetric definite positive matrix (by construction) of

dimension Ng x Mg, i.e., a few units (and often Ng = 1), M is very easy to compute once and for all. The

second one is concerned with the algebraic solver associated to Mdéff\/ﬂw - M,SMZIMW. It can be solved

(for instance) with the help of the following formula (see [15] for a review),
(A-UVH ' =AT"+A U0 -VIATTU)TTVTATL

Above A is an N x N matrix and U and V are N x K matrices. This formula is particularly well adapted
when A~! is known. As a matter of fact, it only requires the additional computation of the small K x K
matrix (I — \/TA_I[U)_I. In our case, we have Adéf!\/ﬂw, [Ud:efMI,S and \/déff\/ﬂ;lf\/ﬂs,.. Recall that the mass
matrix M, is diagonal, thanks to a quadrature formula (see [5]), which preserves the accuracy. Hence, it is
easy to solve the linear system (97), (98), which now appears as a slight modification of the one obtained for
the unmodified system.

Once the values of (E’f{“l, &5"“) are computed, one can also compute, at the corresponding time, the value
#"*1 by solving (95).

4.4. Some details concerning the numerical integration

To conclude this Section, let us briefly present some details concerning the numerical integration, es-
pecially in the two instances that deserve special attention.
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The first one is the computation of the singular coefficients that appear in the matrices My, M, or L, and
in the constants o, §° (cf. (69), (81)).

For illustrative purposes, consider the term [ Pirdrdz in (69). A convenient way to compute this in-
tegral is to use the decomposition (63) in a regular part P and a singular one Py:

/Pszrdrdz:/(]5+Pp)2rdrdz:/Pzrdrdz—i—Z/PPprdrdz—i—/Psrdrdz.

By using the discrete form P, = va:hl P.J; of P, and the analytical expression of P,, we obtain
Nj, Ni 1
> PP, / Jidrdrdz +23 P / Pylrdrdz + — / p 2 (sin(ag))’r drdz.
a
ij=1 %) j=1 [0} )

The first term is the product of the mass matrix by the vector of entries P; and is straightforward to
compute. The other two are singular (near a reentrant corner or conical point) and are computed
thanks to a quadrature formula. Actually, we used a sixth-order Gauss—Hammer formula (see for in-
stance [22]), with seven integration points located inside each triangle, that does not require the un-
bounded value of the singular part. The computation of the other singular coefficients is carried out
along the same lines.

The second instance that deserves special care is the numerical evaluation of integrals of the
form

/ 10 G d (99)

These terms appear in the computation of azimuthal components B and E — see the integrals
J,,curl B curl Crdrdz in (26) and | curl £ - curl Frdrdz in (29) — and also in the computation of the me-
ridian components, if an augmented Lagrangian formulation is used. In the continuous case however, this
is no difficulty since it is assumed that the functions and components u all belong to spaces such that
[, (?/r)drdz < cc.

To compute (99), we have to derive in each triangle K, the quadrature formula

3003
/ Y drdz = Z Wi gt(a,)v(ag)
Ky T =1

a=1

for all u € P|(K;) and v € P|(K},), such that u(a,) = v(a,) = 0 if the node a, belongs to y,. The easiest way is
to compute an exact formula, either by going back to the reference element K, or by direct computations
(integrate first in z, then in 7).

If one considers a triangle with a single vertex a; on the axis y,, the weights (ww)wﬁ:l‘zv3 remain bounded
in r,, r3, the r-coordinates of the other two nodes of the triangle K. If one considers a triangle with two
vertices ay,a, on the axis v,, the weights (w,z), o123 Are in log r3, with r; the r-coordinate of the third node
of the triangle Kj,.

As expected, in both cases, the behavior is balanced by the vanishing condition on y,, as the P, variables
tend to 0 in the same way as (r,,r3) (resp., r3).
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5. The Silver—Miiller boundary condition

Let us consider again the problem set in the three-dimensional domain Q. We suppose that a perfectly
conducting boundary condition is applied on a part I'c of the boundary (I'c C I') of the domain. The
remaining part ['s is an artificial boundary, on which the interaction between the domain and the exterior is
modeled. Here we have chosen the simple model, that is

(tg’—c%xn)xn:%xn on [, (100)

where ¥ is given. Now in the meridian domain o, we denote by 74 the intersection of I's with the meridian
half-plane, and this condition reads for the first system of unknowns (E, B)

E-t—cB=g-r, (101)
and for the second system of unknowns (B, E)
E—cB-t=h, (102)

where g and /4 are defined on 74. They are linked to the incoming wave via 4. When % = 0, the condition
(100) is actually a first order absorbing boundary condition. It is often called the Silver—Miiller condition.
Without loss of generality, it is always possible
e to choose the artificial boundary I's such that it does not intersect any of the geometrical singularities,
i.e., there exists a neighborhood 77 of each singularity such that ¥/ N TI's = 0, for 1 << Ng;
e assume that the incoming wave is a smooth field.
Then, the trace E-t,, is regular (in a sense which is detailed in [9]): we write it as
E -7, € H” ().
Let X stand for the space of solutions for the electric field, the case of the magnetic one being similar. We
have

X ={E € H(curl,div,0), E-t=0 ony., E-1,€H"()} (103)
Like X, X is not of # I_style regularity. Let us thus define Xg, the regularized subspace of X:
Xg ={EcH'(w), E-t=0o0nTIc}=XnH (o). (104)

The variational formulation (25)—(27) must be modified accordingly. The integration by parts formula,
which is used to obtain the formulation, produces new integral terms on yg, and the new formulation reads:
Find (E,B, ¢) € X x H! (w) x L*(w) such that

o’E OE
w-Frdrdz—&—c/ a-rF-rrdy+c2/curlEcurlFrdrdz+/dbdiVFrdrdz
w s w w
1 oJ 0 =
=—— —-Frdrdz—!—c/ —gF-‘crdy VF € X, (105)
& Jo ot 7s ot

o’B OB
/WCrdrdz—l—/ ECrdy—i—cz/curlB-curlCrdrdz

7S

1 0
= J-curlCrdrdz — / a—‘g;Crdy VC € xH! (w), (106)
0 Jo 75

(o]
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/divKrdrdz:SL/%qrdrdz Vg € L} (w). (107)
0] 0 Jo

5.1. A decomposition of the solution in regular and singular parts

It is of importance to note that the singular behavior of the solution is generated by the shape of the
domain. Thus, it is interesting to keep the same space Xs of singular solutions (Xs C X). Indeed, one can
prove easily that X can be decomposed into

X = Xy & X, (108)

where Xy is the subspace defined by (104). The advantage of using also X is that it does not depend on the
time variable ¢, and therefore it is computed once and for all (see the remark below).

In practice however, similarly to the case when the whole boundary is a perfect conductor, it is more
convenient from a numerical point of view, to use the curl-free subspace grad @5 of X as a basis of the
singular fields. As a matter of fact, X can also be decomposed into

X = )NKR @ grad &s.

With this choice, the SCM with yg # () appears as a slight modification of the formulation obtained with
7s = 0. Indeed, there is no added integral over yg in (90) since v§ -t = 0,1 <i<Ng, and Eq. (89) is un-
changed.

Concerning Eq. (88), there is an additional term in the right-hand side if g # 0, and in all the cases an
additional term

OER
ol -5 -tFg - trdy

7S
in the left-hand side. These one or two supplementary terms are not specific to the SCM and appear also in
regular domains.
There remains to semi-discretize in space, which is done in a way similar to the one of the perfectly
conducting boundary case, the main modification being the addition to the left-hand side of (91) of

d o

C a M}vs ER7
where M, denotes the boundary mass matrix associated to the term f Eg - tFR - trdy.

We then perform a time discretization involving the same scheme as in 'Section 4.3. Except the right-hand
sides if g # 0, the only modification compared to (94)—(96) consists in replacing M,, by M, + ¢(A¢/2)M
The resulting linear system is solved as previously with no additional effort, recalling that the boundary
mass matrix M, is block-diagonal thanks to a quadrature formula which preserves the accuracy (see [5] for
details).

The system for the magnetic field is solved in the same way.

6. Numerical results

In this section, we present numerical tests of both electric and magnetic field computations, that allows
to evaluate the code-related performances of the Singular Complement Method (SCM) in axisymmetric
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domains. The bases of grad @5 and Wg are computed during the initialization step, together with the
regular-singular and singular-singular matrices. Further, updating the values of the singular coefficients
(K')iz1 . and (8" —1 v, Tequires O(1) operations per time-step. Therefore, the additional memory require-
ments, and computing effort, are small.

Since analytical solutions are not available, we have chosen to compare the numerical results to those

computed by other codes.

6.1. Computation of a basis of W and grad ®s

Let us consider the top hat domain Q with a reentrant circular edge, that corresponds to an L-shaped
domain w with one reentrant corner. To compute the magnetic basis wg of Ws, we introduce an un-
structured mesh of w made up of triangles, with no particular mesh refinement near the corner. Following
the method exposed in Section 4.1.1, we first compute the dual singular function Ps, to obtain wg from the
potential V.
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Fig. 4. Computed bases in the magnetic case.
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The solutions are pictured in Fig. 4. When representing functions or fields with a singular behavior,
instead of truncating the results, we have chosen to exclude the (infinite) singular node value, so as not to
“flatten” the image by an arbritary truncation value.

In Fig. 4(a), one can see that the SCM captures well the field ws € Wg near the edge (and far away from
it). Again, a conforming P! Finite Element Method can not yield such a result. In addition, the results are
not noisy, even though the mesh is not particularly refined near the edge. In Fig. 4(b), one can check that
the method is also efficient to compute the most singular term Ps. Last, the result on the smooth function g
(see Fig. 4(c)), shows that the method is efficient for more regular functions or fields: in that, it generalizes
the singular function method.

Now when dealing with a basis of grad @g for the electric field, we consider another axisymmetric do-
main Q which consists in a cylinder, at the top of which a cone of revolution was removed. Its intersection
with a meridian half-plane is the computational domain w (see Fig. 5), that allows us to illustrate the
computation of electric singular basis due to conical points. Here again, this domain is approximated by a
mesh with no particular mesh refinement near the conical point, and vg is evaluated as previously, by
computing first the dual singular function ps, and finally vs from the potential ¢q.

The results are depicted in Fig. 5(a) and the conclusions are similar to the wg case.
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Fig. 5. Computed bases in the electric case.
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6.2. Time-dependent cases

In this section, the quality of the SCM is evaluated numerically in cases representative of situations that
can occur when one is dealing with electromagnetic axisymmetric fields.

In the first instance, one computes the electromagnetic singular field generated by a current loop. Next, it
is well known that commonly studied devices such as hyperfrequency systems often include waveguides,
either to conduct the field that excites particles, or to conduct the field induced by them. So, in the second
example, the propagation of an electromagnetic wave near a singular conical point is investigated.

6.2.1. Example with a current

In this first instance, we consider the same L-shaped domain o as for the computation of Wg (corre-
sponding to a top hat domain ), on which a perfectly conducting boundary condition is imposed. We are
interested in computing the electromagnetic field (B, E) created by a current loop. The initial conditions are
set to zero. The current is defined as #(x,t) = Jyey, Jy = 10sin(A¢), with a frequency 4/2n = 2.5 x 10° Hz.
The support of this current is a little disc centered at the middle of the domain.

This current generates a wave which propagates circularly around the current source. Physically, as long as
the wave has not reached the reentrant corner, the field is smooth. Let #; be the impact time, then, if one writes

B(x,t) = Br(x,?) + x(f)ws(x),

Kk(¢) is equal to zero for all # lower than #, and so Br(x, ) and B(x, ¢) coincide. Now, on the one hand, for ¢
greater than ¢, x(¢) # 0 and the support of wg being non-local (in fact, the support of wg spans the whole of
®), one has k(f)ws(x) # 0, for all x € w and ¢ > £,. On the other hand, however, one wishes to reproduce the
obvious physical behavior, which is that for any point x and time 7, B(x,¢) = 0if # < #,, where #, denotes the
time at which the wave reaches x.

One can check (see Fig. 6) that Br(x, ¢) takes non-zero values, and therefore that it “compensates” for
k(f)ws(x), i.e., Br(X,#) = —k(f)ws(x). Thus, B(x, ) remains equal to zero while 7, < 1 < f.

The same computation has been carried out via the classical nodal FE code (without the SCM) and has
been compared. In Fig. 7, the isovalues of the radial components of the magnetic field are pictured (with
identical scales). It shows a most unlikely approximation of the true solution (no singular behavior).

Because it is not possible to provide an analytical solution, we compare our results to the computations
made by another code, based on Finite Volume (FV) techniques a la Delaunay—Voronoi [17].

As mentioned in the introduction, this method allows to approximate the solution in a neighborhood of
the reentrant corner (with an appropriate mesh refinement), the degrees of freedom being located on the
edges. The Fig. 8 shows the isovalues of the magnetic field (B. component after 1000 time steps), which has
been computed by the two methods on the same mesh. The results obtained by both methods are com-
parable, which shows the feasibility of the SCM in axisymmetric cases. Moreover, the SCM provides a
numerical solution which is less noisy. Last, the results obtained by both methods on the smooth (cf. [2])
component £ of the electric field are almost identical. This emphasizes once more that the differences come
from the singular part.

6.2.2. The waveguide case

In this last example, the propagation of an electromagnetic wave, namely (E, B), in a geometry with a
singular conical point, is studied numerically. This case provides an interesting illustration of the possi-
bilities of the method, when it is used on a more “complete” formulation, that is with different types of
boundary conditions. We consider a coaxial cylindrical waveguide in which the inner cylindrical part ends
with a conical point. The geometry and the data do not depend on the variable 6. The computational
domain w, that is the meridian section of the waveguide, is pictured in Fig. 9.
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Fig. 6. At a given point x, comparison of the radial components of Bg(x, ) (top) and B(x, ) (bottom) with ¢ varying.
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Fig. 8. Component B,, computed by the SCM (left) and by the FV (right).
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Fig. 9. Component E,, computed by the SCM (left) and by the FV (right).

An incident wave enters the waveguide through the boundary y! (at the bottom), and leaves the domain
through y? (at the top). This behavior is modeled thanks to the boundary condition (101), which is ex-
pressed as

E-t-cB=g glt), =Csin(k), g{),=0, (109)

where C is a constant and 4 is associated to the frequency 2.5 x 10° Hz. At the initial time ¢ = 0, the
electromagnetic field is equal to zero all over the guide. As in the preceding case, the field is smooth until the
wave reaches the reentrant corner, and then it becomes singular.

As previously, the result has been compared to that produced by the FV code. Fig. 9 depicts the iso-
values of the longitudinal component of the electric field after 600 time-steps.

Once again, the SCM provides a numerical solution which is globally less noisy, and more precise in the
neighborhood of the corner. Last, the results are almost identical for B.
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7. Conclusion

In this paper, we presented the generalization to axisymmetric problems of a method we developed —
the Singular Complement Method — to solve Maxwell equations in a non-smooth and a non-convex
domain.

It is based on a splitting of the space of solutions with respect to regularity, in a regular subspace, which
is equal to the entire space when the domain is smooth or convex, and a singular subspace. In this axi-
symmetric situation, the mathematical analysis (finite dimension of the singular subspaces, characterization
of the singularities, etc.) has been carried out and is already published ([2,3]).

The generalization of the SCM to the axisymmetric case is not a straightforward extension of the two-
dimensional Cartesian one. Indeed, even in convex or smooth domains, a classical Finite Element approach
requires special attention due to the weighted measure »drdz. Particularities due to conical points, causing
specific difference between the electric and magnetic cases also appear, for example in the choice of the
singular subspace well adapted to computations, etc.

Numerical methods have been proposed, based on the P, Lagrange finite element approximation for the
regular part of the solutions, and on special additional test-functions, which are used to capture numerically
the singular part of the solution.

Results of simulations have been shown to illustrate the efficiency of the SCM in a series of examples
based on practical three-dimensional axisymmetric devices. In particular, the use of a non-divergence-free
decomposition for the electric field proves that the SCM can be coupled to particle methods in axisym-
metric situations, as in the bidimensional case (cf. [1]).

Currently we devote our attention to the (non-axisymmetric) three-dimensional domains. The theoretical
aspects are under control and there remains now to provide an effective approximation of the singular part of
the solution. As a matter of fact, in the 3D case, this singular part belongs to an infinite dimensional space.

Finally, the SCM proved to be easy to implement, as it can be included in already existing codes, without
having to rewrite them in their entirety, for low additional memory requirements and small additional cpu
costs.

Appendix A. Operators in cylindrical coordinates

10
gradf——f e +— aJ; e+ f (110)
. 10 1 0uy Ou,
dlvu—;a(m,)—i—;ﬁ—l— 0 (111)
_ (1 0u. Ouy Ou, Ou, 1/0 Ou,
curlu = (}" 20 —az>er+ (62 — 6r>e9+r(ar(mﬁ) —60>ez, (112)
Xf 1of 18f 0f
A =aitia e T (113)
Vu= |G l(wy,) o) (114)
or r 00 0z
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