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Abstract

In this paper, we present a method to solve numerically the axisymmetric time-dependent Maxwell equations in a

singular domain. In [Math. Methods Appl. Sci. 25 (2002) 49; Math. Methods Appl. Sci. 26 (2003) 861], the mathematical

tools and an in-depth study of the problems posed in the meridian half-plane were exposed. The numerical method and

experiments based on this theory are now described here. It is also the generalization to axisymmetric problems of the

Singular Complement Method that we developed to solve Maxwell equations in 2D singular domains (see [C. R. Acad.

Sci. Paris, t. 330 (2000) 391]). It is based on a splitting of the space of solutions in a regular subspace, and a singular one,

derived from the singular solutions of the Laplace problem. Numerical examples are finally given, to illustrate our

purpose. In particular, they show how the Singular Complement Method captures the singular part of the solution.
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1. Introduction

In the recent years, an ever-growing number of engineering problems requiring to model and to simulate

numerically devices working with or within electromagnetic fields have come out. The mathematical models
describing the physics of these devices are based on Maxwell equations, in the steady-state or time-

dependent form, often coupled with other equations.
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Moreover, many structures that are to be modeled have a complex three-dimensional geometry and

often present a surface with edges and/or corners. These geometrical singularities can generate very strong

fields that have to be taken into account. They can be desired, as an active part of the device (e.g., to extract

electrons from a cathode), or the consequence of a priori constraints on the design. In that case, the induced

negative effects (e.g., destructive effects) have to be controlled.

However, three-dimensional computations are very expensive. In a number of cases, one reduces the

problem to two-dimensional equations by assuming that the geometry and the data and initial conditions

are independent of one of the coordinates.
As a first step, we considered in a previous paper [4] problems independent of the transverse variable z,

which can be reduced to two-dimensional Cartesian ones. We proposed a method, called the Singular

Complement Method (latter referred to as the SCM), which allows to solve Maxwell equations in a non-

smooth and non-convex domain, that is a singular domain.

In this paper, we consider the case of an axisymmetric situation. Indeed, while the geometry of real

devices is not very often Cartesian, it is much more common to have an axial symmetry, at least ap-

proximately or locally. Moreover, it is a common practice to approximate problems by their axisymmetric

counterpart. In other words, the axisymmetric situation can be viewed as an intermediate between a full
three-dimensional problem and a two-dimensional one.

Recall briefly the principle of the SCM: the space of solutions V is split with respect to regularity in a

regular subspace VR and a singular one VS, namely V ¼ VR � VS. When the domain is convex or smooth, that

is regular, there is no singularity in the solutions of the Maxwell equations, so that VS ¼ f0g and VR ¼ V .
Thus, in this case, one can take advantage of this regularity to discretize the electromagnetic fields by the

P1 Lagrange FEM (cf. [5]), instead of the �usual� edge FEM [20,21]. As a matter of fact, the former dis-

cretization includes two key ingredients, which the latter lacks 1:

• For the time-dependent Maxwell equations, the mass matrix can be lumped, with no loss in precision,
thus leading to very inexpensive numerical schemes.

• The numerical electromagnetic field is continuous, so the method can be used in conjunction with a par-

ticle-pushing scheme, to solve the coupled Vlasov–Maxwell system of equations.

Alternative approaches, such as Finite Volumes [17], also lack the crucial continuity property of the

numerical approximation, and moreover require some charge correction at every time-step.

In general, when the domain is singular, VR is strictly included in V (and V R 6¼ V ), and one cannot

capture numerically the singular part of the solution with the help of the Lagrange FEM only, since the

solution cannot arise as a limit of regular fields. In particular, mesh refinement techniques do not work.
The principle of the SCM being to enlarge the space of test-functions, it is therefore required that one

adds a singular complement to be able to compute an approximation of the solution. One discretizes the

regular part with the P1 Lagrange FEM, which means a P1 approximation component by component,

taking into account the boundary condition. To approximate the singular part, the idea we develop further

is to relate the singular electromagnetic fields to singular solutions to the Laplace operator. In the axi-

symmetric situation, all the mathematical tools and characterizations of the singular subspaces of solutions

have been carried out and exposed in previous papers [2,3]. For time-dependent problems, another ad-

vantage of the SCM is that no mesh refinement is needed, so one can use explicit methods without dete-
riorating the time-step.

Note that we assume that the medium is homogeneous. The extension to heterogeneous media can be

dealt with in a similar manner. For that, one can choose the FEM framework developed in [6], in order to

handle jumps across interfaces between different media. And, as far as the SCM is concerned, one has to

compute the singular solutions of elliptic operators with piecewise constant coefficients (see [8]).
1 Mass lumping techniques are however available for specially designed edge FEM [13].
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This paper is organized as follows. Section 2 recalls the time-dependent Maxwell equations in an axi-

symmetric domain. A decomposition in regular and singular parts is presented in Section 3, where the

difference between the electric and the magnetic case is pointed out. A characterization of the fields is given

leading to constructive methods of solution. The numerical method is developed in Section 4: the ‘‘singular

lifting’’ approach for solving the singular electromagnetic fields, coupled to a time-dependent variational

formulation. Section 5 is concerned to the extension of the method to the Silver–M€uuller boundary con-

dition. In Section 6, we present some numerical results of both electric and magnetic cases, to illustrate the

efficiency of the SCM in an axisymmetric geometry. In particular, a comparison with a Finite Volume
approach [17] is performed.
2. Maxwell equations in an axisymmetric domain

2.1. The Maxwell equations

Let X be a bounded and simply connected Lipschitz domain, C its boundary, and n the unit outward

normal to C. If we let c and e0 be, respectively, the speed of light and the dielectric permittivity, the time-
dependent Maxwell equations in vacuum read

oE

ot
� c2 curlB ¼ � 1

e0
J; ð1Þ
oB

ot
þ curlE ¼ 0; ð2Þ
divE ¼ R

e0
; ð3Þ
divB ¼ 0; ð4Þ

where E is the electric field, B is the magnetic flux density, and R and J are the charge and current
densities. These quantities depend on the space variable x and on the time variable t.

These equations are supplemented with appropriate boundary conditions. In order to simplify

the presentation, let us assume first that the boundary is a perfect conductor. In Section 5, the extension to

the Silver–M€uuller boundary condition will be handled: it can model either an absorbing medium outside the

domain or an incident wave. For the moment, let us consider the boundary conditions

E� n ¼ 0 on C; ð5Þ
B � n ¼ 0 on C: ð6Þ

The charge conservation equation is a consequence of Maxwell equations and reads

oR

ot
þ divJ ¼ 0: ð7Þ

Last, initial conditions are provided (for instance at time t ¼ 0)

Eð0Þ ¼ E0; Bð0Þ ¼ B0; ð8Þ
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where the couple ðE0;B0Þ depends only on the variable x and satisfies the divergence and boundary con-

ditions at the initial time

divE0 ¼
Rð0Þ
e0

; divB0 ¼ 0;
E0 � n ¼ 0 on C; B0 � n ¼ 0 on C:
2.2. Reduction to two-dimensional problems

Now we make the supplementary assumption that X is an axisymmetric domain limited by the surface of

revolution C. We denote by x and cb their intersections with a meridian half-plane (see Fig. 1). One has

c¼def ox ¼ ca [ cb, where either ca ¼ ; when cb is a closed contour (i.e., X does not contain the axis), or ca is
the segment of the axis lying between the extremities of cb. m is its unit outward normal and s the unit

tangential vector such that ðs; mÞ is direct.
Moreover, it is assumed that cb is a polygonal line with edges ðckÞ16 k6 F . The off-axis corners of cb

generate circular edges in C, whereas the extremities are conical vertices of C.
The natural coordinates for this domain are the cylindrical coordinates ðr; h; zÞ, with the basis vectors

ðer; eh; ezÞ. A meridian half-plane is defined by the equation h ¼ const:, and ðr; zÞ are Cartesian coordinates

in this half-plane.

For any vector field u, we denote by um and uh the meridian and azimuthal components of u, with
um ¼def urer þ uzez and uh ¼

def uheh. The fact that there is a symmetry of revolution means that the scalar (resp.,

vector) fields are entirely characterized by their ‘‘trace’’ in x, i.e., the datum of their value in a meridian

half-plane (resp., by the trace of their cylindrical components). Obviously, this is equivalent to the van-

ishing of all derivatives with respect to h of these fields or components. In the following, it is thus assumed

that oh� ¼ 0.

The formulae for the gradient, divergence, and curl operators in cylindrical coordinates are given in

Appendix A. In the axisymmetric case, we have the following expressions (by using oh� ¼ 0):
Fig. 1. The domains X and x.
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gradf ¼ of
or

er þ
of
oz

ez; div u ¼ 1

r
o

or
rurð Þ þ ouz

oz
; ð9Þ
Df ¼ o2f
or2

þ 1

r
of
or

þ o2f
oz2

: ð10Þ

The curl operator is given by the formula

curl u ¼
�
� ouh

oz

�
er þ

our
oz

�
� ouz

or

�
eh þ

1

r
o

or
ðruhÞ

� �
ez: ð11Þ

Now, if um ¼ ður; uzÞ is a meridian vector field, curl um is azimuthal. It is thus convenient to introduce the
roman type notation

curl um ¼ our
oz

�
� ouz

or

�
:

In the same way, if uh is azimuthal, curl uh is meridian and we set, with the bold type notation,

curluh ¼ � ouh
oz

er þ
1

r
o

or
ðruhÞez:

For this reason, it is possible to decouple the Maxwell system (1)–(4) into a couple of problems, involving

different components of the fields E and B. Let us denote by Em ¼ ðEr;EzÞ (resp., Jm ¼ ðJr; JzÞ) the meridian

components of E (resp., J) and by Bh the azimuthal component of B. Given the expression of differential

operators in cylindrical coordinates, the first system of unknowns ðEm;BhÞ reads as follows in x��0; T ½:
oEm
ot � c2curlBh ¼ � 1

e0
Jm;

oBh
ot þ curlEm ¼ 0;
divEm ¼ R

e0
;

8><
>: ð12Þ

with the perfect conductor boundary condition

Em � s ¼ 0 on cb: ð13Þ

On the axis ca, symmetry considerations yield

Em � m ¼ Er ¼ 0; Bh ¼ 0 on ca: ð14Þ

We also have the initial conditions

Emð0Þ ¼ Em0; Bhð0Þ ¼ Bh0: ð15Þ

Finally, the charge conservation equation is written as

oR

ot
þ div Jm ¼ 0: ð16Þ

By also introducing Bm ¼ ðBr;BzÞ the meridian components of B and Eh (resp., Jh) the azimuthal

component of E (resp., J), the second system of unknowns ðEh;BmÞ is written as

oEh
ot � c2curlBm ¼ � 1

e0
Jh;

oBm
ot þ curlEh ¼ 0;
divBm ¼ 0;

8<
: ð17Þ
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with the perfect conductor boundary conditions

Bm � m ¼ 0; Eh ¼ 0 on cb; ð18Þ

and the symmetry conditions on the axis ca

Bm � m ¼ Br ¼ 0; Eh ¼ 0 on ca: ð19Þ

For the initial conditions, we have

Bmð0Þ ¼ Bm0; Ehð0Þ ¼ Eh0: ð20Þ

For this system, there is no charge conservation equation.
2.3. A variational formulation

Both systems can be equivalently formulated as systems of second order in time. In the first one, the

Amp�eere equation (1) and the Faraday equation (2) can be written as

o2Em

ot2
þ c2curl curlEm ¼ � 1

e0

oJm

ot
; ð21Þ
o2Bh

ot2
þ c2curl curlBh ¼

1

e0
curlJm; ð22Þ

whereas in the second one, one obtains

o2Eh

ot2
þ c2curl curlEh ¼ � 1

e0

oJh
ot

; ð23Þ
o2Bm

ot2
þ c2curl curlBm ¼ 1

e0
curlJh; ð24Þ

the other equations, boundary or initial conditions being unchanged. In addition, each of these second

order in time systems has to be closed with a supplementary initial condition. Namely

oEm

ot
ð0Þ ¼ c2 curlBh0 �

1

e0
Jmð0Þ;

oBh

ot
ð0Þ ¼ �curlEm0;

for the first one, and

oEh

ot
ð0Þ ¼ c2 curlBm0 �

1

e0
Jhð0Þ;

oBm

ot
ð0Þ ¼ �curlEh0;

for the second one.

We now introduce a variational formulation of these problems, which can be applied independently of

the (non) convexity of x. Recall first that, to obtain control on the divergence of the fields, we have de-

veloped a method where the Maxwell equations are reformulated as a constrained problem, with associated

Lagrange multipliers [5]. We thus set / the Lagrange multiplier of the constraint divEm ¼ R=e0 and w the

Lagrange multiplier associated to divBm ¼ 0.
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Let us define now the following functional spaces:

L2
r ðxÞ ¼ f : x

n
! R;

Z
x
f 2rdrdz < þ1

o
; kf k0;x ¼

Z
x
f 2rdrdz

� �1=2

;

H 1
r ðxÞ ¼ f 2 L2

r ðxÞ;
Z
x
jgradf j2rdrdz

�
< þ1

o
; kf k1;x ¼ ðkf k20;x þ kgrad f k20;xÞ

1=2
;

H 1
mðxÞ ¼ f 2 H 1

r ðxÞ;
Z
x

f 2

r
drdz

�
< þ1

o
; kf km;x ¼ kf k21;x

�
þ k f

r
k20;x

�1=2

;

H 1
m0ðxÞ ¼ ff 2 H 1

mðxÞ; f ¼ 0 on cbg:

This allows to define the usual vector Sobolev spaces

L2
r ðxÞ ¼ L2

r ðxÞ � L2
r ðxÞ;
H1ðxÞ ¼ fv ¼ ðvr; vzÞ 2 L2
r ðxÞ; vr 2 H 1

mðxÞ and vz 2 H 1
r ðxÞg

and the classical spaces for the Maxwell equations

Hðcurl;xÞ ¼ fv 2 L2
r ðxÞ; curl v 2 L2

r ðxÞg; Hðdiv;xÞ ¼ fv 2 L2
r ðxÞ; div v 2 L2

r ðxÞg:

This allows to define the corresponding subspaces with the vanishing tangential trace H0ðcurl;xÞ and

normal trace H0ðdiv;xÞ, and finally the spaces of solutions

X :¼ H0ðcurl;xÞ \Hðdiv;xÞ; Y :¼ Hðcurl;xÞ \H0ðdiv;xÞ

endowed with the norms kvkX ¼ kvkY ¼ ðkcurl vk20;x þ kdiv vk20;xÞ
1=2

.

From now on, in the rest of this paper, we drop the subscripts m and h for meridian and azimuthal fields,

respectively (for instance E instead of Em, B instead of Bh, etc.), since there is no ambiguity. Hence, the
system (12) can be written in the following variational form:

Find ðE;B;/Þ 2 X� H 1
mðxÞ � L2

r ðxÞ such thatZ
x

o2E

ot2
� Frdrdzþ c2

Z
x
curlEcurlF rdrdzþ

Z
x
/divFrdrdz ¼ � 1

e0

Z
x

oJ

ot
� Frdrdz 8F 2 X; ð25Þ
Z
x

o2B
ot2

Crdrdzþ c2
Z
x
curlB � curlC rdrdz ¼ 1

e0

Z
x
J � curlC rdrdz 8C 2 H 1

mðxÞ; ð26Þ
Z
x
divEqrdrdz ¼ 1

e0

Z
x
Rqrdrdz 8q 2 L2

r ðxÞ: ð27Þ

For the second system (17), one has, in a similar way

Find ðB;E;wÞ 2 Y� H 1
m0ðxÞ � L2

r ðxÞ such that

Z
x

o2B

ot2
� Crdrdzþ c2

Z
x
curlBcurlCrdrdzþ

Z
x
wdivCrdrdz ¼ � 1

e0

Z
x
J curlCrdrdz 8C 2 Y;
ð28Þ
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Z
x

o2E
ot2

Frdrdzþ c2
Z
x
curlE � curlF rdrdz ¼ � 1

e0

Z
x

oJ
ot

Frdrdz 8F 2 H 1
m0ðxÞ; ð29Þ
Z
x
divBqrdrdz ¼ 0 8q 2 L2

r ðxÞ: ð30Þ

Recall that the systems (25)–(27) and (28)–(30) are decoupled, cf. Section 2.2.

The azimuthal components ðE;BÞ, as the solution of a scalar wave equation, always belong to an

H 1-style space, namely H 1
mðxÞ, even in a singular domain (see [3]), and an approximation by a P1

Lagrange finite element method is well adapted. On the contrary, the meridian electric and magnetic

fields ðE;BÞ do not always belong to an H 1-style space as it would be automatically the case in a

regular domain.
3. A decomposition in regular and singular parts

The underlying principle of the method consists in relating the singular solutions of Maxwell equations

to those of the Laplace problem, the properties of the latter having been investigated in a detailed manner

[3]. Let us briefly recall, without proof, some useful results in order to understand the construction of the

numerical method [3].
We introduce the ‘‘regularized’’ spaces of solutions

XR :¼ X \H1ðxÞ and YR :¼ Y \H1ðxÞ:

These are the natural spaces of solutions in a regular domain. From the following property

Proposition 3.1. The regularized spaces XR and YR are closed, respectively, within X and Y.

we can split these spaces as

X ¼ XR�
?
XS and Y ¼ YR�

?
YS; ð31Þ

where XS and YS are the spaces of the singular elements. When the domain is singular, XS 6¼ f0g and

YS 6¼ f0g. More precisely, let bI be the solution to the following equation, which involves a Legendre

function: P1=2ðcosp=bIÞ ¼ 0. Its value is bI ’ 1:3771, or ðp=bIÞ ’ 130�430, and we have (see [3] for a

proof).

Proposition 3.2. The spaces XS and YS are of finite dimension, namely

dimXS ¼ NE ¼ number of conical points with vertex angle >
p

bI
þ number of reentrant edges;
dimYS ¼ NB ¼ number of reentrant edges: ð32Þ

By introducing now ðxi
SÞi¼1;NE

and ðyjSÞj¼1;NB
the bases of XS and YS, the meridian electromagnetic fields

solution of the Maxwell equations can be decomposed into

EðtÞ ¼ ERðtÞ þ
XNE

i¼1

jiðtÞxi
S; ð33Þ



F. Assous et al. / Journal of Computational Physics 191 (2003) 147–176 155
BðtÞ ¼ BRðtÞ þ
XNB

j¼1

djðtÞyjS; ð34Þ

where ðjiÞi¼1;NE
and ðdjÞj¼1;NB

are smooth functions in time (at least continuous, cf. [3]).
We have now to characterize the singular parts on one hand, and the regular ones on the other.

3.1. A characterization of singular fields

This section describes the relationship between the singular electric and magnetic fields and the scalar

singularities of Laplace-like operators. As it is proved in [3], other decompositions in regular and singular

parts are possible, and can be better adapted to computations than (31). For instance, in the magnetic case,

the divergence-free condition on the magnetic field allows us to use the natural subspace W of Y defined

hereafter. For similar reasons, it is more convenient for the electric field to use another decomposition of

the space X , as we will see in the following.

3.1.1. Magnetic case

Due to the divergence-free condition on the magnetic field, let us now introduce the subspace W of Y as

W ¼ fw 2 Y : divw ¼ 0g; with norm jjcurlwjj0;x: ð35Þ

Then, if we defineWR ¼ W \H1ðxÞ the space of regular (divergence-free) fields, we proved in [2] thatWR is

closed in W. Let WS be its orthogonal, i.e.

W ¼ WR�
?
WS: ð36Þ

The dimension of WS is also NB, and any wS 2 WS is a meridian field that can be characterized as the

solution to

curlwS ¼ PS in x; ð37Þ
divwS ¼ 0 in x; ð38Þ
wS � m ¼ 0 on c: ð39Þ

Here, PS is a function that belongs to L2
r ðxÞ, but not to H 1

r ðxÞ or H 1
mðxÞ, such that

D0PS ¼ 0 in x; ð40Þ
PS ¼ 0 on c; ð41Þ

where the Laplace-like operator D0 is defined as

D0PS :¼
o2PS
or2

þ o2PS
oz2

þ 1

r
oPS
or

� PS
r2

: ð42Þ

3.1.2. Electric case

Except in the particular case of a charge-free problem, the electric field does not satisfy a divergence-free
condition. Contrary to the magnetic case, it is not so fruitful to consider here the divergence-free subspace

of X. Moreover, both the reentrant edges and the conical points with a sufficient large vertex angle
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contribute to the singular part of the solution as well. This increases the difficulty to compute (but not to

characterize) the singular fields.

Under these circumstances, it is better to relax the orthogonality of the decomposition (31), by choosing

singular fields vS such that curl vS ¼ 0, in order to ease the computation of the singular fields. Instead of the

decomposition of Proposition 3.2, we should rather use the (non-orthogonal) decomposition

X ¼ XR � gradUS; ð43Þ

where we denote by US the space of the primal singularities of the Laplacian, i.e., solutions of a Laplace

problem that belong to H 1
r ðxÞ but lack an H 2-style regularity. More precisely, /S 2 US is characterized by

the system

�D/S ¼ pS in x; ð44Þ
/S ¼ 0 on cb; ð45Þ
o/S

om
¼ 0 on ca; ð46Þ

where D is the trace of the three-dimensional Laplace operator in the meridian half-plane, defined by (10).

There remains now to specify the right-hand side pS of Eq. (44), which is a scalar function of regularity L2
r

(and not H 1
r ), satisfying the same equations as /S, namely

DpS ¼ 0 in x; ð47Þ
pS ¼ 0 on cb; ð48Þ
opS
om

¼ 0 on ca: ð49Þ

It is called a dual singularity of the Laplacian. Finally, it is sufficient to take

vS ¼ �grad/S in x; ð50Þ

which can be equivalently characterized by

curl vS ¼ 0 in x; ð51Þ
div vS ¼ pS in x; ð52Þ
vS � s ¼ 0 on cb; ð53Þ
vS � m ¼ 0 on ca: ð54Þ
Remark 3.3. If one wants to keep the orthogonality (for the norm v 7!fkcurl vk20;x þ kdiv vk20;xg
1=2

), which is

equivalent to the canonical norm), it is possible to orthogonalize the decomposition (43). Subtracting to vS
its orthogonal projection pvS on XR, we define xS by xS ¼ ðI� pÞvS, with

curl xS ¼ �curlðpvSÞ in x ðsince curlvS ¼ 0Þ;
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div xS ¼ pS � divðpvSÞ in x ðsince divvS ¼ pSÞ;

and pvS 2 XR is such that ðvS � pvS; vÞX ¼ 0 8v 2 XR. This is no difficulty (see [16] for a similar
approach).

3.2. A characterization of regular fields

We now present the finite element approximation we actually used (without SCM) in the case of regular
domains, that is when X � XR and Y � YR. Indeed, in the case of singular domains, the characterization of

the regular fields ER and BR is still derived from this finite element approximation. We just have to modify

the right-hand sides where the singular fields ES and BS appear, and to add some singular equations (see

(88)–(90)).

As can be expected, a first characterization of the regular fields ER and BR is obtained by writing the

same variational formulations as (25)–(27) for ðER;B;/Þ, and as (28)–(30) for ðBR;E;wÞ, where, in this case,

E � ER and B � BR.

Let us introduce now a second variational formulation whose form appears more appropriate for
the numerical computation: the augmented Lagrangian formulation. As in [5], one can equivalently

add the equation of divergence (27) in (25) for the ER field, and (30) in (28) for the BR field. Now

taking into account the property (see [12] or [2], Corollary 4.8, for the following axisymmetric ex-

pression).
Proposition 3.4. For any u; v 2 XR, we haveZ
x
curl u � curl v rdrdzþ

Z
x
div udivv rdrdz ¼

Z
x
ru : rvrdrdzþ

Z
c
umvmmr dc; ð55Þ

where um stands for u � m, mr denotes the radial component of the normal m, and the double dots : are the
contracted product of two 2� 2 tensors. We obtain

Find ðER;B;/Þ 2 XR � H 1
mðxÞ � L2

r ðxÞ such thatZ
x

o2ER

ot2
� FRrdrdzþ c2

Z
x
rER : rFRrdrdzþ c2

Z
c
ER � mFR � mmr dcþ

Z
x
/divFRrdrdz

¼ � 1

e0

Z
x

oJ

ot
� FRrdrdzþ

c2

e0

Z
x
RdivFRrdrdz 8FR 2 XR; ð56Þ
Z
x

o2B
ot2

Crdrdzþ c2
Z
x
curlB � curlC rdrdz ¼ 1

e0

Z
x
J � curlC rdrdz 8C 2 H 1

mðxÞ; ð57Þ
Z
x
divERqrdrdz ¼

1

e0

Z
x
Rqrdrdz 8q 2 L2

r ðxÞ; ð58Þ

which characterizes the regular electric field.

We now turn to the regular magnetic field BR. First, using similar arguments as above, the augmented

Lagrangian formulation can be written. Then, with the help of the analogous of (55) in YR (the termR
c umvmmr dc is replaced by

R
c uhvhmr dc, cf. [2]), we obtain the variational formulation which characterizes the

regular magnetic field.
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4. The numerical method

Starting from the above decomposition, it is possible to build a method, which allows to compute nu-

merically the solution: this is the SCM, that can be summarized in two steps:

1. Determination of bases of the singular spaces. We first compute an approximation of bases of the singular

spaces by solving static problems. The computations are carried out only once as an initialization pro-

cedure.

2. Solution to the time-dependent problems. It will then be enough to couple a classical Finite Element for-
mulation (which can be already available) for the regular parts, and a low-dimensional linear system, for

the singular parts.

Remark 4.1. This complement method can be easily included into already existing codes, without the costly
procedure of rewriting them entirely. Thus, it provides an extension of the range of a code to the case of

singular domains, or it can improve the efficiency of a code that can already handle singular domains.

Those steps are enumerated in the following sections.

4.1. Magnetic case: determination of wS, a basis of WS

4.1.1. Principle of the method

For the sake of simplicity, let us assume that the number of reentrant edges is equal to 1. The method to

compute wS is based on the characterization of the previous section. The algorithm is as follows:

• First step. We look for PS, a non-vanishing element of L2
r ðxÞ solution to (40), (41).

• Second step. Our task is now to compute wS which satisfies (37)–(39). With a Lagrange finite element

method, it is more convenient to invert a Laplacian operator (i.e., D0) than a rotational one (i.e.,

curl). For this reason, instead of using the direct solution to (37)–(39), we make use of the property

(see [2]) that, to wS 2 WS, there corresponds one and only one potential wS in H 1
mðxÞ such that

�D0wS ¼ PS in x; ð59Þ
wS ¼ 0 on c: ð60Þ

Now, as wS is sufficiently smooth, one can easily solve this problem with the help of a variational for-

mulation. The computation of wS 2 WS then stems from the identity wS ¼ curlwS.

4.1.2. A numerical solution obtained by ‘‘singular lifting’’

In a two-dimensional Cartesian geometry, a method was proposed in [4] to compute PS through a local

analytical expression defined as a series. In an axisymmetric domain, such an expression is only available as

a double series. This makes the use of this approach very difficult. The ‘‘singular lifting’’ approach uses the
property that there exist bases of such singular complement spaces made of fields regular everywhere except

near the geometrical singularities. So it is sufficient to know the most singular part of the singularities

(called the principal part) in the neighborhood of the reentrant edges (cf. [18]).

In the neighborhood of the reentrant corner E of the meridian domain x (see Fig. 2), that is near the

reentrant edge of the axisymmetric domain X, the solution PS can be split into

PS ¼ P 0
p þ ~PP 0; P 0

p ¼ q�a sinða/Þ; ~PP 0 of H 1-style regularity;

where ðq;/Þ denotes the local polar coordinates centered at the reentrant corner (see Fig. 2). The ‘‘singular

lifting’’ method consists in solving the problem in ~PP 0:



Fig. 2. Local coordinates near a reentrant corner.
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Find ~PP 0 in the suitable space such that

�D0 ~PP 0 ¼ D0P 0
p in x; ð61Þ
~PP 0
jc ¼ �P 0

p on c: ð62Þ

In most geometries (2D Cartesian or 3D polyhedral), the solution ~PP 0 can be computed by a variational

formulation. In those cases, it is justified by the following reasons:

1. The sufficient regularity of ~PP 0.

2. The most singular terms of D0P 0
p cancel, so that it belongs to H�1 (instead of H�2).

3. P 0
p has a vanishing trace on the two segments of c that meet at the reentrant corner.

In the axisymmetric case however, there is a supplementary condition: P 0
p has to be regular (i.e., H 1

m) near

the z-axis, that is P 0
p has to vanish near the z-axis. Unfortunately, P 0

p does not fulfill such a requirement. A

first remedy is to multiply P 0
p by a regular cut-off function g, that is a regular function depending only on q

such that g � 1 near the reentrant corner and g � 0 near the z-axis. Nevertheless, some numerical exper-

iments (see for instance [16]) have shown that it is difficult to obtain good and robust numerical results by

using a cut-off function, as this involves numerical instabilities well known for singular function methods (see

for example [7]) and leads to high values of the constant in the error estimates. To overcome this difficulty,

we actually use the following decomposition of PS:

PS ¼ Pp þ ~PP ; Pp ¼
r
a
q�a sinða/Þ; ð63Þ

where ~PP is a second function, which is regular everywhere in x, i.e., ~PP 2 H 1
mðxÞ and a denotes the distance

between the reentrant corner and the the z-axis (see Fig. 2).

Remark 4.2.

1. The function r=a is nothing but the particular cut-off function that constrains the principal part to vanish

on the z-axis (and not elsewhere).
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2. Instead of multiplying q�a sinða/Þ by r=a, one could use the decomposition

PS ¼ ðP 0
p ðr; zÞ � P 0

p ð0; zÞÞ þ ~PP 0;

such that ~PP 0 is a regular variational solution of a problem similar to (64). But the corresponding right-

hand side D0ðP 0
p ðr; zÞ � P 0

p ð0; zÞÞ would be more difficult to handle.

First step: computation of PS. The problem to solve reads

Find ~PP 2 H 1
mðxÞ such that

�D0 ~PP ¼ D0Pp ¼ � 3a
a
q�a�1 sinððaþ 1Þ/þ /0Þ in x; ð64Þ
~PPjc ¼ �Pp on c; ð65Þ

which can be written in a variational formZ
x

grad ~PP � gradu
n

þ
~PPu
r2

�
rdrdz ¼ �

Z
x
D0 ~PPurdrdz

¼ � 3a
a

Z
x
q�a�1 sinððaþ 1Þ/þ /0Þurdrdz; where u 2 H 1

m0ðxÞ:

ð66Þ

The problem (66) is well posed.

In order to solve it numerically, a triangular mesh of x is provided, and the space of solutions is dis-

cretized with the help of P1 Lagrange Finite Elements. Let Vh be the space of H 1-conforming Finite Element

functions thus generated, and let ~PPh be the associated discrete solution. It can be written in the form
~PPh ¼

PNh
i¼1 Piki, where ðkiÞ16 i6Nh

are the basis functions of Vh. After the discretization, the variational

formulation (66) can be written as a linear system:

K~PP ¼ ~BB; ð67Þ

with K a stiffness matrix suitably modified at the Dirichlet nodes, ~PP the vector of RNh of entries ðPjÞj, and ~BB
the vector of RNh obtained after the numerical integration of the right-hand side of (66).

Second step: computation of wS.

Computation of the potential wS. As mentioned earlier on, wS is computed via its scalar potential wS.

One solves first system (59), (60). As wS belongs to H 1
mðxÞ, it can be numerically solved by the H 1-

conforming Finite Element method previously used for ~PP , without requiring any kind of extra singular

function. Nevertheless, the computation of wS will be then obtained (in the following step) by applying
the curl operator. This cannot be obtained via an H 1-conforming method, due to the singularity of wS.

For this reason, we also use a decomposition of wS in a regular and a singular part (similar to (63) for

PS), that is

wS ¼ dwp þ ~ww;wp ¼
r
a
qa sinða/Þ; ð68Þ

where the regular part ~ww is of H 2-style regularity and d is a constant to be determined. Following [19], one

can obtain an exact expression for the constant d,

d ¼ 1

pa

Z
P 2
S rdrdz: ð69Þ
x
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We then compute ~ww like ~PP in the previous paragraph. A good approximation of d can easily be obtained

without any mesh refinement, cf. [11].

Computation of wS. One simply gets wS by applying the curl operator to wS decomposed into regular and

singular parts (see (68)), so we have

wS ¼ curl ~wwþ dcurlwp ¼
def

~wwþ dwp: ð70Þ

The singular part wp is obtained analytically and reads

wp ¼ qa�1 �a r
a cosðða� 1Þ/� /0Þ

2
aq sinða/Þ þ a r

a sinðða� 1Þ/� /0Þ

� �
: ð71Þ

The regular part ~ww is variationally computed as the solution toZ
x

~ww � urdrdz ¼
Z
x
curl ~ww � urdrdz 8u a vector test function: ð72Þ

This leads to solve, after discretization, the following linear system

M 0

0 M

� �
~ww ¼ R~ww; ð73Þ

where R denotes the curl matrix associated to the term
R
x curl

~ww � urdrdz, and ~ww stands for the vector of

R2Nh of scalar entries ðwjÞj associated to

~wwh ¼
XNh

i¼1

w2i�1

w2i

� �
ki: ð74Þ
Remark 4.3. The ‘‘singular lifting’’ method only requires the knowledge of the principal part of the

singular function. Moreover its implementation is still rather straightforward in the case of several reen-

trant corners.
4.2. Electric case: determination of vS, a basis of gradUS

4.2.1. Principle of the method

In this case, recall that there exist two kinds of geometrical singularities: the reentrant edges and the

conical vertices with a sufficiently great vertex angle. Both cases will be treated in parallel, and only major

differences will be detailed. Here again, for the sake of simplicity, we consider a domain x with only one

reentrant edge and one conical point of vertex angle ðp=bÞ > ðp=bIÞ. How to compute vS is based on the
characterization (50). The framework of the algorithm is as follows:

• First step. We look for two non-vanishing elements peS (for the edge) and pcS (for the conical point) that

belong to L2
r ðxÞ and satisfy (47)–(49).

• Second step. Our task is now to compute the singular basis elements veS and vcS, which satisfy (51)–(54)

with peS and pcS as respective right-hand sides. As for the magnetic case, it is more convenient to invert

a Laplace operator D than a divergence operator div. Instead of using the direct solution to (51)–(54),

we make use of the property (see [2]) that, to veS and vcS, there corresponds, respectively, one and only

one potential /e
S and /c

S in H 1
r ðxÞ such that (44)–(46) is verified. Now, as these potentials are sufficiently

smooth, one can easily solve these problems with the help of a variational formulation. The computation

of veS and vcS 2 gradUS then stems from the identities veS ¼ �grad/e
S and vcS ¼ �grad/c

S.
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4.2.2. A numerical solution obtained by ‘‘singular lifting’’

In the electric case, the numerical approach proposed in [4] could be used for the conical point, as local

analytical expressions of pcS, /
c
S and vcS as a series are available (see [3]). However, like in the magnetic case,

such expressions are available only as a double series for the edge singularity. Moreover, the easiness of

implementation of the singular lifting method led us to prefer this approach for both conical point and edge

singularities.

In the neighborhood of the reentrant corner and of the conical point (with superscript e and c, re-

spectively), the solution of the D problem can be split into

peS ¼ pep þ ~ppe and pcS ¼ pcp þ ~ppc; ð75Þ

where the principal parts pep and pcp are only in L2
r ðxÞ, and the remainders ~ppe and ~ppc are in H 1

r ðxÞ.
For the reentrant corner, one has for pep an expression similar to the magnetic case (in the same local

polar coordinates ðq;/Þ, see Fig. 2), that is

pep ¼ q�a sinða/Þ:

For the conical point, we introduce (see Fig. 3) new local polar coordinates ðq;/Þ centered at the conical

point C, with the origin of / on the z-axis.
One obtains for pcp the following local expression

pcp ¼ q�1�mPmðcos/Þ;

where Pm denotes the Legendre function of index m and m 2�0; 1=2½ is given by Pmðcosðp=bÞÞ ¼ 0.

Remark 4.4. Contrary to the magnetic case, the variable p is well adapted for a finite element discretisation.

No problem occurs near the z-axis and multiplying by a well-chosen cut-off function is useless.
Fig. 3. Local coordinates near a reentrant conical point.
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First step: computation of peS and pcS. Let us consider for example the computation of pcS. Let us use the

decomposition (75) together with the property that pcp ¼ q�1�mPmðcos/Þ verifies
Dpcp ¼ 0;

opcp
om

¼ 0 on ca:

The problem to solve reads

Find ~ppc 2 H 1
r ðxÞ such that

�D~ppc ¼ 0 in x; ð76Þ
~ppc ¼ �pcp on cb; ð77Þ
o~ppc

om
¼ 0 on ca: ð78Þ

It can be written in the variational form, as previously, with the help of a suitable lifting of the trace pcpjcb . In
order to solve it numerically, Lagrange Finite Elements are used again. The variational formulation can be

written, after discretization, as the following linear system:

Kc~pp ¼~bb; ð79Þ

with obvious notations.

Remark 4.5.

1. The non-homogeneous Dirichlet boundary condition only requires the computation of q�1�mPmðcos/Þ
on the edges ck of the boundary cb, except for the one with an extremity on the conical point (i.e.,

/ ¼ p=b).
2. Note that the stiffness matrix Kc is a part of the matrix K introduced for the magnetic case, which is an

interesting property from a computational point of view.

The computation of peS is performed in the same way.

Second step: computation of veS and vcS.

Computation of the potentials /e
S and /c

S. Here again, we expose the computation of /c
S; /

e
S can be ob-

tained in a similar way. As mentioned earlier on, vcS is computed via its scalar potential /c
S. One solves first

the system (44)–(46). As /c
S 2 H 1

r ðxÞ, it could be numerically solved by the H 1-conforming Finite Element

method previously used for ~ppc, without requiring any kind of extra singular function. Nevertheless, the

computation of vcS would then be obtained (in the following step) by applying the grad operator, which

cannot be made by a H 1-conforming method, due to the singularity of vcS. For this reason, we prefer to use a
decomposition of /c

S in a regular and a singular part, that is

/c
S ¼ dc/c

p þ ~//c; /c
p ¼ qmPmðcos/Þ; ð80Þ

where the regular part ~//c is of H 2-style regularity and dc is the singular coefficient which can be evaluated

(for instance as in [19]) to obtain

dc ¼
R
xðpcpÞ

2rdrdz

ð1þ 2mÞ
R p=b
0

ðPmðcos/ÞÞ2 sin/d/
: ð81Þ

We then compute ~//c as we did for ~ww in the magnetic case.



164 F. Assous et al. / Journal of Computational Physics 191 (2003) 147–176
Computation of veS and vcS. One simply gets veS and vcS by applying the �grad operator to /e
S and to /c

S,

respectively, decomposed into regular and singular parts. So we have

veS ¼ �grad ~//e � degrad/e
p ¼
def

~vve þ devep; ð82Þ
vcS ¼ �grad ~//c � dcgrad/c
p ¼
def

~vvc þ dcvcp: ð83Þ

The singular parts vep and vcp are obtained analytically and read

vep ¼ aqa�1
1
r sinðða� 1Þ/� /0Þ
cosðða� 1Þ/� /0Þ

� �
; ð84Þ
vcp ¼ mqm�1 Pmðcos/Þ cos/� P 1
m ðcos/Þ sin/

Pmðcos/Þ sin/þ P 1
m ðcos/Þ cos/

� �
: ð85Þ

The regular part ~vve is variationally computed as the solution toZ
x

~vve � urdrdz ¼ �
Z
x
grad ~//e � urdrdz 8 vector test function u: ð86Þ

After discretization, that leads to solve the following linear system:

M 0

0 M

� �
~vve ¼ �G~//e: ð87Þ

Above, G denotes the gradient matrix associated to the term
R
x grad

~//e � urdrdz, and ~vve stands for the

vector of R2Nh of entries ðvejÞj defined like in (74).

One can use a similar variational formulation and perform the same discretization for ~vvc. This is no

difficulty.
4.3. Solution to the time-dependent problem

In what follows, we focus on the electric field formulation. Indeed, contrary to the magnetic case, the

electric field does not satisfy (in general) the divergence-free condition and the coupling between the regular

and the singular part of the solution is ‘‘stronger’’. For the divergence-free magnetic field, there is no
difficulty to write the formulation. It can be easily deduced from the electric one or from the one presented

in [4] for a Cartesian geometry (also in a divergence-free case).

A new variational formulation of the problem (25) and (27) is introduced (we do not consider the

computation of B which is regular), using the (non-orthogonal) decomposition of the space

X ¼ XR � gradUS, and of the solution EðtÞ ¼ ERðtÞ þ
PNE

i¼1 j
iðtÞviS. We add to the space of test functions XR

the functions ðviSÞi¼1;NE
. With this decomposition, the variational formulation (25) and (27) becomes

Find ðER; j;/Þ 2 XR � RNE � L2
r ðxÞ such that

Z
x

o2ER

ot2
� FRrdrdzþ

XNE

i¼1

ðjiÞ00
Z
x
viS � FRrdrdzþ c2

Z
x
rER : rFRrdrdzþ c2

Z
c
ER � mFR � mmr dc

þ
Z

/divFRrdrdz ¼ � 1
Z

oJ � FRrdrdzþ
c2

Z
RdivFRrdrdz 8FR 2 XR; ð88Þ
x e0 x ot e0 x
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Z
x
divERqrdrdzþ

XNE

i¼1

ji

Z
x
div viSqrdrdz ¼

1

e0

Z
x
Rqrdrdz 8q 2 L2

r ðxÞ; ð89Þ

supplemented with the NE additional equations, obtained by taking ðviSÞ16 i6NE
as test functions. One getsZ

x

o2ER

ot2
� vjSrdrdzþ

XNE

i¼1

ðjiÞ00
Z
x
viS � v

j
Srdrdzþ

Z
x
/div vjSrdrdz ¼ � 1

e0

Z
x

oJ

ot
� vjSrdrdz; 16 j6NE:

ð90Þ

Above, ðjiÞ00 denote the second derivative of jiðtÞ with respect to the time variable. The set of equations
(88)–(90) is the system we now have to solve, to be compared to (56) and (58) in the case of a regular

domain.

Starting from the variational mixed formulation (88)–(90), we are now ready to derive a Finite Element

+ Singular Complement approximation. Let Xh
R � XR and Qh � L2

r ðxÞ be the spaces of discretized test

functions, that are chosen in such a way that the discrete inf-sup condition is satisfied [10]. Recall that we

actually used the modified Taylor–Hood element. It leads to a diagonal mass matrix (i.e., the usual mass

lumping, obtained by using an appropriate quadrature formula). This element requires the definition of two

levels of meshes. A coarser triangulation of the domain x is first defined, and then, a finer one is obtained
by dividing each triangle K2h into four subtriangles Kh of equal surface. Then, the approximation spaces for

the vector fields is made of functions which are componentwise P1-conforming on the finer triangulation. At

the same time, the approximation space for the Lagrange multipliers consists of the P1-conforming finite

element on the coarser grid.

Let now EhðtÞ ¼ Eh
RðtÞ þ

PNE

i¼1 j
h;iðtÞvh;iS be the discrete solution. Like in (74), one has

Eh
RðtÞ ¼

XNh

i¼1

ER;2i�1ðtÞ
ER;2iðtÞ

� �
ki:

By using the same decomposition on each quantity defined on the finer or on the coarser mesh, the semi-

discretized variational formulation is written (with the addition of the index h) in the same way as (88)–(90).

It can be then written equivalently as the following linear system:

d2

dt2
Mx

~EER þMrs~jj
00 þ c2ðKx þKcÞ~EER þ Lx

~// ¼ � 1

e0

d

dt
Mx

~JJþ c2

e0
Lx

~RR; ð91Þ
d2

dt2
Msr

~EER þMs~jj
00 þ Ls

~// ¼ � 1

e0

d

dt
Msr

~JJ; ð92Þ
tLx
~EER þt Ls~jj ¼ 1

e0
Mc

x
~RR; ð93Þ

where Kx and Kc denote the matrices associated to the terms
R
x rER : rFRrdrdz and

R
c ER � mFR � mmr dc,

respectively, Lx denotes the matrix associated to the term
R
x /divFRrdrdz. The matrix Mrs is a rectangular

one, coming from the integral over x of the product of the NE singular functions viS by the basis functions of

Xh
R, and~jj stands for the vector of RNE of entries jiðtÞ. Then Ms is the ‘‘singular’’ mass matrix associated to

the term
R
x v

i
S � v

j
Srdrdz, and Ls the ‘‘singular gradient matrix’’ resulting from the discretization ofR

x div v
i
Sqrdrdz. Finally,Mrs is the transpose ofMsr, and the superscript c recalls that the mass matrixMc

x is

defined on the coarser mesh. For the singular matrices, the computation must be carried out precisely in the

neighborhood of the reentrant corners. This point will be detailed in Section 4.4.



166 F. Assous et al. / Journal of Computational Physics 191 (2003) 147–176
We then perform a time discretization involving a second-order explicit (leap-frog) scheme. Here the

notation Xn (resp., Xnþ1) stands for a variable X at time tn ¼ nDt (resp., tnþ1 ¼ ðnþ 1ÞDt), where Dt is the
time-step. ~FFn;~GGn; ~HHn is the set of quantities known at time tn for each equation of the scheme (91)–(93),

which can be rewritten as

Mx
~EEnþ1
R þMrs~jj

nþ1 þ Lx
~//nþ1 ¼ ~FFn; ð94Þ
Msr
~EEnþ1

R þMs~jj
nþ1 þ Ls

~//nþ1 ¼ ~GGn; ð95Þ
tLx
~EEnþ1

R þt Ls~jj
nþ1 ¼ ~HHn: ð96Þ

To solve this linear system, a convenient way is to decouple ~jjnþ1 and the unknowns ð~EEnþ1
R ;~//nþ1Þ. In [4], we

proposed a solver based on the same idea, for a two-dimensional Cartesian divergence-free Maxwell system

of equations, in the case of a single reentrant corner. The method we will develop here is more general, since

it is well suited for a domain with several reentrant corners, and for a problem with a non-vanishing

divergence.
Substituting (94) �MrsM

�1
s (95) for Eqs. (94) and (96)�tLsM

�1
s (95) for Eq. (96), we obtain a system

where ~jjnþ1 does no appear any more. It is written as (where the superscript � denotes the quantities ob-

tained after these algebraic manipulations)

fMM~EEnþ1
R þ eLL~//nþ1 ¼ f~FFn~FFn ; ð97Þ
teLL~EEnþ1
R þt LsM

�1
s Ls

~//nþ1 ¼ f~HHn~HHn : ð98Þ

It remains now to invert this system. Following the idea we developed for regular domains (see [5]), this is
achieved with the help of an Uzawa algorithm (see for instance [14]). Compared to the unmodified system –

that is the system obtained in a regular domain – it requires essentially two modifications. The first one is

the computation of the matrix M�1
s . Ms being a symmetric definite positive matrix (by construction) of

dimension NE � NE, i.e., a few units (and often NE ¼ 1), M�1
s is very easy to compute once and for all. The

second one is concerned with the algebraic solver associated to fMM ¼defMx �MrsM
�1
s Msr. It can be solved

(for instance) with the help of the following formula (see [15] for a review),

ðA�UVTÞ�1 ¼ A�1 þA�1UðI�VTA�1UÞ�1
VTA�1:

Above A is an N � N matrix and U and V are N � K matrices. This formula is particularly well adapted

when A�1 is known. As a matter of fact, it only requires the additional computation of the small K � K
matrix ðI�VTA�1UÞ�1

. In our case, we have A¼defMx, U¼defMrs and V¼defM�1
s Msr. Recall that the mass

matrix Mx is diagonal, thanks to a quadrature formula (see [5]), which preserves the accuracy. Hence, it is

easy to solve the linear system (97), (98), which now appears as a slight modification of the one obtained for
the unmodified system.

Once the values of ð~EEnþ1
R ;~//nþ1Þ are computed, one can also compute, at the corresponding time, the value

~jjnþ1, by solving (95).

4.4. Some details concerning the numerical integration

To conclude this Section, let us briefly present some details concerning the numerical integration, es-

pecially in the two instances that deserve special attention.
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The first one is the computation of the singular coefficients that appear in the matricesMs,Mrs or Ls, and

in the constants d, dc (cf. (69), (81)).
For illustrative purposes, consider the term

R
x P

2
S rdrdz in (69). A convenient way to compute this in-

tegral is to use the decomposition (63) in a regular part ~PP and a singular one Pp:
Z
x
P 2
S rdrdz ¼

Z
x
ð ~PP þ PpÞ2rdrdz ¼

Z
x

~PP 2rdrdzþ 2

Z
x

~PPPprdrdzþ
Z
x
P 2
p rdrdz:
By using the discrete form ~PPh ¼
PNh

i¼1 Piki of ~PP , and the analytical expression of Pp, we obtain
XNh

i;j¼1

PiPj

Z
x
kikjrdrdzþ 2

XNh

j¼1

Pj

Z
x
Ppkjrdrdzþ

1

a2

Z
x
q�2aðsinða/ÞÞ2r3 drdz:
The first term is the product of the mass matrix by the vector of entries Pi and is straightforward to

compute. The other two are singular (near a reentrant corner or conical point) and are computed

thanks to a quadrature formula. Actually, we used a sixth-order Gauss–Hammer formula (see for in-

stance [22]), with seven integration points located inside each triangle, that does not require the un-

bounded value of the singular part. The computation of the other singular coefficients is carried out

along the same lines.
The second instance that deserves special care is the numerical evaluation of integrals of the

form
Z
x

uhvh
r

drdz: ð99Þ
These terms appear in the computation of azimuthal components B and E – see the integralsR
x curlB � curlCrdrdz in (26) and

R
x curlE � curlFrdrdz in (29) – and also in the computation of the me-

ridian components, if an augmented Lagrangian formulation is used. In the continuous case however, this

is no difficulty since it is assumed that the functions and components u all belong to spaces such thatR
xðu2=rÞdrdz < 1.

To compute (99), we have to derive in each triangle Kh the quadrature formula

Z
Kh

uv
r
drdz ¼

X3

a¼1

X3

b¼1

wa;buðaaÞvðabÞ

for all u 2 P1ðKhÞ and v 2 P1ðKhÞ, such that uðaaÞ ¼ vðaaÞ ¼ 0 if the node aa belongs to ca. The easiest way is

to compute an exact formula, either by going back to the reference element K̂K, or by direct computations

(integrate first in z, then in r).
If one considers a triangle with a single vertex a1 on the axis ca, the weights ðwa;bÞa;b¼1;2;3 remain bounded

in r2; r3, the r-coordinates of the other two nodes of the triangle Kh. If one considers a triangle with two

vertices a1; a2 on the axis ca, the weights ðwa;bÞa;b¼1;2;3 are in log r3, with r3 the r-coordinate of the third node

of the triangle Kh.
As expected, in both cases, the behavior is balanced by the vanishing condition on ca, as the P1 variables

tend to 0 in the same way as ðr2; r3Þ (resp., r3).



168 F. Assous et al. / Journal of Computational Physics 191 (2003) 147–176
5. The Silver–M€uuller boundary condition

Let us consider again the problem set in the three-dimensional domain X. We suppose that a perfectly

conducting boundary condition is applied on a part CC of the boundary (CC � C) of the domain. The

remaining part CS is an artificial boundary, on which the interaction between the domain and the exterior is

modeled. Here we have chosen the simple model, that is

E

�
� cB� n

�
� n ¼ G� n on CS; ð100Þ

where G is given. Now in the meridian domain x, we denote by cS the intersection of CS with the meridian

half-plane, and this condition reads for the first system of unknowns ðE;BÞ

E � s� cB ¼ g � s; ð101Þ

and for the second system of unknowns ðB;EÞ

E � cB � s ¼ h; ð102Þ

where g and h are defined on cS. They are linked to the incoming wave via G. When G ¼ 0, the condition

(100) is actually a first order absorbing boundary condition. It is often called the Silver–M€uuller condition.
Without loss of generality, it is always possible
• to choose the artificial boundary CS such that it does not intersect any of the geometrical singularities,

i.e., there exists a neighborhood Vj of each singularity such that Vj \ CS ¼ ;, for 16 j6NE;

• assume that the incoming wave is a smooth field.

Then, the trace E � sjcS is regular (in a sense which is detailed in [9]): we write it as

E � sjcS 2 H 1=2
k ðcSÞ.

Let eXX stand for the space of solutions for the electric field, the case of the magnetic one being similar. We

have

eXX ¼ fE 2 Hðcurl; div;xÞ; E � s ¼ 0 on cC; E � sjcS 2 H 1=2
k ðcSÞg: ð103Þ

Like X, eXX is not of H 1-style regularity. Let us thus define eXXR, the regularized subspace of eXX:

eXXR ¼ fE 2 H1ðxÞ; E � s ¼ 0 on CCg ¼ eXX \H1ðxÞ: ð104Þ

The variational formulation (25)–(27) must be modified accordingly. The integration by parts formula,

which is used to obtain the formulation, produces new integral terms on cS, and the new formulation reads:

Find ðE;B;/Þ 2 eXX � H 1
mðxÞ � L2

r ðxÞ such that

Z
x

o2E

ot2
� Frdrdzþ c

Z
cS

oE

ot
� sF � srdcþ c2

Z
x
curlEcurlFrdrdzþ

Z
x
/divFrdrdz

¼ � 1

e0

Z
x

oJ

ot
� Frdrdzþ c

Z
cS

og
ot

F � srdc 8F 2 eXX; ð105Þ
Z
x

o2B
ot2

Crdrdzþ
Z
cS

oB
ot

Crdcþ c2
Z
x
curlB � curlCrdrdz

¼ 1

e0

Z
x
J � curlCrdrdz�

Z
cS

og
ot

Crdc 8C 2 �H 1
mðxÞ; ð106Þ
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Z
x
divEqrdrdz ¼ 1

e0

Z
x
Rqrdrdz 8q 2 L2

r ðxÞ: ð107Þ
5.1. A decomposition of the solution in regular and singular parts

It is of importance to note that the singular behavior of the solution is generated by the shape of the

domain. Thus, it is interesting to keep the same space XS of singular solutions (XS � eXX). Indeed, one can

prove easily that eXX can be decomposed into

eXX ¼ eXXR � XS; ð108Þ

where eXXR is the subspace defined by (104). The advantage of using also XS is that it does not depend on the

time variable t, and therefore it is computed once and for all (see the remark below).

In practice however, similarly to the case when the whole boundary is a perfect conductor, it is more
convenient from a numerical point of view, to use the curl-free subspace gradUS of X as a basis of the

singular fields. As a matter of fact, eXX can also be decomposed into

eXX ¼ eXXR � gradUS:

With this choice, the SCM with cS 6¼ ; appears as a slight modification of the formulation obtained with

cS ¼ ;. Indeed, there is no added integral over cS in (90) since viS � s ¼ 0; 16 i6NE, and Eq. (89) is un-
changed.

Concerning Eq. (88), there is an additional term in the right-hand side if g 6¼ 0, and in all the cases an

additional term

c
Z
cS

oER

ot
� sFR � srdc

in the left-hand side. These one or two supplementary terms are not specific to the SCM and appear also in

regular domains.
There remains to semi-discretize in space, which is done in a way similar to the one of the perfectly

conducting boundary case, the main modification being the addition to the left-hand side of (91) of

c
d

dt
McS

~EER;

where McS denotes the boundary mass matrix associated to the term
R
cS
ER � sFR � srdc.

We then perform a time discretization involving the same scheme as in Section 4.3. Except the right-hand
sides if g 6¼ 0, the only modification compared to (94)–(96) consists in replacing Mx by Mx þ cðDt=2ÞMcS .

The resulting linear system is solved as previously with no additional effort, recalling that the boundary

mass matrix McS is block-diagonal thanks to a quadrature formula which preserves the accuracy (see [5] for

details).

The system for the magnetic field is solved in the same way.
6. Numerical results

In this section, we present numerical tests of both electric and magnetic field computations, that allows

to evaluate the code-related performances of the Singular Complement Method (SCM) in axisymmetric
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domains. The bases of gradUS and WS are computed during the initialization step, together with the

regular–singular and singular–singular matrices. Further, updating the values of the singular coefficients

ðjiÞi¼1;NE
and ðdjÞj¼1;NB

requires Oð1Þ operations per time-step. Therefore, the additional memory require-

ments, and computing effort, are small.

Since analytical solutions are not available, we have chosen to compare the numerical results to those

computed by other codes.
6.1. Computation of a basis of W S and gradUS

Let us consider the top hat domain X with a reentrant circular edge, that corresponds to an L-shaped

domain x with one reentrant corner. To compute the magnetic basis wS of WS, we introduce an un-

structured mesh of x made up of triangles, with no particular mesh refinement near the corner. Following
the method exposed in Section 4.1.1, we first compute the dual singular function PS, to obtain wS from the

potential wS.
Fig. 4. Computed bases in the magnetic case.



F. Assous et al. / Journal of Computational Physics 191 (2003) 147–176 171
The solutions are pictured in Fig. 4. When representing functions or fields with a singular behavior,

instead of truncating the results, we have chosen to exclude the (infinite) singular node value, so as not to

‘‘flatten’’ the image by an arbritary truncation value.

In Fig. 4(a), one can see that the SCM captures well the field wS 2 WS near the edge (and far away from

it). Again, a conforming P 1 Finite Element Method can not yield such a result. In addition, the results are

not noisy, even though the mesh is not particularly refined near the edge. In Fig. 4(b), one can check that

the method is also efficient to compute the most singular term PS. Last, the result on the smooth function wS

(see Fig. 4(c)), shows that the method is efficient for more regular functions or fields: in that, it generalizes
the singular function method.

Now when dealing with a basis of gradUS for the electric field, we consider another axisymmetric do-

main X which consists in a cylinder, at the top of which a cone of revolution was removed. Its intersection

with a meridian half-plane is the computational domain x (see Fig. 5), that allows us to illustrate the

computation of electric singular basis due to conical points. Here again, this domain is approximated by a

mesh with no particular mesh refinement near the conical point, and vS is evaluated as previously, by

computing first the dual singular function pS, and finally vS from the potential /S.

The results are depicted in Fig. 5(a) and the conclusions are similar to the wS case.
Fig. 5. Computed bases in the electric case.
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6.2. Time-dependent cases

In this section, the quality of the SCM is evaluated numerically in cases representative of situations that

can occur when one is dealing with electromagnetic axisymmetric fields.

In the first instance, one computes the electromagnetic singular field generated by a current loop. Next, it

is well known that commonly studied devices such as hyperfrequency systems often include waveguides,

either to conduct the field that excites particles, or to conduct the field induced by them. So, in the second

example, the propagation of an electromagnetic wave near a singular conical point is investigated.

6.2.1. Example with a current

In this first instance, we consider the same L-shaped domain x as for the computation of WS (corre-

sponding to a top hat domain X), on which a perfectly conducting boundary condition is imposed. We are

interested in computing the electromagnetic field ðB;EÞ created by a current loop. The initial conditions are

set to zero. The current is defined as Jðx; tÞ ¼ Jheh, Jh ¼ 10 sinðktÞ, with a frequency k=2p ¼ 2:5� 109 Hz.
The support of this current is a little disc centered at the middle of the domain.

This current generates a wave which propagates circularly around the current source. Physically, as long as

the wave has not reached the reentrant corner, the field is smooth. Let ts be the impact time, then, if one writes

Bðx; tÞ ¼ BRðx; tÞ þ jðtÞwSðxÞ;

jðtÞ is equal to zero for all t lower than ts, and so BRðx; tÞ and Bðx; tÞ coincide. Now, on the one hand, for t
greater than ts, jðtÞ 6¼ 0 and the support of wS being non-local (in fact, the support of wS spans the whole of

x), one has jðtÞwSðxÞ 6¼ 0, for all x 2 x and t > ts. On the other hand, however, one wishes to reproduce the

obvious physical behavior, which is that for any point x and time t, Bðx; tÞ ¼ 0 if t < tx, where tx denotes the
time at which the wave reaches x.

One can check (see Fig. 6) that BRðx; tÞ takes non-zero values, and therefore that it ‘‘compensates’’ for

jðtÞwSðxÞ, i.e., BRðx; tÞ ¼ �jðtÞwSðxÞ. Thus, Bðx; tÞ remains equal to zero while ts < t < tx.
The same computation has been carried out via the classical nodal FE code (without the SCM) and has

been compared. In Fig. 7, the isovalues of the radial components of the magnetic field are pictured (with

identical scales). It shows a most unlikely approximation of the true solution (no singular behavior).

Because it is not possible to provide an analytical solution, we compare our results to the computations

made by another code, based on Finite Volume (FV) techniques �aa la Delaunay–Voronoi [17].
As mentioned in the introduction, this method allows to approximate the solution in a neighborhood of

the reentrant corner (with an appropriate mesh refinement), the degrees of freedom being located on the

edges. The Fig. 8 shows the isovalues of the magnetic field (Bz component after 1000 time steps), which has

been computed by the two methods on the same mesh. The results obtained by both methods are com-

parable, which shows the feasibility of the SCM in axisymmetric cases. Moreover, the SCM provides a

numerical solution which is less noisy. Last, the results obtained by both methods on the smooth (cf. [2])

component E of the electric field are almost identical. This emphasizes once more that the differences come

from the singular part.

6.2.2. The waveguide case

In this last example, the propagation of an electromagnetic wave, namely ðE;BÞ, in a geometry with a
singular conical point, is studied numerically. This case provides an interesting illustration of the possi-

bilities of the method, when it is used on a more ‘‘complete’’ formulation, that is with different types of

boundary conditions. We consider a coaxial cylindrical waveguide in which the inner cylindrical part ends

with a conical point. The geometry and the data do not depend on the variable h. The computational

domain x, that is the meridian section of the waveguide, is pictured in Fig. 9.



Fig. 6. At a given point x, comparison of the radial components of BRðx; tÞ (top) and Bðx; tÞ (bottom) with t varying.

Fig. 7. Component Br, computed with the SCM (left) and without the SCM (right).
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Fig. 8. Component Bz, computed by the SCM (left) and by the FV (right).

Fig. 9. Component Ez, computed by the SCM (left) and by the FV (right).

174 F. Assous et al. / Journal of Computational Physics 191 (2003) 147–176
An incident wave enters the waveguide through the boundary c1s (at the bottom), and leaves the domain

through c2s (at the top). This behavior is modeled thanks to the boundary condition (101), which is ex-

pressed as

E � s� cB ¼ g; gðtÞjc1s ¼ C sinðktÞ; gðtÞjc2s ¼ 0; ð109Þ

where C is a constant and k is associated to the frequency 2:5� 109 Hz. At the initial time t ¼ 0, the

electromagnetic field is equal to zero all over the guide. As in the preceding case, the field is smooth until the

wave reaches the reentrant corner, and then it becomes singular.

As previously, the result has been compared to that produced by the FV code. Fig. 9 depicts the iso-

values of the longitudinal component of the electric field after 600 time-steps.

Once again, the SCM provides a numerical solution which is globally less noisy, and more precise in the
neighborhood of the corner. Last, the results are almost identical for B.
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7. Conclusion

In this paper, we presented the generalization to axisymmetric problems of a method we developed –

the Singular Complement Method – to solve Maxwell equations in a non-smooth and a non-convex

domain.

It is based on a splitting of the space of solutions with respect to regularity, in a regular subspace, which

is equal to the entire space when the domain is smooth or convex, and a singular subspace. In this axi-

symmetric situation, the mathematical analysis (finite dimension of the singular subspaces, characterization
of the singularities, etc.) has been carried out and is already published ([2,3]).

The generalization of the SCM to the axisymmetric case is not a straightforward extension of the two-

dimensional Cartesian one. Indeed, even in convex or smooth domains, a classical Finite Element approach

requires special attention due to the weighted measure rdrdz. Particularities due to conical points, causing

specific difference between the electric and magnetic cases also appear, for example in the choice of the

singular subspace well adapted to computations, etc.

Numerical methods have been proposed, based on the P1 Lagrange finite element approximation for the

regular part of the solutions, and on special additional test-functions, which are used to capture numerically
the singular part of the solution.

Results of simulations have been shown to illustrate the efficiency of the SCM in a series of examples

based on practical three-dimensional axisymmetric devices. In particular, the use of a non-divergence-free

decomposition for the electric field proves that the SCM can be coupled to particle methods in axisym-

metric situations, as in the bidimensional case (cf. [1]).

Currently we devote our attention to the (non-axisymmetric) three-dimensional domains. The theoretical

aspects are under control and there remains now to provide an effective approximation of the singular part of

the solution. As a matter of fact, in the 3D case, this singular part belongs to an infinite dimensional space.
Finally, the SCM proved to be easy to implement, as it can be included in already existing codes, without

having to rewrite them in their entirety, for low additional memory requirements and small additional cpu

costs.
Appendix A. Operators in cylindrical coordinates

gradf ¼ of
or

er þ
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r
of
oh

eh þ
of
oz

ez; ð110Þ
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