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SUMMARY

Hodge decompositions of tangential vector "elds de"ned on piecewise regular manifolds are provided. The
"rst step is the study of ¸2 tangential "elds and then the attention is focused on some particular Sobolev
spaces of order !1

2
. In order to reach this goal, it is required to properly de"ne the "rst order di!erential

operators and to investigate their properties. When the manifold ! is the boundary of a polyhedron ), these
spaces are important in the analysis of tangential trace mappings for vector "elds in H(curl, )) on the whole
boundary or on a part of it. By means of these Hodge decompositions, one can then provide a complete
characterization of these trace mappings: general extension theorems, from the boundary, or from a part of
it, to the inside; de"nition of suitable dualities and validity of integration by parts formulae. Copyright
( 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

This paper is concerned with the characterization and the properties of tangential vector "elds on
non-smooth manifolds. In the case of regular manifolds the functional theory related to tangential
"elds has been completely developed. Sobolev spaces and tangential di!erential operators have
been de"ned and analysed (e.g. in [1, 13, 4]). When the manifold ! is not smooth, several
problems occur: the de"nition of Sobolev spaces is possible only for low values of regularity
exponent (Hs (!), for DsD)1), and the de"nition of di!erential operators, in this context, is far from
being obvious.

In this paper, we consider ! as the boundary of a Lipschitz polyhedron ) not necessarily
convex. We use the same approach as Grisvard [8, 9]: we suitably de"ne Sobolev spaces and
di!erential operators, working face by face, and then we analyse the matching conditions at edges
and vertices. Our attention is devoted to the de"nition of Hs(!), for 1(DsD)3

2
, and of "rst-order



di!erential operators, namely the gradient, the divergence, the scalar and vector curls. It is proven
that all these operators verify properties which are necessary in order to develop a standard
functional theory, for instance that every curl-free vector is a gradient and so on.

Using these tools and the same argument as in [6] for the regular case, we start by proving
a "rst Hodge decomposition:

L2
5
(!)"+!H1(!)=M curl!H1 (!)

Then, taking advantage of the characterization of traces for H(curl, )), which has been given in
the companion paper [3], we provide a Hodge decomposition (always as a gradient and a curl
sum) of both the tangential trace (u'n) and tangential components (n'(u'n)) for a vector "eld
u3H(curl, )) (n is here the unit outer normal to ) on !).

By means of this decomposition it is not hard to prove the surjectivity of both trace mappings
(tangential trace and tangential components). Moreover, lifting mappings from the boundary,
and from a part of it, to ), are provided, and we prove that the tangential trace and the tangential
components can be put in duality as in the regular case (see e.g. [4]).

Finally, all our results can be extended with no additional e!orts to curvilinear Lipschitz
polyhedron, that is, to a class of piecewise regular manifold (cf. [5]), but not to the general case of
Lipschitz manifolds. In this more general case, the characterization of traces for H(curl, )) has been
given by Tartar [12] and, from this paper, it is clear that the de"nition of di!erential operators on
Lipschitz manifolds in the context of Sobolev spaces, is, in general, an &ill-posed problem'.

The outline of the paper is the following. In Section 2, we make precise our notation and the
functional framework, in Section 3, we provide the Hodge decomposition in the L2

5
(!) context; in

Section 4 we introduce di!erential operators in more &regular' and, respectively, less &regular'
spaces, and we study their properties. In Section 5, we obtain the Hodge decomposition in the
spaces of traces of H(curl, )) and we analyse its direct consequences: existence of a continuous
extension mapping, the duality between the space of the tangential trace and that of tangential
components and the related integration by parts formula. Finally, in Section 6, we extend the
same results to the case of an open manifold and we deduce the characterization of trace
mappings on the part of the manifold, and we establish a suitable duality among spaces and the
validity of the integration by parts formula.

2. PRELIMINARIES

Let ) be a Lipschitz polyhedron not necessarily convex, ! its boundary and n the unit outward
normal to ) on !. All along this paper, we assume that ! is simply connected and connected.
When ! is formed of several connected components, all our statements will apply to each
connected component. Moreover, ! is split in N (open) faces (!

j
)
j/1,2,N

, !"Z
j
!1
j
. Let us denote

by (e
ij
)
i,j|M1,2,NN its (open) edges: when !

i
and !

j
are two adjacent faces, e

ij
denotes the &common'

edge. Let I
j
stand for the set of indices i such that the faces !

i
and !

j
have a common edge.

Additionally, let !
ij

be the open set !
i
X!

j
Xe

ij
. The vertices are denoted by (S

k
)
k/1,2,K

.
Finally, let s

ij
be a unit vector parallel to e

ij
and n

j
"nD!j

; s
i
"s

ij
'n

i
. The couple (s

i
, s

ij
) is an

orthonormal basis of the plane generated by !
i
; (s

i
, s

ij
, n

i
) is an orthonormal basis of R3.

For elements u of ¸2(!), we adopt the notation u
j
"uD!j

. This notation is used whenever the
restriction to a face is considered, that is as regards any functional space, in which the restriction
to a face is allowed.
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Boldface characters are used for all vector "elds and some vector spaces, such as for instance
¸2())3 which is denoted by L2()).

On !, the Sobolev spaces Hs (!) with DsD(1 are standardly de"ned (cf. [11]). Let us set

H(curl, )) :"Mu3L2()): curl u3L2())N, DD ) DD0,#63- the graph norm

L2
5
(!) :"Mu3L2 (!): u ) nD!"0N, S ) , )T

t
its scalar product

H1(!) :"Mu3¸2(!): u
j
3H1 (!

j
) and u

jDeij
"u

iDeij
in H1@2(e

ij
), ∀i3I

j
, ∀jN (1)

H1@2
~

(!) :"Mk3L2
5
(!): k

j
3H1@2 (!

j
), ∀jN

They are Hilbert spaces when endowed with the respective graph norms. The de"nition of H1(!)
stems from the fact that H1-regularity is preserved by (bi-) Lipschitz mappings (cf. [11]). Let
H~1 (!) be the dual space of H1(!).

Note that in the remainder of the paper, L2
5
(!) is identi"ed with the space of two-dimensional,

tangential, square integrable, vector "elds. The consequence of this choice is that, on the boundary
!, one deals with two-dimensional vector "elds whereas, in ), three-dimensional ones are
considered. Of course, the same identi"cation holds for all the spaces derivated from L2

5
(!).

Dexnition 2.1. Let +! : H1(!)PL2
5
(!) and curl! : H1(!)PL2

5
(!) be de"ned by

(+!u)
j
"+

2
(u

j
) (curl!u)

j
"curl

2
(u

j
) ∀j (2)

where +
2

(resp. curl
2
) is the gradient (resp. vector two-dimensional curl) of u as a function of two

variables (these operators are of course well de"ned locally on each face).

Remark 2.2. The curl! could be equivalently de"ned as curl!u"+!u'n.

It is obvious that these operators are linear, continuous from H1(!) to L2
5
(!). Their kernels are

the set of constant functions due to our assumption on !, i.e. ! is connected. These properties
stem from the de"nition of H1 (!) which has been obtained via a bi-Lipschitz mapping of ! on
a smooth manifold.

Their adjoint operators are then de"ned, in a standard way, as

Dexnition 2.3. Let us de"ne div! :L2
5
(!)PH~1 (!)/R and curl! : L2

5
(!)PH~1(!)/R as the

adjoint operators of !+! and curl!, respectively. In particular, the following
duality pairings hold:

Sdiv!k, uT
1,!"!P! k )+!u dp, ∀u3H1(!), ∀ k3L2

5
(!)

Scurl!k, uT
1,!"P! k ) curl!udp, ∀u3H1(!), ∀ k3L2

5
(!)

It is clear that div! and curl! are, respectively, linear and continuous operators from L2
5
(!) to

H~1 (!).
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3. HODGE DECOMPOSITION OF L2
t(!)

In this section, we shall analyse the properties and the validity of standard relationships among
gradient, divergence and curl operators in the L2

5
(!) context. Keeping in mind that we have to

recover all the well-known results in the case of smooth domains (cf. [4] or [6]), in the context of
non-smooth domains, let us start by the following important result:

Proposition 3.1. The following identities hold:

Ker(curl!)"Im (+!), Ker(div!)"Im (curl!) (3)

They are equivalent to the following:

f curl! (+!u)"0, div!(curl!u)"0 ∀u3H1 (!);
f for every w3L2

5
(!) such that curl!w"0 (resp. div!w"0) there exists a function a3H1(!) such

that w"+!a (resp. w"curl!a).

Remark 3.2. This proposition has an important consequence, which is that both Im (+!) and
Im (curl!) are closed in L2

5
(!). Therefore, their adjoints div! and curl! are surjective operators (see

e.g. [2]).

Proof. First of all note that the two identities in (3) are equivalent, up to a rotation of vector
"elds. We deal then only with the "rst one (the proof for the second one stems easily.)

Step 1. Let us start by proving that Ker(curl!).Im (+!), which is equivalent to showing that
curl!(+!u)"0 ∀u3H1 (!). From the de"nition of H1(!) in (1), given a function u3H1 (!), one
has u

jDeij
"u

iDeij
in H1@2(e

ij
). Deriving this equality along the edge (cf. [10, p. 94]) one gets

+!uj
) s

ij
"+!ui

) s
ij

in H~1@2
00

(e
ij
). (4)

where H~1@2
00

(e
ij
) is the dual space of H1@2

00
(e

ij
).

Moreover, it is clear that

curl! (+!u
j
)"0 ∀j (5)

Let s@
j
be the (clockwise) unit vector tangent to R!

j
; using (4), (5) and De"nition 2.3, one has, for

g3H1(!):

Scurl! (+!u), gT
1,!"P!+!u ) curl! gdp

"

N
+
j/1
P!j

+!uj
) curl! g

j
dp"

N
+
j/1
PR!j

+!uj
) s@

j
gdp (6)

By choosing a function g which vanishes in a neighbourhood of the vertices, the last sum in (6)
reads

N
+
j/1
PR!j

+!uj
) s@

j
gdp"

N
+
j/1

+
i|Ij, i:j

e
ij
S+!uj

) s
ij
!+!ui

) s
ij
, gT

1@2,00,eij
(7)
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Here, e
ij

is either equal to !1 or #1, depending on the orientation of s
ij
. Using (4) in (7), one

gets that the right-hand side of (7) is identically equal to zero. By a density argument, which is that
the set of elements of H1 (!), which vanish in a neighbourhood of the vertices, is dense in H1(!),
the "rst statement is proved.

Step 2. Let us analyse now the other inclusion Ker(curl!)-Im (+!) and proceed by direct
construction: let w3L2

5
(!) be such that curl! w"0 in H~1(!) ; we shall prove that there exists

m in H1(!) such that t"+!m. Recalling the de"nition of curl!, one has

0"Scurl!w, uT
1,!"P!w ) curl! udp ∀u3H1(!)

which is equivalent to the following:

curl! w
j
"0 in H~1(!

j
) and w

j
) s

ij
"w

i
) s

ij
in H~1@2

00
(e

ij
) ∀i3I

j
, ∀j (8)

Since every face is a regular manifold, one can apply standard results (see, e.g. [7, p. 31]) to get

&!m
j
3H1 (!

j
) such that w

j
"+!(m

j
#c

j
) (9)

where (c
j
)
1xjxN

are arbitrary constants. The second equality in (8) implies then

Rm
i

Rs
ij

"

Rm
j

Rs
ij

in H~1@2
00

(e
ij
), ∀i3I

j
, ∀j

Using the theorem of &null derivative' for distributions, one obtains then that m
i
"m

j
#c

ij
in

H1@2 (e
ij
) where c

ij
is a new arbitrary constant (which depends on both c

i
and c

j
).

Now, it is su$cient to show that there is a choice of constants (c
j
)
1xjxN

which yields an
H1-function. Let !

j
be a face and set c

j
"0: for every i3I

j
, let us choose the value of c

i
(the

constant in (9)) in a way that m
i
"m

j
in H1@2(e

ij
), that is c

ij
"0.

To end the proof, let us denote by i and i@ two indices in I
j
such that !

i
and !

i{
have a common

edge e
ii{

which shares a vertex, namely S
k
, with e

ij
. We show that necessarily m

i
"m

i{
in H1@2(e

ii{
).

This comes from the following set of relationships:

(a) m
i
3H1@2(e

ij
Xe

ii{
XS

k
) and m

i{
3H1@2(e

i{j
Xe

ii{
XS

k
)

(b) m
i
"m

j
in H1@2(e

ij
) and m

i{
"m

j
in H1@2(e

i{j
) (10)

(c) m
i
"m

i{
#c

ii{
in H1@2(e

ii{
)

The coupling term (an integral) at the vertex S
k
(see e.g. [9, p. 17]) coming from (a) and (b) in (10)

imposes that c
ii{
"0 in (c). h

Remark 3.3. If ! is not simply connected, (3) is not true anymore. Indeed, one should add
a "nite-dimensional space to Im (+!) (resp. Im (curl!) to get the whole of Ker(curl!)
(resp. Ker(div!)). The Hodge decomposition (11) should also be modi"ed accordingly.

We are now in the position to construct the Hodge decomposition of the space L2
5
(!).
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Theorem 3.4. The following decomposition holds:

L2
5
(!)"+!H1(!)=M curl! H1(!) (11)

where =M means that the decomposition is direct and orthogonal with respect to S ) , ) T
t
.

Proof. Let u3L2
5
(!). Let us consider the di!erential problem: "nd p3H1(!) such that

P!(u!+!p) )+!q dp"0 ∀q3H1(!) (12)

Since :
!
+!p )+!pdp*CDDpDD2

H
1(!)@R (C is independent of p), problem (12) admits a unique solution

p3H1(!)/R. Moreover, from equality (12) and De"nition 2.3, one gets div!(u!+!p)"0. Using
Proposition 3.1, we have

&!m3H1 (!)/R such that u!+!p"curl!m

The orthogonality of the decomposition comes directly from (4)}(7). h

4. SPACES RELATED TO TANGENTIAL TRACES FOR H(curl, ))

4.1. Preliminaries

We start by studying a complete characterization for the space of the tangential trace (and
tangential components) of H1()).

In order to do that let us start with the following de"nition:

Dexnition 4.1. The &tangential components trace' mapping nq :D ()1 )3CH1@2
~

(!) and the
&tangential trace' mapping cq :D ()1 )3PH1@2

~
(!) are de"ned as uCn'(u'n)D! and uCn'uD!,

respectively.

On the one hand, it is true that nq and cq can be extended to a linear continuous mapping from
H1 ()) to H1@2

~
(!). On the other, we show in what follows that these mappings are not surjective

and that their ranges are two di!erent subspaces of H1@2
~

(!).
Let us focus our attention on the analysis of the mapping nq and, at the end, by using the

identity nq (u)"n'cq(u) we shall recover the properties of cq.
Since one deals with polyhedrons, given a function u3H1 ()), the de"nition of nqu can be

understood face by face:

nq, ju :"u
j
!(u

j
) n

j
)n

j
∀u3H1())

One gets then that an equivalent de"nition of nq is

nq : H1())PH1@2
~

(!) nqu (x)"nq,ju(x) for a.e. x3!
j
, ∀j

In the following we prove that the range of this mapping is a true subspace of H1@2
~

(!). For that,
a preliminary result is required.
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Theorem 4.2.

u3H1@2(!)Q G
u3H1@2(!

i
), ∀i3M1,2, NN and

P!i
P!j

Du(x)!u (y)D2
DDx!yDD3

dp(x) dp(y)(R, ∀iOj s.t. !1
i
W!1

j
"e

ij

For the proof of this result, we refer to [3].

Proposition 4.3. Let u3H1()), u"nqu and w"cqu. Moreover, let !
i
and !

j
be two faces with

a common edge e
ij
. The following integrals are bounded:

N DD

ij
(u) :"P!i

P!j

Du
i
) s

ij
(x)!u

j
) s

ij
(y)D2

DDx!yDD3
dp(x) dp(y)

NM
ij
(w) :"P!i

P!j

Dw
i
) s

i
(x)!w

j
) s

j
(y)D2

DDx!yDD3
dp(x) dp (y)

For the proof, see [3].
Now, let (t

i
, t

j
)3H1@2(!

i
)]H1@2(!

j
). Let us adopt the notation

t
i
1@2
"t

j
at e

ij
QP!i

P!j

Dt
i
(x)!t

j
(y)D2

DDx!yDD3
dp (x) dp (y)(R (13)

By Proposition 4.3, the range of nq is included in

H1@2DD (!) :"Mu3H1@2
~

(!) : u
i
) s

ij
1@2
"u

j
) s

ij
at e

ij
∀i3I

j
, ∀jN

And analogously the range of cq is included in

H1@2
M

(!) :"Mw3H1@2
~

(!) : w
i
) s

i
1@2
" w

j
) s

j
at e

ij
∀i3I

j
, ∀jN

The following two propositions are now devoted to proving that H1@2DD (!) and H1@2
M

(!) are Hilbert
spaces (endowed with suitable norms) and that they are indeed the range of nq and of cq,
respectively.

Proposition 4.4. The space H1@2DD (!) and H1@2
M

(!) are Hilbert spaces when endowed with the
following norms, respectively:

DDwDD2DD,1@2,! :"
N
+
j/1

DDw
j
DD2
1@2,!j

#

N
+
j/1

+
i|Ij

NDD

ij
(w)

DDwDD2
M,1@2,! :"

N
+
j/1

DDw
j
DD2
1@2,!j

#

N
+
j/1

+
i|Ij

NM
ij
(w)

See [3] for the proof of this result.
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Proposition 4.5. The mapping nq : H1())PH1@2DD (!) such that uCn (u'n)D! is linear, continuous
and surjective. Moreover, there exists a continuous lifting mapping Rn from H1@2DD (!) to H1()). In
the same way cq :H1())PH1@2

M
(!) is linear continuous and surjective. Let Rc denote the asso-

ciated continuous lifting mapping.

See [3] for the proof of this result.
In the remainder of the paper, let us call H~1@2DD (!) and H~1@2

M
(!) the dual spaces of H~1@2DD (!)

and H~1@2
M

(!), respectively (with L2
t
(!) as the pivot space.) Moreover, let us denote by S ) , ) TDD,1@2,!

(resp. S ) , )T
M,1@2,!) the duality product between H~1@2DD (!) and H1@2DD (!) (resp. H~1@2

M
(!) and

H1@2
M

(!)).

4.2. More about di+erential operators on !

We need now to extend the de"nitions of the di!erential operators on !, both to more and less
regular Sobolev spaces.

Let us set

H3@2(!) :"Mu3H1(!) such that +!u3H1@2DD (!)N (14)

or equivalently

H3@2(!) :"Mu3H1 (!) such that curl!u3H1@2
M

(!)N

This is a Hilbert space endowed with the natural norm

DDuDD2
3@2,! :"

N
+
j/1

DDuDD2
1,!j

#DD+!uDD2DD,1@2,!"
N
+
j/1

DDuDD2
1,!j

#DDcurl!uDD2
M,1@2,!

For a sharper result on the de"nition of H3@2(!), see the Corollary 3.7 of [3]. In the following,
let us denote by H~3@2(!) the dual space of H3@2(!) with ¸2 (!) as the pivot space.

An immediate consequence of this de"nition is that the restriction of the tangential gradient,
+! :H3@2(!)PH1@2DD (!) and of the tangential vector curl, curl! : H3@2(!)PH1@2

M
(!) are linear,

continuous, injective up to a constant. Their adjoints div! : H~1@2DD (!)PH~3@2(!) and
curl! :H~1@2

M
(!)PH~3@2(!) are then de"ned by: for every u3H3@2(!), k3H~1@2DD (!), w3H~1@2

M
(!)

Sdiv!k, uT
3@2,!"!Sk, +!uTDD,1@2,!

Scurl!w, uT
3@2,!"Sw, curl!uT

M,1@2,!
We now make use of the following result which has been proved in [3].

Theorem 4.6. Let

H~1@2DD (div!, !) :"Mk3H~1@2DD (!) : div!k3H~1@2(!)N

H~1@2
M

(curl!, !) :"Mk3H~1@2
M

(!) : curl!k3H~1@2(!)N

The mappings nq :H (curl, ))PH~1@2
M

(curl!, !) and cq :H (curl, ))PH~1@2DD (div!, !) are linear and
continuous. Moreover, the following integration by parts holds true:

P)Mcurl v ) u!curl u ) vN d)"Scqu, nqvTDD,1@2,! ∀u3H(curl, )), v3H1 ())
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tSumming up, an alternate notation of this kind of results is the following:

H1@2(!) +!
P H~1@2

M
(!)

curl!
P H~3@2(!)PM0N, H1@2(!)

curl!
P H~1@2

@@
(!)$*7!PH~3@2(!)PM0N

Now, we certainly have that the following identities hold:

+!(uD! )"nq (+u) and curl! (uD!)"cq(+u) ∀u3D
e
()1 )

whereD
e
()1 ) is the subset of D()1 ) made up of functions which vanish in a neighbourhood of every

edge (e
ij
)
1xjxN, i|Ij

. Moreover, the right-hand sides depend only on the trace of u.
By the density of D

e
()1 ) in H1()) and using Theorem 4.6, we have that the tangential gradient

and vector curl can be extended as linear continuous operators:

+! :H1@2(!)PH~1@2
M

(!) and curl! :H1@2 (!)PH~1@2DD (!) (15)

Accordingly their adjoints div! :H1@2
M

(!)PH~1@2(!) and curl! :H1@2DD (!)PH~1@2(!) are de-
"ned, for every u3H1@2(!), k3H1@2

M
(!) and w3H1@2DD (!), by:

Sdiv!k, uT
1@2,!"!S+!u, kT

M,1@2,!
Scurl!w, uT

1@2,!"Scurl!u, wTDD,1@2,! (16)

We follow now the same line as in Section 3 to prove the equivalent of Proposi-
tion 3.1:

Proposition 4.7. The following identities hold:t

Ker(curl! (H~1@2
M

))"Im(+!(H1@2)), Ker(div! (H~1@2DD ))"Im(curl!(H1@2)) (17)

Remark 4.8. As a consequence Im(+!(H1@2)) is closed in H~1@2
M

, and Im(curl!(H1@2)) is closed in
H~1@2DD (!). Their adjoints are thus surjective operators (see [2]): div! from H1@2

M
(!) to H~1@2(!),

and curl! from H1@2DD (!) to H~1@2(!).

Proof. Since, as before, the two identities in (17) are equivalent, we deal only with the "rst one.
The proof is split into three steps. Let us prove that

f Ker(curl!).Im(+!),
f Im(+!) is dense in Ker(curl!),
f Im(+!) is closed in H~1@2

M
(!).

Step 1. Straightforward from Proposition 3.1 and the density of H1(!) in H1@2(!).
Step 2. For that, let us prove that any continuous linear form which vanishes on Im(+!) also

vanishes on Ker(curl!). Let w3H1@2
M

(!) be such that

S+!p, wT
M,1@2,!"0 ∀p3H1@2(!) (18)

We want to prove now that

Sw, wT
M,1@2,!"0, ∀w3Ker(curl!) (19)

and in order to reach our goal we have to characterize the set of functions w3H1@2
M

(!) which
satisfy (18). From (18), one infers that div!w"0. Using Proposition 3.1, there exists a function
b3H1(!) such that w"curl!b. Moreover, owing to the de"nition of H3@2(!), one has b3H3@2 (!).
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Coming back to (19), ∀w3Ker(curl!)

Sw, curl!bT
M,1@2,!"Scurl!w, bT

3@2,!"0

Step 3. Using Peetre's Lemma (see e.g. [7, p. 18]), the embedding of H1@2(!) into ¸2 (!) being
compact, one has to prove that there exists a constant C such that, for every p3H1@2(!), the
following inequality holds true:

DDpDD
1@2,!)C (DDpDD

0,!#DD+!pDD
M,~1@2,!) (20)

Over each face, one has

DDp
j
DD
1,!j

)J2(DDp
j
DD
0,!j

,#DD+!pjDD0,!j
), ∀p

j
3H1(!

j
)

Owing to [7, p. 20], there exists a constant c such that

DDp
j
DD
0,!j

)c(DDp
j
DD
~1,!j

#DD+!pjDD~1,!j
), ∀p

j
3¸2 (!

j
)

Using three results of [10], which are the main interpolation theorem (p. 31), the de"nition of
H1@2

00
(!

j
) (p. 72), and the duality theorem (p. 34), one readily obtains

DDp
j
DD
1@2,!j

)c (DDp
j
DD
~1@2,00,!j

#DD+!pjDD~1@2,00,!j
)

)c (DDp
j
DD
0,!j

#DD+!pjDD~1@2,00,!j
) (21)

Let !
i
and !

j
be two faces with a common edge e

ij
. In the following let p stand for the restriction

of p to !
ij
. Owing to Theorem 4.2, and by a localization argument, one needs only to prove that:

DDpDD
1@2,!ij

,)c (DDpDD
0,!ij

#DD+!pjDD~1@2,00,!ij
)

Let !3
ij

be the surface composed of two half-planes, one containing !
i
, the other containing !

j
,

separated by a straight line containing e
ij
. Let P be the plane containing !

j
and J :PP!3

ij
be the

canonical (see below), injective and piecewise orthogonal application which sends P in !3
ij
. It

turns out that J3=1,=(P). Let p8 denote a continuous extension of p, which belongs to H1@2(!3
ij
).

By standard interpolation properties in Sobolev spaces (see [11]), one gets that p8
3
J3H1@2(P)

and that H1@2-norms of p8 and p8
3
J are equivalent. Owing to (21) applied to p8

3
J, one gets

DDp8 DD
1@2,!1 ij)C(DDp8

3
JDD

0,P
#DD+ (p8

3
J)DD

~1@2,P
) (22)

Let us estimate now the right-hand side of (22) by the following argument.
Without loss of generality (here, the value of the diedric angle is set a n/4), let us suppose that

the application J has the form

J :PP!3
ij
(x, y)C(x8 , y8 , z8 )"G

(x, y, 0) if x)0

A
x

J2
, y,

x

J2B if x*0

Now, by direct calculation of the gradient + (p8
3
J), one has

+ (p8
3
J)"A

Rp8
Rx8 ,
Rp8
Ry8 B

T
x)0 + (p8

3
J)"A

1

J2

Rp8
Rx8 #

1

J2

Rp8
Rz8 ,
Rp8
Ry8 B

T
x*0 (23)
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And, on the other hand, one also has

+!p8 "(+!p8 ) sij, +!p8 ) s)T where s"s
i
on !

i
and s"s

j
on !

j
, that is

+!p8 j"A!
Rp8
Ry8 ,
Rp8
Rx8 B

T
, +!p8 i"A!

Rp8
Ry8 ,

1

J2

Rp8
Rx8 #

1

J2

Rp8
Rz8 B

T
(24)

The fact that +!p8 3H~1@2
M

(!3
ij
) implies that

+!p8 ) sij3H~1@2(!3
i
), +!p8 ) sij3H~1@2(!3

j
) and +!p8 ) s3H~1@2(!3

ij
) (25)

Using (23)}(25) and the equivalence of H1@2 norms, we "nally get

DD+(p8
3
J)DD

~1@2,P
)CDD+!p8 DDM,~1@2,!3 ij

By a localization argument, (20) holds true. K

5. HODGE DECOMPOSITION FOR H21/2
DD (div!,!)

Using the de"nitions in the previous sections, the Laplace}Beltrami operator can be de"ned as

*!u :"div!+!u"!curl! curl!u ∀u3H1(!) (26)

and it is easily proved, in a variational setting (using the Lax}Milgram theorem), that
*! :H1 (!)/RPH~1(!) is an isomorphism. We set now

H(!) :"Mu3H1(!)/R such that *!u3H~1@2(!)N (27)

We are now in a position to prove the next Theorem which allows to split a tangential "eld, which
belongs to H~1@2DD (div!,!). The "rst is explicitly a decomposition in a &regular' part and a &singular'
part, while the second is a direct Hodge decomposition.

Theorem 5.1. The following holds:

H~1@2DD (div!, !)"curl!(H1@2(!)/R)#H1@2
M

(!) (28)

H~1@2DD (div!, !)"curl!(H1@2(!)/R)=+!(H (!)) (29)

where = denotes a direct sum which is orthogonal in the following sense: let b3H1@2(!) and
b
n
3H1(!) be a sequence such that b

n
Pb in H1@2(!), then

Scurl!b, +!aT :" lim
nP#=P! curl!bn

)+!adp"0 ∀b3H1@2(!), a3H(!) (30)

Proof. Let u3H~1@2DD (div!, !). We prove "rst decomposition (28). Owing to Proposition 4.7 and
its associated Remark, the operator div! is surjective, that is, there exists a function w3H1@2

M
(!)

such that

div!u"div!w.

Moreover, this function is de"ned up to the kernel of the div! operator with respect to the scalar
product in H1@2

M
(!), where the kernel of div! can be characterized as ImMcurl! (H3@2 (!))N by a proof

similar to that of Proposition 3.1 and recalling Theorem 3.4 in [3].
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Applying Proposition 4.7, we know that there exists a (unique) a3H1@2(!)/R such that

u!w"curl!a (31)

In order to prove now the validity of (29), we need to apply decomposition (11) to the function
w in (31). There exists a single (p, q)3(H1 (!)/R)2 such that w"+!p#curl!q. Moreover, since
div!(w)3H~1@2(!), we deduce p3H(!). Rewriting (31) we obtain

u"+!p#curl!b, p3H(!), b"q#a, b3H1@2(!)/R

In order to prove that the sum in (29) is direct we proceed by contradiction. Let
n3+!H(!)Wcurl!H1@2(!), in particular n3L2

t
(!) and it belongs to Im(curl!)W Im(+!)"M0N.

Finally, (30) is surely true since :!+!a ) curl!b dp"0 for any a, b3H1(!). h

Remark 5.2. Decomposition (29) is then the one which corresponds to the Hodge decomposi-
tion proved in [6], but in our case the spaceH(!) cannot be a posteriori replaced by H3@2 (!). The
key point is that a shift theorem for the Laplace}Beltrami operator is missing. Nevertheless, few
comments are due. Let (cf. (14))

H3@2
reg

(!) :"Mu3H1 (!) such that +!u3H1@2DD (!)WH1@2
M

(!)N

The following holds:

H3@2
3%'

(!)-H(!)-H1(!) but H3@2(!)U. H(!)

Actually, the condition div!+!p3H~1@2(!) imposes +!pi ) si"+!pj ) sj at any edge e
ij
. The space

H3@2
3%'

(!) is exactly the subspace of H3@2(!) of functions which verify this condition.
The result of the same type is also true for the space H~1@2

M
(curl!, !):

Theorem 5.3. The following holds:

H~1@2
M

(curl!, !)"+! (H1@2(!)/R)#H1@2DD (!) (32)

H~1@2
M

(curl!, !)"+! (H1@2(!)/R)= curl! (H(!)) (33)

where = has to be regarded as in Theorem 4.1.

The following characterization theorems for the trace mappings in H (curl, )) are a direct
consequence of these results.

Theorem 5.4. The mappings nq :H(curl, ))PH~1@2
M

(curl!, !) and cq :H(curl, ))PH~1@2DD (div!, !)
are surjective, that is, they have continuous inverses.

Proof. Since the two cases are equivalent, let us focus the attention on cq. Let k3H~1@2DD (div!, !).
By Theorem 4.1, it is decomposed as:

k"w#curl!a a3H1@2(!)/R, w3H1@2
M

(!)

Using Proposition 4.5, with the same notation, one gets that Rcw is a lifting of w inside ) and it
belongs to H1()). On the other hand, let us denote by R

1
a3H1 ()) a continuous lifting of a in ).

The function:

u"R
r
w#+ (R

1
a)

42 A. BUFFA AND P. CIARLET, JR.

Copyright ( 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:31}48



veri"es u'nD!"k and belongs to H(curl, )). cq is thus linear, continuous and surjective. Up to its
kernel, its inverse is continuous, owing to the open mapping theorem. h

Remark 5.5. Of course, many choices of the &regular' part (belonging to H1@2
M

(!) and H1@2DD (!),
respectively), in decompositions (28) and (32) are possible, but in principle, these choices cannot
lead to orthogonal decompositions. For example, using Theorem 5.4 above and the decomposi-
tion of "elds of H(curl, )) of Remark 4.2 in [3], we see that the function w3H1@2

M
(!) can be

chosen, for example, as the tangential trace of a function which belongs to H1())WH
0
(div, )).

Finally, another immediate consequence of this decomposition is the following identity:

H~1@2DD (div!, !)"(H~1@2
M

(curl!, !))@

with L2
5
(!) as a pivot space in a sense which is made clear subsequently. This duality has already

been stated in the case of a smooth domain (see e.g. [4, p. 40]).

Dexnition 5.6. Let u3H~1@2DD (div!, !) and v3H~1@2
M

(curl!, !). Owing to Theorems 5.1 and 5.3
there exist au, av3H (!) and bu, bv3H1@2(!) such that

u"+!au#curl!bu , v"curl! av#+!bv

Let us de"ne

cSu, vTn"!S*!au, bvT1@2,!#S*!av, buT1@2,! (34)

It is not hard to see that when u and v are smooth enough, namely u, v3L2
5
(!), the left-hand

side is equal to the L2
5
(!) scalar product between u and v. By a density argument the formula (34)

is then well de"ned with L2
5
(!) as pivot space.

Note that this duality is not strictly linked to the direct decomposition that
is used in De"nition 5.6. Following Remark 5.5, given another, non-orthogonal
decomposition,

u"w#curl!p, v"u#+!q, t3H1@2
M

(!), u3H1@2DD (!), p, q3H1@2(!)

The duality can still be de"ned as

cSu, vTn"S+!q, tT
M,1@2,!#Scurl!p, uTDD,1@2,!#Sw, uT

t

As a conclusion, the following integration by parts formula holds true:

P)Mcurl v ) u!curl u ) vNd)"cScq(u), nq(v)Tn ∀u, v3H(curl, ))

6. ON A PART OF != TRACE THEOREMS AND HODGE DECOMPOSITIONS

The aim of this section is now to extend the results stated in Section 5 to the case of spaces and
trace mappings de"ned on a part of and no more on the whole boundary.

As in the companion paper, [3], we need to introduce some notations and spaces. Let !1
`

be
a collection of closed faces of ! such that !1

`
is connected. !̀ is then an open subset of ! with
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a piecewise regular boundary R!̀ . Let !
~
"!C!1

`
and I

`
be the set of indices j such that

!
j
-!̀ . We denote by RI

`
-I

`
the set of indices j corresponding to the faces which share at

least one edge with R!̀ . Finally, we denote by s
`

the unit tangent vector to R!̀ , s
`j

"s
`D!1 jW/!̀ ,

and by m
`

the outward normal vector de"ned as m
`D!1 jW/!̀ "m

`j
for any j3RI

`
, with

m
`j

"s
`j

'n
j
(the orientation of s

`j
is such that m

`j
is an outward normal).

We start by considering the Hodge decomposition of the space L2
5
(!̀ ).

Theorem 6.1. The following holds:

L2
5
(!̀ )"+!`

H1
0
(!̀ )=M curl!`

MH1 (!̀ )/RN

L2
5
(!̀ )"+!`

MH1(!̀ )/RN=M curl!`
H1

0
(!̀ ) (35)

Proof. We focus our attention on the "rst decomposition in (35), since the second one is
equivalent. Given u3L2

5
(!), we solve:

Find p3H1
0
(!̀ ) :P!`

+!`
p )+!`

qdp"P!`

u )+!`
q dp, q3H1

0
(!̀ )

This problem admits a unique solution and, moreover, it holds div!`
(u!+!`

p)"0. As a conse-
quence, by the same reasoning as in Proposition 3.1, we have that u"+!`

p#
curl!`

q, q3H1 (!̀ )/R. h

Let 5 3 be the extension by zero to !. We need the spaces:

H1@2
00

(!̀ ) :"Mu3H1@2(!̀ ): u8 3H1@2(!)N

H1@2DD (!̀ ) :"MuD!`
, u3H1@2DD (!)N (36)

H1@2
M

(!̀ ) :"MuD!`
, u3H1@2

M
(!)N (37)

H1@2DD,00
(!̀ ) :"Mu3H1@2DD (!̀ ): u8 3H1@2DD (!)N (38)

H1@2
M,00

(!̀ ) :"Mu3H1@2
M

(!̀ ): u8 3H1@2
M

(!)N (39)

We refer to [3] for the de"nition of the related norms.
Let us denote by H~1@2

00
(!̀ ), H~1@2DD (!̀ ), H~1@2

M
(!̀ ), H~1@2DD,00

(!̀ ) and H~1@2
M,00

(!̀ ) their dual spaces,
respectively; and the duality products by S ) , )T1@2,00,!`

, S ) , )TDD,1@2,!`
, S ) , )T

M,1@2,!`
,

S ) , ) TDD,1@2,00,!`
and S ) , )T

M,1@2,00,!`
, respectively. By standard arguments, the di!erential oper-

ators de"ned in section 5 can be easily adapted to functions de"ned only
on !̀ . For example, the gradient and divergence operators read now

+!`
: H1@2

00
(!̀ )PH~1@2

M
(!̀ ) and +!`

: H1@2 (!̀ )PH~1@2
M,00

(!̀ )
(40)

div!`
:H1@2

M
(!̀ )PH~1@2

00
(!̀ ) and div!`

:H1@2
M,00

(!̀ )PH~1@2(!̀ )

In a similar way, the operators curl!`
and curl!`

are de"ned.
Moreover, the following properties hold:

(+!b)D!`
"+!`

(bD!`
) and (curl!b)D!`

"curl!`
(bD!`

) ∀b3H1@2 (!) (41)
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Indeed, let v3H1@2
M,00

(!̀ )W%
j|I`

D (!
j
)2, the following chain of equalities proves the validity

of (41):

S(+!b)D!`
, vT

M,1@2,00,!`
"S+!b, v8 T

M,1@2,!"!Sdiv!v8 , bT
1@2,!

"!Sdiv!`
v, bD!`

T
1@2,!`

"S+!`
(bD!`

), vT
M,1@2,00,!`

where the last inequality corresponds to the de"nition of div!`
.

The proof of Proposition 4.7 applies unchanged and proves also:

Proposition 6.2. The operators +!`
: H1@2(!̀ )PH~1@2

M,00
(!̀ ) and +!`

: H1@2
00

(!̀ )PH~1@2
M

(!̀ )
have closed ranges.

Of course, by the open mapping theorem, the operator div!`
is surjective in the corresponding

spaces.
Let us now prove a trace theorem. For that, let us recall

Proposition 6.3. Let

H~1@2DD (div!`
, !̀ ) :"Mk3H~1@2DD (!̀ ): div!`

k3H~1@2(!̀ )N (42)

H~1@2
M

(curl!`
, !̀ ) :"Mk3H~1@2

M
(!

`
): curl!`

k3H~1@2(!̀ )N (43)

Moreover, let H1(R!̀ ) denote the standard H1 space on the Lipschitz manifold R!̀ ; H~1(R!̀ ) is
its dual space (with ¸2 (R!̀ ) as pivot) and S ) , )T1,R!`

is the corresponding duality pairing.
Let the operators tl : H~1@2DD (div!`

, !̀ )WD()1 )D!`
PH~1 (R!̀ ) and tq :H~1@2

M
(curl!`

, !̀ )W
D()1 )D!`

PH~1(R!̀ ) be de"ned by the mappings kCk ) m
`DR!`

and kCk ) s
`DR!`

, respectively.
They can be extended to linear and continuous operators from H~1@2DD (div!`

, !̀ ) and
H~1@2

M
(curl!`

, !̀ ), respectively.
Moreover, if k3H~1@2DD (div!, !), we have that tl(kD!`

)#t~l (kD!~
)"0 at R!̀ , where t~l denotes

the same mapping as tl, but on the side !
~

.

The proof of this proposition can be found in [3].
We set,

H~1@2DD,00
(div!`

, !̀ )"Mk3H~1@2DD,00
(!̀ ): div!`

k3H~1@2
00

(!̀ )N (44)

H~1@2DD (div0!`
, !̀ )"Mk3H~1@2DD (div!`

, !̀ ): tl(k)"0N (45)

H(!̀ )"Mu3H1 (!̀ ): *!`
u3H~1@2(!̀ ), tl (+!`

u)"0N (46)

H
00

(!̀ )"Mu3H1
0
(!̀ ): *!`

u3H~1@2
00

(!̀ )N (47)

The following holds.

Theorem 6.4. The following decompositions are valid:

H~1@2DD,00
(div!`

, !̀ )"H1@2
M

(!̀ )#curl!`
H1@2(!̀ ) (48)

H~1@2DD,00
(div!`

, !̀ )"+!`
H

00
(!̀ )= curl!`

H1@2(!̀ ) (49)
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H~1@2DD (div0!`
, !̀ )"H1@2

M,00
(!̀ )#curl!`

H1@2
00

(!̀ ) (50)

H~1@2DD (div0!`
, !̀ )"+!`

H(!̀ ) = curl!`
H1@2

00
(!̀ ) (51)

Here, = denotes a direct sum, in the sense of Theorem 5.1.

Proof. Let k3H~1@2DD,00
(div!`

, !̀ ). Since div!`
k3H~1@2

00
(!̀ ), using Proposition 6.2, we deduce

that there exists a w3H1@2
M

(!̀ ) such that div!`
(k!w)"0. By using again Proposition 6.2, there

exists a b3H1@2(!̀ ) such that k"w#curl!`
b: (48) holds.

Now, using Theorem 6.1, we decompose t as

w"+!`
q#curl!`

p q3H1
0
(!̀ ), p3H1(!̀ )

Since div!`
(w)3H~1@2

00
(!̀ ), we deduce q3H

00
(!̀ ). We have then k"+!`

q#curl!`
(b#p). It is

easy to see that the sum is direct and then (49) is proved.
The proof of (50) and (51) could be achieved with a similar technique but we propose here an

alternative. Let k3H~1@2DD (div0!`
, !̀ ). We know, by Proposition 6.3, that k3 3H~1@2DD (div!, !). Now

using, Theorem 4.1, we have

k3 "w#curl!b w3H1@2
M

(!), b3H1@2(!)/R

Since k3 D!~
"0, we deduce tD!~

"!(curl!b)D!~
. By means of Theorem 3.4 in [3] and (41), we know

that bD!~
3H3@2(!

~
) :"H3@2(!)D!~

: there exists a function b
R
3H3@2(!) such that b

RD!
~
"bD!~

, we
then have

k"(w#curl!BR
)D!`

#curl!`
(b!b

R
)

where u"(w#curl!bR
)D!`

3H1@2
M,00

(!̀ ) and (b!b
R
)D!`

3H1@2
00

(!̀ ). (50) is proved. As before, we
decompose now u by means of Theorem 6.1, and we get

u"+!`
p#curl!`

q p3H(!̀ ), q3H1@2
00

(!̀ )

By substitution, (51) is proved. h

Remark 6.5. Of course, with self-explanatory notations, we have that:

H~1@2
M,00

(curl!`
, !̀ )"H1@2DD (!̀ )#+!`

H1@2(!̀ ) (52)

H~1@2
M,00

(curl!`
, !̀ )"curl!`

H
00

(!̀ )=+!`
H1@2(!̀ ) (53)

H~1@2
M

(curl0!`
, !̀ )"H1@2DD,00

(!̀ )#+!`
H1@2

00
(!̀ ) (54)

H~1@2
M

(curl0!`
, !̀ )"curl!`

H (!̀ )=+!`
H1@2

00
(!̀ ) (55)

The following theorem is an easy consequence of the above:

Theorem 6.6. The mapping c`q :H(curl, ))PH~1@2DD,00
(div!`

, !̀ ) (respectively its restriction
c`,0q : H

0,!~
(curl, ))PH~1@2DD (div0!`

, !̀ )) which associates to a vector "eld u3H(curl, )) (resp. to
u3H

0,!~
(curl, ))) its tangential components on !̀ , that is u'nD!`

, is linear continuous and
admits a continuous inverse.

Proof. The fact that both mappings are linear and continuous is straightforward. As far as
surjectivity is concerned, let us start by analysing the mapping c`,0q . Let k3H~1@2DD (div0!`

, !̀ ), it is
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decomposed as k"w#curl!`
b for some w3H1@2

M,00
(!̀ ) and b3H1@2

00
(!̀ ). Now, the function

u"Rcw
3 #+ (R

1
bI ) is the extension of k to ).

We consider now the case of the mapping c`q . Let l3H~1@2DD,00
(div!`

, !̀ ). According to Theorem
6.4, l is decomposed as l"u#curl!`

a, with u3H1@2
M

(!̀ ) and a3H1@2(!̀ ). Now, both functions
u and a can be extended to the whole boundary. On the extended functions, one can apply
pro"tably Theorem 5.4.

As usual, the continuity of the inverse stems from the open mapping theorem. h

Remark 6.7. With obvious notation, we have also obtained that the mappings

n`q :H (curl, ))PH~1@2
M,00

(curl!`
, !

`
), n`,0q :H

0,!~
(curl, ))PH~1@2

M
(curl0!`

, !̀ )

both de"ned as uCnq (u)D!`
, are linear continuous and surjective.

We focus now our attention on the extension of the duality given in De"nition 5.6 to the case of
a part !̀ of the boundary.

The following identities are consequences of the theory developed until now:

H~1@2DD (div0!`
, !̀ )"(H~1@2

M,00
(curl!`

, !̀ ))@

H~1@2DD,00
(div!`

, !̀ )"(H~1@2
M

(curl0!`
, !̀ ))@

with L2
5
(!̀ ) as pivot space. Since the two identities are completely symmetric, let us de"ne the

duality operator only for the "rst one (the second one is then straightforward).

Dexnition 6.8. Let u3H~1@2D D (div0!`
, !̀ ) and v3H~1@2

M,00
(curl!`

, !̀ ). Using Theorem 6.4, there
exists au3H(!̀ ), av3H

00
(!̀ ) and bu3H1@2

00
(!̀ ), bv3H1@2 (!̀ ) such that:

u"+!`
au#curl!`

bu and v"curl!`
av#+!`

bv

Let us de"ne

c,!`
Su, vTn,00,!`

"!S*!`
au, bvT1@2,!`

#S*!`
av, buT1@2,00,!`

Finally, by standard argument, we conclude that the following integration by parts formula
holds true:

P)Mcurl v ) u!curl u ) vN d)"c,!`
Sc`,0q u, n`q vTn,00,!`

∀v3H(curl, )), u3H
0,!~

(curl, ))
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