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Introduction

In this paper, we propose a method, called the Singular Complement Method
(latter referred to as the SCM), which allows to solve PDEs, such as the Laplace
problem, Maxwell’s equations, etc., in a non-smooth and non-convex domain.
In order to define the SCM, let us recall first some basic ingredients of Domain
Decomposition Methods (or DDM).

Consider the variational problem (with obvious notations)
find u ∈ V such that

a(u, v) = l(v), ∀v ∈ V. (1)

In order to solve it, one can use a DDM, which generally consists in splitting
the Hilbert space V into the sum of K subspaces

V = V1 + V2 + · · · + VK , (2)

and then getting the solution u of (1), via some solves of subproblems such as
find ui ∈ Vi such that

ai(ui, vi) = li(vi), ∀vi ∈ Vi, 1 ≤ i ≤ K. (3)

This can be achieved iteratively or not. The aim is primarily to reduce the
overall amount of work, necessary to compute a good numerical approximation
of the solution. When the discretization of the problem is achieved by a Finite
Element Method (or FEM), one usually obtains the splitting (2) with the help
of a partition of the mesh.

The philosophy of the SCM is different, although the tools are similar: the
idea is still to split the space V , but with respect to regularity.
Indeed, elements of V belong to the scale of Sobolev spaces Hα(Ω), or Hα(Ω)n,
where Ω ⊂ Rn is the computational domain, and α ∈ R+. Interestingly, for
a given space V , the supremum αmin of all possible values of the exponent α,
depends on the convexity of the domain and on the smoothness of its boundary.
Let α0 be the supremum when the domain is convex, or smooth. When the
domain is non-convex and non-smooth, αmin < α0 usually holds.
Then, let VR = V ∩ Hα0(Ω) (or VR = V ∩ Hα0(Ω)n for vector fields) be the
space of regular elements. Assume that VR is closed in V , and let

V = VR ⊕ VS (4)

with VS the space of singular elements. The sum is direct; in addition, it can be
orthogonal. When the domain is convex or smooth, one has VS = {0} by defi-
nition. Then, regular elements are approximated by a Lagrange FEM, whereas
elements of VS are computed in a manner, which depends on the problem to
solve: in other words, the idea behind the SCM is to enlarge the space of test-
functions. Basically, it is designed to achieve the following results:
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- Improve the convergence rate (for the Laplace problem),
- Capture numerically the real solution (for Maxwell’s equations).

In what follows, we shall introduce, in Section 1, the SCM for the Laplace
problem and for Maxwell’s equations in a polyhedron. We describe the main
theoretical results that are required to solve electromagnetic problems and, in
particular, we emphasize the strong links between the singular elements for both
problems. In Sections 2 and 3, we present the theory, and the numerical tools,
which we have developed, to solve the static, time-harmonic and time-dependent
Maxwell equations in a polygon of R2, or in an axisymmetric domain of R3.

1 The problems in a polyhedron

Let Ω be a bounded, simply connected, Lipschitz polyhedron, Γ its connected
boundary, (Γk)1≤k≤F the set of faces, and n the unit outward normal to Γ.
The L2-scalar product is denoted by (f, g)0, the associated norm by ‖f‖0. We
shall use the differential operators div , curl and the related ’non-standard’
Sobolev spaces and norms

L2(Ω) := {v = (v1, v2, v3)
T : vi ∈ L2(Ω), 1 ≤ i ≤ 3},

‖v‖0 :=
(
‖v1‖

2
0 + ‖v2‖

2
0 + ‖v3‖

2
0

)1/2
;

H(div ,Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)},

‖v‖0,div :=
(
‖v‖2

0 + ‖div v‖2
0

)1/2
;

H(curl ,Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)},

‖v‖0,curl :=
(
‖v‖2

0 + ‖curl v‖2
0

)1/2
;

H(curl , div ,Ω) := H(curl ,Ω) ∩ H(div ,Ω),

‖v‖0,curl ,div :=
(
‖v‖2

0 + ‖curl v‖2
0 + ‖div v‖2

0

)1/2
, and

|v|curl ,div :=
(
‖curl v‖2

0 + ‖divv‖2
0

)1/2
.

In addition, the usual Sobolev spaces for vector fields shall be written Hs(Ω),
and Hs(Γ). Then, let us recall that fields of H(div ,Ω) (resp. H(curl ,Ω)) have
a normal trace (resp. tangential components) on Γ, which belongs to H−1/2(Γ)
(resp. H−1/2(Γ)); this allows to define the subspaces with the vanishing corre-
sponding trace, and

X := H0(curl ,Ω) ∩ H(div ,Ω), Y := H(curl ,Ω) ∩H0(div ,Ω).

Let us state the Weber inequality, which stems from the compact embedding
results of Weber [34].

Proposition 1.1 In X and Y, the semi-norm | · |curl ,div is a norm, which is
equivalent to the full norm.

Last, let us mention that one can generalize what we state below, to the case
of a Lipschitz curvilinear polyhedron, by using the work of Costabel et al. [19].
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1.1 The Laplace problem

The model problem is, given f ∈ L2(Ω), solve
find φ ∈ H1

0 (Ω) such that

−∆φ = f in Ω. (5)

The regularity of the solution depends on the geometry of the domain [21, 20].
Let us call minimal regularity of the solution the supremum of the set

{α ∈ R : ∀f ∈ L2(Ω), φ solution of (5) belongs to Hα(Ω)}.

Theorem 1.2 If Ω is convex, the minimal regularity is α0 = 2.
If Ω is non-convex, the minimal regularity is αmin = 3/2 + σ, with 0 < σ < 1/2
depending on the geometry, i.e. conical angles at reentrant vertices, dihedral
angles at reentrant edges.

In the non-convex case, by minimal regularity, we mean that all solutions φ be-
long to H3/2+σ−ε(Ω), for any ε > 0, and that some do not belong to H3/2+σ(Ω).

If one discretizes (5) with the P1 Lagrange FEM, with h as the meshsize,
there holds by standard analysis

Corollary 1.3 If Ω is convex, the convergence rate in H1-norm is in O(h).
If Ω is non-convex, the convergence rate in H1-norm is in O(h1/2+σ−ε), ∀ε.

Remark 1.4 Here, it is crucial to impose f ∈ L2(Ω). If f is only in H−1(Ω),
the regularity of φ can be as low as φ ∈ H1(Ω), for Ω convex or not: the conver-
gence rate is undetermined, and there are no methods that allow to improve it.

To improve the convergence rate, one can think of: mesh refinement, the (Dual)
Singular Function Method, multigrid methods [15], the SCM, etc.

The mesh refinement techniques are well-kwown [33]. So are the (Dual)
Singular Function Methods (or (d)sfm), which work in 2d domains, see for
instance [21, 22]. They are based on the adjunction of test-functions, the (dual)
singular functions, to the space of FE.
The SCM is based on the same idea, as mentioned in the Introduction. Its origin
(2d case) can be traced back to Moussaoui [29]. More precisely, let

Φ := {φ ∈ H1
0 (Ω) : ∆φ ∈ L2(Ω)}, and ΦR := Φ ∩H2(Ω).

One has the

Theorem 1.5 In Φ, ‖φ‖Φ := ‖∆φ‖0 is a norm, which is equivalent to the graph
norm φ 7→ {‖φ‖2

1 + ‖∆φ‖2
0}

1/2. As a consequence, ‖ · ‖Φ is equivalent to ‖ · ‖2

in ΦR.
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Proof : Thanks to the Poincaré inequality, the graph norm is equivalent to
{|φ|21+‖∆φ‖2

0}
1/2 = ‖gradφ‖0,curl ,div , with grad φ in X . Now, one infers from

the Weber inequality that it is also equivalent to ‖∆φ‖0.
To prove the other half, let φ ∈ ΦR. There holds

‖φ‖2
Φ = |gradφ|2

curl ,div = ‖grad (grad φ)‖2
0 = |φ|22,

where the second equality has been obtained by Costabel et al [17, 19], as grad φ
belongs to H1(Ω) and has vanishing tangential components on Γ. Finally, one
can use the first part of the Theorem to conclude.

Corollary 1.6 ∆ΦR is closed in L2(Ω).

Starting from this result, one can first define its orthogonal, called N :

L2(Ω) = ∆ΦR

⊥
⊕ N, (6)

and then ΦS , the inverse image of N . By construction, both ΦR and ΦS are

closed in Φ and so Φ = ΦR

⊥
⊕ ΦS , i.e. (4). Now, following [2], it is possible to

characterize elements of N , and, as consequence, elements of ΦS .

Theorem 1.7 An element p of L2(Ω) belongs to N if and only if

∆p = 0 in Ω, p|Γk
= 0 in H

−1/2
00 (Γk), 1 ≤ k ≤ F.

(Recall that H
1/2
00 (Γk) := {f ∈ H1/2(Γk) : ρ

−1/2
k f ∈ L2(Γk)}, where ρk denotes

the distance to the boundary of Γk; H
−1/2
00 (Γk) is the dual space of H

1/2
00 (Γk).)

As for the numerical computation of elements of N and ΦS , see the next Sec-
tion for problems in axisymmetric domains and §3.2 for problems in 2d. Let us
mention that in the 2d case (see [29]), one gets results similar to those of the
dsfm, that is, the recovery of an overall convergence rate in O(h) in H1-norm.

Let us conclude this Subsection by some extensions.
The first one is the homogeneous Neumann problem, for which the same

theory can be developed in Ψ/R, where
Ψ := {ψ ∈ H1(Ω) : ∂nψ|Γ = 0 on Γ, ∆ψ ∈ L2(Ω)}.

Another one is about the scalar wave equation which, given T > 0, reads
find φ(t) ∈ H1

0 (Ω) such that

∂2φ

∂t2
− ∆φ = f in Ω×]0, T [, φ(0) = φ0. (7)

The theory of Lions and Magenes [27] leads to

Theorem 1.8 Assume that f ∈ L2(0, T ;H1
0 (Ω)) and φ0 ∈ Φ. Then, there

exists one and only one solution of the wave equation (7), with regularity

φ ∈ C0(0, T ; Φ) ∩ C1(0, T ;H1
0 (Ω)).
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Next, from (4) applied to Φ, there comes the continuous decomposition in time
of the solution, that is the

Corollary 1.9 One can write φ(t) = φR(t) + φS(t) for all t, with

(φR, φS) ∈ C0(0, T ; ΦR × ΦS).

Finally, one could use the same kind of idea for a non-homogeneous boundary
condition, provided that the data is smooth enough on Γ, or for problems with
jumps.

1.2 Mathematical tools for Maxwell’s equations

We consider the electromagnetic fields in vacuum, enclosed by a perfectly con-
ducting material. The electric permittivity and magnetic permeability are set
to one. The electromagnetic field is denoted by (E ,B). The sets of equations
are :
The time-dependent Maxwell equations in (E ,B):





∂tE − curlB = −J , ∂tB + curl E = 0 in Ω×]0, T [,
div E = ρ, divB = 0 in Ω×]0, T [,
E × n = 0 on Γ×]0, T [,
E(0) = E0, B(0) = B0.

(8)

The time-harmonic Maxwell equations on E , a complex-valued field:




curl curl E − k2E = J in Ω,
div E = 0 in Ω,
E × n = 0 on Γ.

(9)

The static Maxwell equations, with U being either the electrostatic or the mag-
netostatic field:





curlU = F in Ω,
divU = G in Ω,
U × n = 0 on Γ, or U · n = 0 on Γ.

(10)

Unless otherwise specified, we consider that (10) is the electrostatic problem.

Let us say a few words on the existence and uniqueness of the solution of
each problem (cf. [3, 14, 16], in this order).

Theorem 1.10 The time-dependent problem.
Assume that J ∈ C0(0, T ;H(div ,Ω))∩H1(0, T ;L2(Ω)) and ρ ∈ C1(0, T ;L2(Ω)).
Then, there exists one and only one solution (E ,B) of (8), with

(E ,B) ∈ C0(0, T ;X × Y) ∩ C1(0, T ;H(div ,Ω) ×H(div ,Ω)).

The time-harmonic problem.
Assume that J belongs to H(div ,Ω), divJ = 0, and Im(k) 6= 0. Then, there
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exists one and only one solution E solution of (9) in the ’complexified’ X .

The static problem.
Assume that F belongs to H0(div ,Ω), with divF = 0, and that G is in L2(Ω).
Then, there exists one and only one solution E solution of (10) in X .

Here, we considered that the data is L2-regular. Actually, this is equivalent to
the assumption that we made previously for the Laplace problem, i.e. that the
Laplacian of the solution is in L2(Ω).

As for the regularity of the solution, one finds again that it depends on the
geometry of the domain [1]: let us consider, for instance, the static field U .

Theorem 1.11 If Ω is convex, the minimal regularity is α0 = 1.
If Ω is non-convex, the minimal regularity is αmin = 1/2 + σ.

In the case of Maxwell’s equations, we thus let

XR := X ∩ H1(Ω), and YR := Y ∩ H1(Ω).

The original idea was to take advantage of the H1-regularity of the field, when
the domain is convex [8], to discretize it by the P1 Lagrange FEM, instead of
the ’usual’ edge FEM [30, 31]. As a matter of fact, the former includes two key
ingredients, which the latter lacks:

- For the time-dependent Maxwell equations, the mass matrix can be lumped,
with no loss in precision, thus leading to very inexpensive numerical schemes.

- The numerical electromagnetic field is continuous, so the method can be
used in conjunction with a particle-pushing scheme, to solve the coupled Vlasov-
Maxwell system of equations.

The question to be answered is: what happens when Ω is a non-convex
domain? For that, let us begin with the

Theorem 1.12 XR (resp. YR) is closed in X (resp. Y).
Therefore, when Ω is non-convex, XR (resp. YR) is not dense in X (resp. Y).

Proof : The norm in X is | · |curl ,div . With the help of the formula [17, 19]:

(gradu,gradv)0 = (curl u, curl v)0 + (div u, div v)0, ∀u,v ∈ XR ×XR,
(11)

one gets that the norm in XR is equivalent to the H1-norm, and thus XR is
closed in X . As a consequence, XR is dense in X iff XR = X . According to
Theorem 1.11, this is not the case when Ω is non-convex.
(The proof for Y and its regular subspace is identical.)

The immediate consequence is that one can not capture numerically the
solution of the above problems, with the help of the Lagrange FEM only, if the
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solution is not in the regular space. In particular, mesh refinement techniques
do not work.

As a matter of fact, let us split X à la (4), X = XR

⊥
⊕ XS , with XS = X⊥

R .
Is is clear, from the definition of XR, that any subspace of X generated by the
P1 Lagrange FEM is actually a subspace of XR. Thus, with self-explanatory
notations, (4) leads to

‖E − Eh‖2
X = ‖ER − Eh‖2

X + ‖ES‖
2
X ≥ ‖ES‖

2
X .

Is there a hope of finding an intermediate solution, between the edge FEM,
and the P1 Lagrange FEM? The answer is clearly ’no’, if one looks for a piecewise
smooth FE (i.e. a FE, whose restriction to each element of the triangulation
is smooth), like the edge or Lagrange FEMs. Indeed, it has been remarked by
Hazard and Lenoir [24] that any H(curl , div )-conforming FEM, with a piece-
wise smooth FE, is actually H1-conforming.

Therefore, it is required that one adds the SCM (or the sfm) to be able to
compute an approximation of the solution1. One discretizes the regular part
with the P1 Lagrange FEM, which means a P1 approximation component by
component, and taking into account the boundary condition. Evidently, this
method can be applied to all three Maxwell problems: time-dependent (8),
time-harmonic (9) or static (10).
Now, how can one approximate the singular part? One possible idea, that we
develop further in the other Sections, is to relate the singular electric fields to
singular elements of the Laplace operator, i.e. to elements of ΦS .
Let us conclude this Subsection by displaying this relationship. For that, we
need a result, obtained by Birman and Solomyak [11].

Theorem 1.13 Let Ω be a bounded Lipschitz domain. Then, for all u in X ,
there exist u0 in XR and φ ∈ Φ such that

u = u0 + gradφ, ||u0||
2
1 + ||∆φ||20 ≤ C ||u||20,curl ,div . (12)

Here, C denotes a nonnegative constant, which is independent of u.

In Y , they proved the same result, provided that the domain has a piecewise-
smooth boundary [11, 12]. As a consequence, one can prove the

Theorem 1.14 The following decomposition is direct and continuous

X = XR

c
⊕ grad ΦS .

Proof : From (12), it is clear that X = XR + gradΦS .
Then, let v ∈ XR ∩ grad ΦS : by construction, v ∈ H1(Ω) ∩ gradΦ, i.e. v ∈
gradΦR. Also, one infers from (4) applied to Φ that grad Φ can be split (in

1Another alternative is to use the edge FEM, possibly with a specifically designed SCM.
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X ) into grad ΦR ⊕ gradΦS . So, v = 0, and the sum is direct.
Last, the application

XR × gradΦS → X
(vR,gradφS) 7→ v = vR + gradφS

is linear, continuous and bijective. Now, as XR × grad ΦS and X are Banach
spaces, the open mapping Theorem allows to conclude that the inverse of the
application is also continuous.

Again, one can prove the same type of result on Y . In other words, the singular
electric or magnetic fields are one-to-one with the gradients of the singular
elements of the Laplacian.

2 Maxwell’s equations in an axisymmetric do-

main

Let Ω be the domain limited by a surface of revolution Γ; ω and γb their inter-
sections with a meridian half-plane. One has γ := ∂ω = γa ∪ γb, where γa is the
segment of the axis lying between the extremities of γb. ν is its unit outward
normal, and τ the unit tangential vector such that (τ, ν) is direct.

Moreover, it is assumed that γb is a polygonal line with edges (γk)1≤k≤F .
The Γk are the corresponding faces of Γ; the off-axis corners of γb generate
circular edges in Γ, whereas the extremities are conical vertices of Γ.

The natural coordinates for this domain are the cylindrical coordinates
(r, θ, z), with the basis vectors (er, eθ, ez). A meridian half-plane is defined
by the equation θ = cst, and (r, z) are cartesian coordinates in this half-plane.

Definition 2.1 For any vector field, the meridian and azimuthal components
of u are resp. um := $m(u) := ur er + uz ez and uθ := $θ(u) := uθ eθ.

We are interested in the case where the sources of the electromagnetic fields,
and hence the fields themselves, possess a symmetry of revolution. This fact
means that the scalar (resp. vector) fields are entirely characterized by their
“trace” in ω, i.e. the datum of their value in a meridian half-plane (resp. by
the trace of their cylindrical components). Obviously, this is equivalent to the
vanishing of all derivatives with respect to θ of these fields or components. In
this Section, it is thus assumed that ∂θ· = 0.

Proposition 2.2 For any axisymmetric vector field u, the following identities
hold: curl um = $θ(curl u), curl uθ = $m(curl u), div um = div u, ∆um =
$m(∆u), ∆uθ = $θ(∆u). Hence, if u is meridian ($θ(u) = 0), curl u is az-
imuthal and ∆u is meridian; if u is azimuthal ($m(u) = 0), curl u is meridian,
∆u is azimuthal and div u = 0,

A similar property holds for the Jacobian of an axisymmetric vector field: there
is a decoupling of the meridian and azimuthal components.
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Finally, as the meridian and azimuthal components of vector fields are mu-
tually orthogonal pointwise, the same is true in the sense of the L2(Ω) scalar
product: for (u,v) ∈ [L2(Ω)]2, there holds (uθ,vm)0,Ω = 0. This property is
also true for the curl and the vector Laplace operators, or the Jacobian of a
field, provided that they belong to L2(Ω).

2.1 Reduction to two-dimensional problems.

Thanks to Proposition 2.2, it is possible to decouple each of the Maxwell sys-
tems (8, 9, 10) into a couple of problems set in Ω×]0, T [, involving different
components of the fields E and B. Given the expression of differential operators
in cylindrical coordinates, these problems read as follows in ω×]0, T [.

The time-dependent equations (8), split into a system of unknowns (Em, Bθ):





∂tEm − r−1 curl (r Bθ) = −Jm, ∂tBθ + curlEm = 0 in ω×]0, T [,
r−1 div (rEm) = ρ in ω×]0, T [, Em · τ = 0 on γb×]0, T [,
Em(0) = Em0, Bθ(0) = Bθ0.

(13)

and a system of unknowns (Eθ,Bm):





∂tEθ − curlBm = −Jθ, ∂tBm + r−1 curl (r Eθ) = 0 in ω×]0, T [,
r−1 div (rBm) = 0 in ω×]0, T [, Bm · ν = 0, Eθ = 0 on γb×]0, T [,
Eθ(0) = Eθ0, Bm(0) = Bm0.

(14)

The static equations (10), split into a system of unknown Um:





curlUm = Fθ in ω,
r−1 div (rUm) = G in ω,
Um · τ = 0 on γb, or Um · ν = 0 on γb.

(15)

and a system of unknown Uθ:

{
r−1 curl (r Uθ) = Fm in ω,
Uθ = 0 on γb, for the electrostatic problem only.

(16)

2.2 Sobolev spaces

We denote by a˘the respective subspaces of axisymmetric vector fields in the
various Sobolev spaces, e.g. L̆2(Ω), H̆1(Ω), H̆(curl , div ,Ω), X̆ , Y̆R; by ‖·‖s,Ω

the Hs-norm, by ‖·‖0,curl ,div ,Ω the H(curl , div )-norm.

As pointed out earlier, elements of these spaces are characterized by their
trace in ω. We refer to [10] for their full description. For now, we only need the

Definition 2.3 For α ∈ R, let L2
α(ω) be the space of square-integrable functions

in ω with respect to the measure rα dr dz, and Hs
α(ω), for s ∈ R, the related scale

of Sobolev spaces, with the canonical norms || · ||s,α,ω.
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2.3 Closedness results.

The aim of this Subsection is to prove the analogue of Theorem 1.12. Because
of the technicalities induced by the geometry [4], it is necessary to distinguish
between the inductive proof for the electric field and the constructive proof for
the magnetic field.

We shall now sketch these proofs; details are found in [4].

Lemma 2.4 The following inequalities are equivalent:

∃C1, ∀u ∈ XR, ||u||1,Ω ≤ C1 ||u||0,curl ,div ,Ω, (17)

∃C2, ∀φ ∈ ΦR, ||φ||2,Ω ≤ C2 ||∆φ||0,Ω. (18)

Proof : For u = grad φ, (17) implies (18) by Poincaré’s and Weber’s in-
equalities. Conversely, (17) stems from (18) and Theorem 1.13.

Theorem 2.5 (17) is satisfied in Ω if and only if all the conical angles at the
vertices are different from a prescribed value π/δ− ' 130◦. This case excluded,
XR is closed within X .

Proof : (17) is equivalent to (18). The necessary and sufficient condition
for (18) to hold has been established by Dauge [20].

In the following, when considering the electric case, we suppose that all conical
angles are different from π/δ−.

Theorem 2.6 In Y̆R, the following estimate holds:

∃K, ∀u ∈ Y̆R, ‖∇u‖2
0,Ω ≤ K

(
‖curl u‖2

0,Ω + ‖div u‖2
0,Ω

)
. (19)

Hence, by Poincaré and Weber’s inequalities, the ‖·‖1,Ω and ‖·‖0,curl ,div ,Ω

norms are equivalent on this space, and Y̆R is closed within Y̆.

The equivalent of (11) in Ω reads (cf. [18]): for any (u,v) ∈
[
H2(Ω)

]2
,

(∇u,∇v)0,Ω = (curl u, curl v)0,Ω + (div u, div v)0,Ω − b(u,v) + d(u,v), (20)

where b(·, ·) and d(·, ·) are bilinear forms defined on the boundary. The term
d(u,v) vanishes when (u,v) ∈ [Y ∩ H2(Ω)]2. It is proven in [4] that this space
is dense within YR. So one can extend d by 0 to YR.

All other terms in (20) are meaningful for (u,v) ∈
[
H1(Ω)

]2
: for an ax-

isymmetric domain Ω, the bilinear form b(u,v) is

∫

Γ

νr

r
(uθ vθ + uν vν) dΓ.

Hence (20) is valid for (u,v) ∈ [YR]2, with uν = vν = 0 on the boundary.

The inequality (19) is now equivalent, thanks to (20), to

∃k < 1, −b(u,u) ≤ k ‖∇u‖2
0,Ω . (21)

Since ∇um and ∇uθ are L2-orthogonal, and b(u,u) depends only on uθ, it is

sufficient to check (21)—or (19)—for u ∈ E1
θ =

{
u ∈ H̆1(Ω) : u ‖ eθ

}
.
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Lemma 2.7 The space H1
−1(ω) is continuously imbedded into L2

−3(ω), i.e.

∃K1, ∀u ∈ H1
−1(ω), ||u|||20,−3,ω ≤ K1 ||gradu||20,−1,ω.

This 2d Hardy inequality is obtained by localization and Fubini Theorem.

Proposition 2.8 The inequality (19) is satisfied for all u ∈ Y̆R.

Proof : Let u ∈ E1
θ and v = r uθ. From the expressions of curl u, div u and ∇u

in cylindrical coordinates, it follows: ‖curl u‖2
0,Ω+‖div u‖2

0,Ω = 2π ‖grad v‖2
0,−1,ω

and ‖∇u‖2
0,Ω = 2π

[
‖graduθ‖

2
0,1,ω + ‖uθ‖

2
0,−1,ω

]
. The latter norm is equivalent

to ‖grad v‖2
0,−1,ω + ‖v‖2

0,−3,ω. Thus (19) stems from the above Lemma; it also

proves that any azimuthal vector field in H̆(curl , div ,Ω) is in H̆1(Ω).

2.4 A characterization of singular fields

This Subsection describes the relationship between the singular electric and
magnetic fields and scalar singularities of Laplace-like operators.

Electric case. Let X̆ be the natural space of electric fields, and X̆R its regular
subspace. We derive from Theorem 2.5 the direct and continuous decomposition

X̆ = X̆R

c
⊕ grad Φ̆S . (22)

As the elements of Φ̆S are characterized by their Laplacian, we will study N̆ =
∆Φ̆S . For this purpose, we shall adapt the method of [7, 5] and the references
therein, with a specific treatment for the conical vertices. To that end, on any

face Γk, let H̆(Γk) be the axisymmetric subspace of H
1/2
00 (Γk).

Lemma 2.9 The application γk
1 , which is the trace on Γk of the normal deriva-

tive, is continuous and surjective from Φ̆R onto H̆(Γk), and there exists a con-
tinuous lifting operator from H̆(Γk) to Φ̆R.

This result allows to prove an integration by parts formula, between elements
of Φ̆R and elements of the space D(∆,Ω) := {g ∈ L2(Ω) : ∆g ∈ L2(Ω)}.

Lemma 2.10 Let p ∈ D(∆,Ω) and u ∈ Φ̆R. There holds

∫

Ω

(p∆u− u∆p) dΩ =
∑

1≤k≤F

H̆(Γk)′

〈
p, γk

1u
〉
H̆(Γk)

.

The first characterization of N̆ follows from the above Lemmas.

Theorem 2.11 Let p ∈ L̆2(Ω): p belongs to N̆ if and only if

∆p = 0 in Ω, p|Γk
= 0 in H̆(Γk)′, 1 ≤ k ≤ F.

12



In a meridian half-plane, the second characterization of elements of N̆ is then

Corollary 2.12 Let p ∈ L2
1(ω): p belongs to N̆ if and only if

∆+p :=
∂2p

∂r2
+

1

r

∂p

∂r
+
∂2p

∂z2
= 0 in ω,

p|γk
= 0, 1 ≤ k ≤ F,

p ∈ C∞(ω \ Vb), for any neighborhood Vb of γb.

The study of the Laplace-like operator ∆+ is performed in [9]. It extends
Grisvard’s work [22] to the axisymmetric case:

Theorem 2.13 The space N̆ , and consequently X̆S, is of finite dimension, equal
to Ke +Kv, with Ke the number of reentrant edges, et Kv the number of vertices
with conical angle larger than π/δ−.

Magnetic case. The natural space of axisymmetric magnetic fields is

W̆ = {v ∈ Y̆ : div v = 0}, with norm ||curl v||0,Ω. (23)

Then, if W̆R = W̆ ∩ H̆1(Ω) is the space of regular fields, we infer from Theo-
rem 2.6 that W̆R is closed in W̆ . Let W̆S be its orthogonal, i.e.

W̆ = W̆R

⊥
⊕ W̆S . (24)

We had remarked in the proof of Proposition 2.8 that an azimuthal field is
always regular; hence, the singular fields are meridian. Moreover, elements of
W̆ are determined via their curl. So, given BS ∈ W̆S , define P = curlBS : BS

is meridian, therefore P is azimuthal.

Now, let M̆R be the space curl −1W̆R of potentials of elements of W̆R. The
orthogonality, in the sense of (23), of BS and elements of W̆R becomes

(P ,∆A)0,Ω = 0, ∀A ∈ M̆R

as ∆ = −curl curl +grad div . As P is azimuthal, it is enough to consider only
elements of M̆θR = {A ∈ M̆R : A ‖ eθ}. So, we are left with a scalar problem,
similar to the electric case, and we obtain the two characterizations of curl W̆S .

Theorem 2.14 Let P ∈ L̆2(Ω), P ‖ eθ; P = Pθ eθ belongs to curl W̆S iff

∆P = 0 in Ω, Pθ |Γk
= 0 in H̆(Γk)′, 1 ≤ k ≤ F.

Corollary 2.15 Let Pθ = p/r: p ∈ L2
−1(ω) is characterized as a solution of

∆−p :=
∂2p

∂r2
−

1

r

∂p

∂r
+
∂2p

∂z2
= 0 in ω,

p|γk
= 0, 1 ≤ k ≤ F,

p/r ∈ C∞(ω \ Vb), for any neighborhood Vb of γb.

13



Again, the study of the operator ∆− (cf. [9]) gives the equivalent of Grisvard’s
result [22] in this case:

Theorem 2.16 The space defined by Corollary 2.15, and consequently W̆S, is
of finite dimension, equal to Ke, the number of reentrant edges.

Now, it is more convenient for numerical computations to use the vari-
able P = Pθ. It satisfies:

P ∈ L2
1(ω), ∆′P :=

∂2P

∂r2
+
∂2P

∂z2
+

1

r

∂P

∂r
−
P

r2
= 0 in ω, P = 0 on γ. (25)

2.5 Existence and uniqueness results.

If the data and initial conditions are axisymmetric, so are the solutions of (8)
and (10), and, under the hypotheses of Theorem 1.10

E ∈ C0(0, T ; X̆ ), B ∈ C0(0, T ; W̆).

Then it follows from (22) and (24) that the electromagnetic field can be decom-
posed into regular and singular parts continuously with respect to time:

E(t) = ER(t) + ES(t), (ER, ES) ∈ C0(0, T ; X̆R × X̆S),

B(t) = BR(t) + BS(t), (BR,BS) ∈ C0(0, T ; W̆R × W̆S).

Moreover, as the projections $m and $θ are smooth, each of the systems (13–
16) admits a unique solution in the relevant space; that of (13) and (14) depend
continuously on time. As a consequence, the decomposition (4) can be refined by
using three subspaces: meridian regular, meridian singular, azimuthal. (Recall
that azimuthal implies regular.) Each of the problems (3) then admits a unique
and continuous solution.

2.6 Principle of the numerical method.

The SCM follows from the above decomposition. As the singular parts span a
finite-dimensional space, it is sufficient to find an approximation of a basis. The
problems (3) amount to a classical FE formulation, for the regular parts, and a
low-dimensional linear system, for the singular parts.

Computation of bases of N and N̆ . We look for a basis of the spaces N̆
and N := {P satisfying (25)}, whose dimensions are given by Theorems 2.13
and 2.16. We have at hand an approximate knowledge of these bases [9].

- There is one basis function p−j ∈ N or p+
j ∈ N̆ associated to each relevant

geometric singularity Aj as follows. In a neighborhood ωj of Aj , there holds
p±j |ωj

= pS
j +q±j , where the principal part pS

j is just in L2
1(ωj), and the remainder

q±j is of H1-style regularity in ωj . In ω′
j = ω \ ωj , p

±
j is of H1-style regularity.

- In ωj , define local polar coordinates (ρj , φj) centered at Aj .

14



- If Aj is a reentrant edge of opening βj = π/αj , 1/2 < αj < 1, one has

pS
j = ρ

−αj

j sin(αj φj), for the electric and magnetic cases.
- (For the electric case only.) If Aj is a conical vertex of opening π/δj ,

1/2 < δj < δ−, one finds pS
j = ρ

−1−νj

j Pνj
(cosφj), where Pν denotes the Legen-

dre function and νj ∈]0, 1/2[ is given by Pνj
(cos(π/δj)) = 0.

In the whole of ω the function q±j = p±j − pS
j satisfies

−∆+q+j = ∆+pS
j , resp. − ∆′q−j = ∆′pS

j in ω, q±j
∣∣
γ

= −pS
j

∣∣
γ

on γ, (26)

but, unlike in the cartesian geometry, it is not possible to compute it variation-
ally: if Aj is an edge, neither pS

j nor q±j is of H1-style regularity near the axis,
and the problem (26) is ill-posed. This hindrance can be overcome:

- either by multiplying pS
j by the ’not-too-noisy’ cut-off function η(r) =

r/r(Aj), i.e. defining q̂j = pj − η pS
j which is regular in the whole of ω;

- or by domain decomposition, computing qj in ωj and pj in ω′
j , and enforcing

standard transmission conditions between ωj and ω′
j (à la §3.2.2).

Computation of bases of W̆S and grad Φ̆S. Our task is now to com-
pute Bj = curl (−∆′)−1p−j , which is in W̆S since curlBj = p−j eθ, and Ej =

grad (−∆+)−1p+
j . First, one solves variationally:

−∆′ψj = p−j in ω, ψj = 0 on γ,

−∆+ϕj = p+
j in ω, ϕj = 0 on γb.

One has: ψj = ψR
j +

∑
1≤i≤Ke

cij ψ
S
i , ϕj = ϕR

j +
∑

1≤i≤Ke+Kv
di

j ϕ
S
i , where:

- the ψR
j and ϕR

j are of H2-style regularity,

- ψS
i = ϕS

i = ραi

i sin(αi φi) near a reentrant edge,
- ϕS

i = ρνi

i Pνi
(cosφi) near a vertex of conical angle larger than π/δ−.

The singularity coefficients cij , d
i
j can be extracted by quadrature formulas [10]

or spectral methods. In ω0 = ω \
⋃
ωi, ψj and ϕj are regular. The correspond-

ing decompositions of Bj and Ej are:

Bj = curlψR
j +

∑

1≤i≤Ke

cij curlψS
i , Ej = gradϕR

j +
∑

1≤i≤Ke+Kv

di
j gradϕS

i .

curlψR
j and gradϕR

j are of H1-style regularity and can be computed vari-

ationally, while curlψS
i and gradϕS

i are analytically known. In ω0, the whole
of B and E can be computed variationally.

Finally, it is possible to orthogonalize the decomposition (22) by subtracting
to Ej its orthogonal projection on X̆R. This is no difficulty.
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Figure 1: Computed magnetic field: The SCM and Finite Volume techniques.

2.7 Numerical Results

As an illustration of the SCM in the axisymmetric case, one can compute the
electromagnetic field generated by a current. A top hat domain Ω (ω L-shaped)
is considered, and a perfectly conducting boundary condition is imposed. The
initial conditions are set to zero. The electromagnetic wave is generated by a
current J (x, t) = Jθeθ, Jθ = 10 sin(λt), with a frequency λ/2π = 2, 5.109 Hertz.
The support of this current is a little disc centered at the middle of the domain.
Because it is impossible to provide an analytical solution, we compare our re-
sults to the computations made by another code, based on Finite Volume (FV)
techniques à la Delaunay [26]. The space and time discretizations of the SCM
are detailed later on, in Section 3.2.3. Figure 1 shows the isovalues of the mag-
netic field (Bz component after 1000 time steps), which have been computed by
the two methods. The results obtained by both methods are comparable, which
shows the feasability of the SCM. Moreover, the SCM provides a numerical
solution which is less noisy.

3 Maxwell’s equations in a polygon

In what follows, it is assumed that both the data and the initial conditions do not
depend on the transverse variable z. Then the original problem can be identified
with a problem posed in a section of an infinite cylinder, which is a 2d polygon
ω, with boundary γ, a set of edges (γk)1≤k≤E , and a unit outward normal ν.
The notations are those of Section 1, except that the Sobolev spaces are based
on the scalar curl; also the 2d calligraphic spaces (X , Y) and unknowns (E , etc.)
are written in boldface, i.e. X, Y, E = (E1, E2)

T , etc.
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3.1 The time-harmonic Maxwell equations

This Section summarizes the results obtained in [14] and [25], and we refer to
these papers for any detail.

We are looking for a numerical approximation of the solution E to

{
curl curlE− k2E = J in ω,
E · τ = 0 on γ.

(27)

For sake of simplicity regarding existence and uniqueness questions, we suppose
that k is a complex number with nonzero imaginary part (which means that we
are concerned with the electromagnetic problem in a homogeneous and dissi-
pative medium) or, in order to include stationnary problems, that k = 0. The
vector field J is a datum that represents the impressed current density. We
assume that

div J = 0 in ω,

which amounts to saying that the electric charge density vanishes in the whole
domain. The singular field method is based on the fact that the solution of (27)
can be found by solving an equivalent regularized problem similar to the vector
Helmholtz equation. Formally, the regularized problem is given by





−∆E− k2E = J in ω,
E · τ = 0 on γ,
div E = 0 on γ.

(28)

Indeed, a solution of (27) is clearly divergence free and, thus, satisfies (28).
Conversely, let E be a solution of (28). Its divergence ϕ = div E satisfies

{
−∆ϕ− k2ϕ = 0 in ω,
ϕ = 0 on γ,

which yields ϕ = 0 (provided ϕ is assumed regular enough).
The Section is organized as follows: in a first part (§3.1.1) we make precise

the functional setting and give the corresponding variational formulation. In
particular, we address the question of equivalence between the classical and the
regularized formulations of the problem. We show that the latter can be set
in two ’neighboring’ functional spaces whenever the domain ω has at least one
reentrant corner. Of course, only one of them leads to the equivalence with the
classical formulation. The key of the method lies in the fact that the ’right’
functional space can be written as the direct sum of a space of regular fields
completed by a (finite-dimensional) space of singular fields. We give two possible
decompositions which lead to the singular field method (SFM) and its orthogonal
variant (OSFM) described in §3.1.2. In §3.1.3, the analysis of the convergence
of these methods is addressed. It turns out that both numerical schemes have
the same rate of convergence but the numerical applications presented in §3.1.4
clearly show that OSFM yields far better results: we shall try to explain why.
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3.1.1 Classical and regularized formulations

The variational interpretation of the classical problem (27) leads us naturally
to seek E in the space H0(curl ). If we assume the datum J to belong to L2(ω),
the weak form of (27) is given by

P0(curl )

{
Find E ∈ H0(curl ) such that
(curlE, curlE′)0 − k2(E,E′)0 = (J,E′)0 ∀E′ ∈ H0(curl ).

The sesquilinear form (curlE, curlE′)0−k2(E,E′)0 being coercive on H0(curl )
(due to condition Im(k) 6= 0), we infer the existence and uniqueness of the so-
lution of P0(curl ) from Lax-Milgram’s theorem.

Let us now consider the regularized problem (28). Its variational formu-
lation involves the functional space X and thus amounts simply to adding
(div E, div E′)0 in P0(curl ). We therefore consider the problem

P0(curl , div )

{
Find E ∈ X such that
a(E,E′) = (J,E′)0 ∀E′ ∈ X,

where a(E,E′) := (curlE, curlE′)0 + (div E, divE′)0 − k2(E,E′)0.
For the same reason as above, P0(curl , div ) has a unique solution which coin-
cides with that of P0(curl ) provided div J = 0. Indeed, choosing E′ = gradϕ′

with ϕ′ ∈ D(ω) in P0(curl ) yields that the solution of P0(curl ) is divergence-
free. It thus belongs to X and satisfies the variational equation of P0(curl , div ),
in other words it does coincide with the solution of P0(curl , div ).

We thus deduce that X is the appropriate functional frame for the regu-
larized problem. But the situation becomes more involved if we consider the
following problem given on the subspace of X of regular fields:

P0(grad )

{
Find E ∈ XR such that
a(E,E′) = (J,E′)0 ∀E′ ∈ XR.

As mentioned in Section 1, XR is a closed subspace of X and hence, the form
a(·, ·) is still coercive on XR. Whenever ω has at least one reentrant corner,
XR is strictly contained in X, and the respective solutions to P0(curl , div )
and P0(grad ) are in general different. In particular, an H1-conforming FE
discretization can only provide an approximation of the non-physical problem
P0(grad ).

In order to perform a method based on nodal (Lagrange) FE, which is able
to capture the singular behavior (and thus solves problem P0(curl , div )), we
decompose X into a regular and a singular part,

X = XR ⊕XS .

Of course, XS is not uniquely determined. Hereafter, we will give two pos-
sible choices, leading to two different methods.

Notice that the above existence and equivalence results keep true in the
stationnary case corresponding to k = 0. In order to simplify the presentation,
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we will consider this case only, and we thus set from now on

a(E,E′) := (curlE, curlE′)0 + (div E, divE′)0.

Let us set some notations. Without loss of generality, assume that ω has
exactly one reentrant corner of measure β = π/α, 1/2 < α < 1, at the vertex S.
We use the local polar coordinates (r, θ), and we fix a regular cut-off function
η = η(r) such that η ≡ 1 near S and η ≡ 0 near the other vertices. The function

s(r, θ) = rα sin (αθ)

belongs to H1(ω) \ H2(ω) as α < 1 and is called singular function at S. We
finally introduce the subspace of H1

0 (ω) given by

S = span{ηs}.

Owing to Theorem 1.13 (see also [14]), we have the direct decomposition:

Theorem 3.1

X = XR

c
⊕ gradS. (29)

An orthogonal decomposition can be deduced from (29) solving an auxiliary
inhomogeneous variational problem, which is similar to P0(grad ):

Theorem 3.2

X = XR

⊥
⊕ span{grad (s) + F} (30)

where F is the solution of the problem
find F ∈ H1(ω) such that

a(F,E′) = 0, ∀E′ ∈ XR, F · τ = −grad s · τ on γ. (31)

Remark 3.3 Decomposition (30) is orthogonal in the sense that

a(grad (s) + F,E′
R) = 0 ∀E′

R ∈ XR.

Notice, however, that the above relation fails whenever k 6= 0. Nevertheless, in
this case, the remaining terms are of lower order and involve only the L2-scalar
product of the sesquilinear form.

3.1.2 Description of the method

We give the algorithms of both SFM and OSFM which are based respectively
on the decompositions (29) and (30). To this end, let (Th)0<h<h0

, be a family
of regular triangulations of the domain ω. We consider the P1 Lagrange FEM:

Yh := {Eh ∈ H1(ω) : Eh|Th
is affine ∀Th ∈ Th}.
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Let {MI} be the set of nodal points of the triangulation and

Vh := {Eh ∈ Yh : (Eh · τ)(MI ) = 0, ∀MI ∈ γ}

the discretization space of XR. Let Nh = dimVh and (wI)I=1,... ,Nh
be the

basis functions. Note that the discrete boundary condition (Eh · τ)(MI ) = 0 is
ambiguous if MI is a vertex of the polygon; in this case it should be understood
as Eh(MI) = 0 (i.e. both components of Eh(MI) vanish.)

The singular field method (SFM) Owing to (29), the discretization space
is given by

Xh = Vh ⊕ grad S.

The matrix form of the discrete problem then reads as follows:

(
A C
CT

As

) (
~ER

es

)
=

(
~J
js

)
, (32)

where
- A and ~J respectively denote the stiffness matrix and the right-hand side

corresponding to the FE space Vh,
AIJ = a(wJ ,wI), I, J = 1, . . . , Nh and JJ = (J,wJ )0, J = 1, . . . , Nh.

- As and js denote the matrix and the right-hand side of order 1 correspond-
ing to the singular field,

As = a(grad (ηs),grad (ηs)) and js = (J,grad (ηs))0.
- C is a matrix of order Nh × 1 coupling the basis functions of FE-type to

the singular field,
CI1 = a(grad (ηs),wI ), 1 ≤ I ≤ Nh.

In order to preserve the advantages of the sparse matrix AFE in the resolution
of (32), the SFM consists in solving separately the two linear systems

A~E? = ~J, AS = C,

and taking into account that (32) may be written as

A~ER = A

(
~E? − esS

)
, Ases = js − CT~ER. (33)

The left equality clearly implies that ~ER = ~E? − esS. Substituting this identity
into the right one thus yields the singular coefficient es. Thus,

Eh =
∑

1≤l≤Nh

(E?
I − esSI)wI + esgrad (ηs).

Notice the similarity of (33) with (3).
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The orthogonal singular field method (OSFM) This time, the discretiza-
tion space is given by

X̃h = Vh ⊕ span{grad (s) + Fh},

where Fh denotes the FE-approximation of problem (31).
In consequence, the matrix form of the discrete problem is the following:

(
A 0

0 Ãs

) (
~E′

R

e′s

)
=

(
~J

j̃s

)
,

where A and ~J take the same significance as before, and Ãs and j̃s are respec-
tively given by

Ãs = a(Fh,Fh) and j̃s = (J,grad (s) + Fh)0,

taking into account that grad (s) is curl- and divergence-free.
The algorithm of the OSFM is then straightforward.

Remark 3.4 Both methods can be extended to the case of Kc reentrant corners:
~es is a vector of R

Kc , and C and S (for the SFM) are matrices of order Nh×Kc.
See also §3.2.3, in which algorithms are given in this case.

3.1.3 Error analysis

We state in this Section the main convergence results. All proofs may be found
in [25].

Theorem 3.5 Let E be the solution of P0(curl , div ) and Eh its approximation
by the SFM. Assume that the regular part of E belongs to Hs+1(ω) with s in
]0, 1]. Then, we have

‖E−Eh‖0,curl ,div = O(hs)

for the error in the energy norm, and

‖E−Eh‖0 = O(hλ), ∀λ < s+ 2α− 1,

in the L2-norm. Moreover, the error of the OSFM is of the same order as the
one of the SFM.

3.1.4 Numerical results

In this Section, we present numerical tests of both methods in the case where
the exact solutions are known. The domain is formed by three quarters of a
circle with center 0 and radius 2, the only reentrant corner being of measure
β = 3π/2 (α = 2/3). We consider two families of solutions, for n ∈ N:

Gn(r, θ) = grad (η(r)rnα sin(nαθ)) and Hn(r, θ) = curl (η(r)rnα cos(nαθ)),
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Figure 2: FE-approximation of G1.

Gn and Hn have the same regularity depending on n: Gn ∈ Hs(ω), ∀s < nα.
In particular, Gn is of class H1 for n > 1, whereas G1 has a non-zero component
in any complementary space of XR.

Both methods have been tested on four unstructured grids. The mesh pa-
rameter h varies from h = 2−1 to h = 2−4, the latter corresponding to roughly
2 × 8.500 degrees of freedom. Notice that no particular mesh refinement has
been done near the corner. The cut-off function η is a piecewise polynomial
function of class C3. The coefficients of the terms A, ~J and C are calculated
using a 7-point-quadrature formula (exact for polynomials up to order 5). The
coefficients As and js are calculated analytically. The implementation of the
boundary condition is realized via a rotation which maps the canonical basis on
a local basis of the normal and tangential vectors; in the latter basis the vector
boundary condition is decoupled and standard techniques apply. The linear sys-
tems occuring in the algorithms are solved by a direct method based on Cholesky
factorization. All tests have been realized with the FE-code MELINA2.

It may be clearly seen on Figure 2 that the standard FEM fails for a singular
solution field (here, we represent the x-component of the FE-approximation of
G1). Indeed, the condition Eh ·τ|γ = 0 forces the FE-approximation to vanish at
0 whereas the exact solution tends to ∞ at the corner. Hence, we are not faced
with an accuracy problem (which could be handled alternatively by a local mesh
refinement), but with the choice of the appropriated functional frame: the FE-
aproximation converges to the solution of P0(grad ) which is globally different
from the physical solution.

Figure 3 shows the discrete L2-error of the SFM,

‖E−Eh‖h :=


 1

Nh

∑

I∈
◦

ω

|E(MI) −Eh(MI)|
2




1/2

,

2developed by O. Debayser (ENSTA, Paris, France) and D. Martin (IRMAR, University
of Rennes 1, France) at SMP, ENSTA, see [28].
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Figure 3: The SFM for Hn, n = 2, n = 5.

in logarithmic scale for the regular fields H2 and H5.
The numerical values are in good accordance with the theory of §3.1.3. Fig-

ure 4 compares the SFM- and OSFM-approximations of the singular field H1.
It turns out that the OSFM yields the better results. This is probably due
to the cut-off function η involved in the implementation of SFM. Indeed, this
numerical instability is known for singular function methods (see for example
[13]) and leads to high values of the constant in the error estimates, and thus
to poor accuracy.

3.2 The time-dependent Maxwell equations

We are looking now for a numerical approximation of the 2d time-dependent
Maxwell equations, (8) being rewritten as two decoupled sets of second order in
time equations. In this paper, we focus on the first one (the second one could
be written in the same way [7]). It can be written as follows:





∂2E

∂t2
+ curl curlE = −

∂J

∂t
,

∂2Bz

∂t2
− ∆Bz = curlJ in ω×]0, T [,

div E = ρ in ω×]0, T [,

E · τ = 0,
∂Bz

∂ν
− J · τ = 0 on γ×]0, T [,

E(0) = E0, Bz(0) = Bz0,
∂E

∂t
(0) = curlBz0 − J(·, 0),

∂Bz

∂t
(0) = −curlE0.

(The second order in time system of equations is closed with the help of initial
conditions on ∂tE and ∂tBz.)

As mentioned in Section 1, the Bz component, as the solution of a wave
equation, always belongs to H1(ω), even in a non-convex domain. As a conse-
quence, we consider below only the computation of the field E.
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Figure 4: the SFM/OSFM for H1.

Remark 3.6 For the sake of simplicity, the problem will be written in the ab-
sence of charges: div E = 0. The space of solutions becomes

V = {v ∈ X : div v = 0}

By using the Helmholtz decomposition, it can be proved that the singular space
XS of X is a (strict) subspace of curlΦS + gradΨS, where ΦS is the space
introduced in Section 1, and ΨS its counterpart for the homogeneous Neumann
problem. Hence, the method described here for V can be adapted to X.

3.2.1 Description of the method

We first introduce a variational form of the equations, i.e.
find E(t) ∈ V such that

d2

dt2
(E,F)0 + (curlE, curlF)0 = −

d

dt
(J,F)0 ∀F ∈ V,

with the same initial conditions. As in the 3d case (see Theorem 1.10), there
exists one and only one solution of this problem. Moreover, we have the following
orthogonal decomposition of V, analogous to the one previously obtained in X .

Theorem 3.7 The space V can be split in the orthogonal sum V = VR

⊥
⊕ VS .

From this splitting, we obtain a continuous (orthogonal) decomposition in time
of the electric field, that is

E(t) = ER(t) + ES(t) .

By using again the relation between the singular solutions of Maxwell’s equa-
tions and those of the Laplace problem, we obtain that the vector space VS is
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finite dimensional, of dimension Kc, the number of reentrant corners, defined
by curlVS = N (N introduced at (6)). For (vj

S)1≤j≤Kc
a basis of VS , we have

E(t) = ER(t) +
∑

1≤j≤Kc

κj(t)v
j
S ,

where (κj)1≤j≤Kc
are Kc functions at least continuous in time. With this de-

composition, the variational formulation becomes:
find ER ∈ VR such that

d2

dt2
(ER,FR)0 + (curlER, curlFR)0 = −

d

dt
(J,FR)0

−
∑

1≤j≤Kc

κ′′j (t) (vj
S ,FR)0, ∀FR ∈ VR , (34)

completed with Kc equations, derived by using (vi
S)1≤i≤Kc

as Kc test functions.
Thanks to the orthogonality of regular and singular fields, one gets:

d2

dt2
(ER,v

i
S)0 +

∑

1≤j≤Kc

κ′′j (t)(vj
S ,v

i
S)0 + κi(t)(curlvj

S , curlvi
S)0 =

−
d

dt
(J,vi

S)0 , 1 ≤ i ≤ Kc. (35)

In order to compute numerically the solution, we have first to determine a basis
of VS , and then to solve the time-dependent formulation.

3.2.2 Determination of a basis of VS

For the sake of simplicity, let us assume that Kc is equal to 1. To compute vS ,
a basis of VS , the isomorphism between VS and N is used. The framework of
the algorithm is then:

- Compute a basis of N , i.e. a non vanishing element pS of L2
0(ω), such that

∆pS = 0 in ω,
∂pS

∂ν
= 0 on γk, 1 ≤ k ≤ E.

- Compute vS ∈ V, the solution of

curlvS = pS in ω, div vS = 0 in ω, vS · τ = 0 on γ. (36)

Instead of solving (36), it is more practical to make use of another isomorphism,
in the same spirit as in Section 1: to vS ∈ VS , there corresponds one and only
one scalar potential φS ∈ H1(ω)/R such that

−∆φS = pS in ω,
∂φS

∂ν
= 0 on γ.

Now, as φS is sufficiently smooth (i.e. with regularity H1), one can easily solve
this problem with the help of a variational formulation. The computation of
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vS ∈ VS then stems from the identity vS = curl φS .

Computation of pS (φS, vS): first method
A partition of ω into ωc and ωe is introduced, where ωc stands for an open angu-
lar sector of radius R centered at the reentrant corner, with an angle β = π/α,
1/2 < α < 1, and where ωe is the open domain such that ωc ∩ ωe = ∅ and
ωc ∪ ωe = ω. Last, Let γc (resp. γe) denote the boundary of ωc (resp. ωe),
which is split in B ∪ γ̃c (resp. B ∪ γ̃e), with the interface B = γc ∩ γe.

The computation of pS (for instance) can be divided in three substeps (cf. [7]).

1. The restriction of pS to ωc, p
c
S , can be written using the polar coordinates,

pc
S(r, θ) =

∑

n≥−1

Anr
nα cos(nαθ), with A−1 6= 0 .

Every An can be written as an integral of pc
S |B over B.

2. Let νc denote the unit outward normal to ωc. One then defines the ca-

pacitance operator T : pc
S |B 7→

∂pc
S

∂νc |B
, by

T (pc
S) = T1(p

c
S) − 2α

A−1

Rα+1
cos(αθ),

where T1(p
c
S) =

2α2

πR

∑

n≥1

n

{∫ β

0

pc
S(R, θ′) cos(nαθ′) dθ′

}
cos(nαθ).

3. With the help of the transmission conditions: pe
S = pc

S and ∂νcpe
S = ∂νcpc

S

on B, one gets the missing boundary condition for the exterior problem (on
the interface). Let νe denote the unit outward normal to ωe, the exterior
problem, written in a variational form, reads
find pe

S ∈ H1(ωe)/R such that

∫

ωe

∇pe
S · ∇q dω +

∫

B

T1(p
e
S)q dσ =

2αA−1

Rα+1

∫

B

cos(αθ)q dσ, ∀q ∈ H1(ωe)/R.

Clearly, the bilinear form (p, q) 7→

∫

B

T1(p)q dσ is symmetric positive.

Thus, for a given A−1, the above exterior problem is well-posed.

The computation of φS and vS can be carried out in the same way.

Computation of pS (φS, vS): second method
Instead of partitioning ω into ωc and ωe, one can split pS the basis of N into

pS = preg
S + s?(r, θ)

26



where s?(r, θ) = r−α cos(αθ) is the dual singular function (see Section 3.1) for
the Neumann problem, and preg

S the regular part of the solution (that belongs
here in H1(ω)). To compute pS , we have only to solve the problem in preg

S

−∆preg
S = ∆s?(= 0) in ω,

∂preg
S

∂ν
= 0 on γ̃c,

∂preg
S

∂ν
= −

∂s?

∂ν
on γ̃e.

Remark 3.8 This second one only requires the knowledge of the dual singular
function, which is easier to get than the complete local solution, and should
carry out to 3d problems. Moreover its implementation is simpler in the case of
several reentrant corners.

3.2.3 Solution to the time-dependent problem

We consider here the case of Kc reentrant corners. One proceeds first a semi-
discretization in space, by using the P1 Lagrange FEM. Let (wI)I,1,··· ,Nh

be a
basis of Vh

R, the FE approximation space of VR. The formulation (34) can be
written equivalently as a linear system, where ′ stands for the derivative in time:

Mω
~E′′

R + Rω
~ER = −Mω

~J′ −
∑

1≤j≤Kc

κ′′j (t) ~Λj , (37)

where Mω is the mass matrix, Rω is the curl matrix, and ~Λj (for a fixed j) the

vector whose components are (Λj)I = (vj
S ,wI)0, 1 ≤ I ≤ Nh.

We denote by ~k(t) the vector of R
Kc whose components are κj(t). Starting from

(35), we obtain

(~es)′′ + Vs
~k′′ + Ps

~k = −(~js)′

where ~es and~js are vectors of RKc , with components

es
j = (ER,v

j
S)0 = (~ER|~Λj) and jsj = (J,vj

S)0 = (~J|~Λj).

Vs and Ps are Kc × Kc matrices, defined by (Vs)ij = (vi
S ,v

j
S)0 and (Ps)ij =

(pi
S , p

j
S)0. By plugging this expression in (37), one obtains

Mω
~E′′

R + Rω
~ER = −Mω

~J′ +
∑

1≤j≤Kc

{Vs
−1((~js)′ + Ps

~k + (~es)′′)}j
~Λj ,

which is implicit in ~E′′
R. After a time discretization involving a second-order

explicit (leap-frog) scheme, the scheme reads

Mω
~En+1

R −
∑

1≤j≤Kc

{Vs
−1(~es)n+1}j

~Λj = ~Gn .
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Here the superscript n (resp. n+1) stands for a variable at time tn = n∆t (resp.

tn+1), and ~Gn is a set of quantities known at time tn. After a few elementary
algebraic manipulations, this expression can be written as

(Mω −
∑

1≤j≤Kc

~Uj
~ΛT

j ) ~En+1
R = ~Gn , (38)

where ~Uj is a linear combination of the (~Λk)1≤k≤Kc
: ~Uj =

∑
1≤k≤Kc

(Vs
−1)kj

~Λk.
It can be solved (for instance) with the help of the following formula (see [23]
for a review), A N ×N , U and W N ×Kc

(A − UW
T )−1 = A

−1 + A
−1

U(I − W
T

A
−1

U)−1
W

T
A

−1

that only requires (compared to the unmodified system, that is Mω
~En+1

R = ~Gn)
the additional computation of the small Kc×Kc matrix (I−WT A−1U)−1. This
formula is applied here for A = Mω . Recall that the mass matrix Mω is diago-
nalized thanks to a quadrature formula (see [8]), which preserves the accuracy.
In this way, the linear system to solve (38) appears as a slight modification
compared to the one obtained without the SCM.

3.2.4 Numerical results

Results of the computation of a basis of VS are similar to those shown in §3.1.4
and will not be presented here. We refer the reader to [6] for more detailed
numerical examples.

For the first case, one computes the electromagnetic field generated by a
current, the space and time characteristics of which are similar to those of a
bunched beam of particles. An L-shaped domain ω is considered where per-
fectly conducting boundary condition is imposed. The initial conditions are set
to zero. The electromagnetic wave is generated by a current J(x, t) = (J1, J2)

T ,
the support of which is bounded, with J1 = 0, J2 = 10 sin(λt), for λ associated
to a frequency of 2, 5.109 Hertz. This current generates a wave which propa-
gates both on the left and on the right. Physically, as long as the wave has not
reached the reentrant corner, the field is smooth. Let ts be the impact time,
then, if one writes E(x, t) = ER(x, t) + κ(t)vS(x), κ(t) is equal to zero for all
t lower than ts, and so ER(x, t) and E(x, t) coincide. Now, on the one hand,
for t greater than ts , κ(t) 6= 0, and the support of vS being non local (in fact,
the support of vS spans the whole of ω), one has κ(t)vS(x) 6= 0, for all x ∈ ω
and t > ts. On the other hand, however, one wishes to reproduce the obvious
physical behavior, which is that for any point x and time t, E(x, t) = 0 if t < tx,
where tx denotes the time at which the electromagnetic wave reaches x. One
can check (see Figure 5) that ER(x, t) takes non-zero values, and therefore that
it ’compensates’ for κ(t) vS(x), i.e. ER(x, t) = −κ(t) vS(x). Thus, E(x, t)
remains equal to zero while ts < t < tx.
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k(t)=0
k(t)≠0
E  (t)≠0R

E(t)=0

t

t

ER(x0,t)

E(x0,t)

Figure 5: At a given point x0, comparison of ER(x0, t) (top) and E(x0, t) (bot-
tom) with t varying.

The second example is a guided wave which propagates in a standard singular
geometry, as commonly studied devices such as hyperfrequency systems often
include waveguides. This case illustrates of the possibilities of the method,
when it is used on a more ’complete’ formulation, that is with different types of
boundary conditions and several reentrant corners. An incident wave enters in a
step waveguide through the left boundary, and exits through the right boundary.
At the initial time, the electromagnetic field is equal to zero all over the guide.

The Figure 6 depicts the isovalues of the first component of the electric field
after 1000 time-steps. the SCM provides a numerical solution which is precise
especially in the neighborhood of the corners. The result obtained via the
classical nodal FE code (without the SCM) shows a most unlikely approximation
of the true solution (no singular behavior).

Conclusion

We proposed a method, called the Singular Complement Method, to solve PDEs
in a non-smooth and a non-convex domain. It is based on a splitting of the
space of solutions V with respect to regularity (cf. (4)), in a subspace VR made
of regular elements, which is equal to V when the domain is smooth or convex,
and a subspace of singular elements VS . Regular elements are approximated by
the P1 Lagrange FEM, and test-functions are added to capture numerically the
singular part of the solution.

In 3d domains, for the Laplace problem as well as for Maxwell’s equations,
the theoretical aspects are under control, but there still remains to provide
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Figure 6: Computed electric field: with and without the SCM.

an effective approximation of the singular part of the solution. Basically, two
problems have to be overcome:

- The dimension of VS is infinite.
- The edge and vertex singularities are linked (cf. [21]).

These difficulties are not really equivalent. Indeed, on the one hand, one
usually deals with infinite dimensional vector spaces: for instance, the space VR

is efficiently approximated with the help of the P1 Lagrange FEM. On the other
hand, finding an approximation, which takes into account the links between the
two types of geometrical singularities, is much more challenging.

In 2d (or in axisymmetric domains), the situation is well understood theo-
retically, and numerical experiments are well under way and partial results are
satisfactory. Moreover, the SCM is easy to implement, as it can be included in
already existing codes, without having to rewrite them in their entirety; also,
it generates a reasonable overhead (low additional memory requirements, small
cpu costs). So, all’s well that ends well, cf. [32].
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