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In this paper, we present a method to solve numerically the time-dependent
Maxwell equations in nonsmooth and nonconvex domains. Indeed, the solution
is not of regularityH?! (in space) in general. Moreover, the spaceHdfregular
fields is not dense in the space of solutions. Thusldrconforming Finite Element
Method can fail, even with mesh refinement. The situation is different than in the
case of the Laplace problem or of the Lasystem, for which mesh refinement or
the addition of conforming singular functions work. To cope with this difficulty, the
Singular Complement Method is introduced. This method consists of adding some
well-chosen test functions. These functions are derived from the singular solutions
of the Laplace problem. Also, the SCM preserves the interesting features of the orig-
inal method: easiness of implementation, low memory requirements, small cost in
terms of the CPU time. To ascertain its validity, some concrete problems are solved
numerically. © 2000 Academic Press

Key WordsMaxwell's equation; singularities; reentrant corners; conforming finite
elements.

1. INTRODUCTION

In recent years, modeling and solving numerically problems which couple charged [
ticles to electromagnetic fields has given rise to challenging mathematical and scien
computing developments. In the industry, a variety of examples can be thought of, sucl
the ion or electron injectors for particle accelerators, the free electron lasers, or the hype
qguency devices. The mathematical model which is most relevant in describing the phy:
of these devices is the time-dependent coupled Vlasov—Maxwell system of equations.
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SINGULAR COMPLEMENT METHOD 219

In this context, anéhdependentlpf any geometrical considerations, we have develope
a method to solve the time-dependent Maxwell equations (see [6]), which has been
signed with the help oH (curl) N H (div)-conforming Finite Elementsin this method,
the computed electromagnetic field is continuous (this condition is recommended to
duce the noise of the solution of theupled problenii7]), and the numerical scheme does
not require solving a linear system at each time step. The conditions on the diverge
of the fields are treated as constraints and dualized as such by using Lagrange mul
ers, which yields a saddle-point formulation. We refer the reader to [6] for an in-deg
analysis of the method and for a detailed bibliography. This method is also interesting
nodal finite elements (Lagrandg®) are used, the implementation of which is common anc
easy.

However, a number of industrial structures and objects that must be modeled pre
a surface with edges, corners, etc., be it intentionally or not. The existence of those ¢
metrical distinctive features—of thogeometrical singularities-on the boundaries of the
domains which must be studied can create singular fields, that is unbounded fields (ir
neighborhood of those singularities). Moreover, this difficulty is not restricted to exteri
problems, as it must be dealt with in bounded domains too, as soon as the boundary o
domain contains such singularities. Such is the case in the following situations:

e The geometrical singularities are an active part of the device, for instance to gene
the powerful electromagnetic fields which are required to extract a strong electron cur
at a velvet cathode in a microwave generator.

e The geometrical singularities are only the consequence of constraints arptioi
configuration of the device, and it is mandatory to be able to control the induced nega
effects, such as the above-mentioned powerful fields which can produce breakdowns.

Finally, let us note that the presence of singularities changes the solutiba imhole
domainand not only in their neighborhood. In this respect, they haverdocaleffect. We
present an example which illustrates the effect of singularities in a numerical computati
Here, we focus on thqualitativeaspect of the results only.

We consider the propagation of a wave in a stub filter (see Fig. 1), which is propagate
evanescent, depending on both the frequency of the wave and on the size of the stubs
given frequencies, the guide is transversally closed, thus becoming a plain waveguid
rectangular section. Inthe example below, the guide isilluminated by a wave, the time-sic
of which is included in the range of the frequencies of propagated modes.

This filtering phenomenon can be modeled by tinge-dependenvlaxwell equations.
The result of a simulation for a two-stub filter is shown in the left-hand side of Fig. 1 f
an incident wave with the frequency of a propagated mode. The data and the geometr
assumed to be independent of one of the space variables, and therefore the model i
Contrary to the physics, the result is that of an evanescent mode for this frequency. In o
to emphasize the connection between the odd filtering effect and the reentrant corners
singularities), these edges are smoothed; that is, they are replaced by smooth struc
with a radius in the order of /ROth of the wavelength. The results that are obtained i
this case (see Fig. 1 (right)) confirm that there is indeed a propagated mode. However
“smoothing” of the corners yields two problems which must be addressed:

1 Thanks to recent results [16], choosing a piecewise smbiatturl) N H (div)-conforming FE amounts to
using anH*-conforming FE.
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FIG.1. E, component—sharp corners: evanescent mode in the guide—smoothed corners: propagated
in the guide.

e it requires a mesh refinement in the neighborhood of the reentrant corners (here, |
factor of 10), which leads to high computational costs.

e The original geometry of the device is modified, and the simulation thus loses
accuracy. Moreover, by smoothing the singularites, the very strong fields are numeric
underestimated, whereas one of the goals of the simulation is to control the negative eff
(breakdowns, etc.) by estimating them precisely.

Let us note however that there is no problem (in this configuration) as far aB,the
magnetic induction is concerned, either for the original geometry or for the smooth
geometry (cf. Fig. 2). In this resped; is sufficientlysmooth.

In order to address the problems raised by the singularities, we provided a mathema
analysis of the singularities of Maxwell’s equations in a nonconvex geometry [5]. The k
point is the following: in a nonconvex polygonal (or polyhedral in 3D) dom@inthe
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FIG. 2. SmoothB, component, the mode is propagated in both cases.
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solutions (electric field and magnetic induction) of Maxwell's equations at a given tin
t do not belong toH(2)? (or H:(2)%) as is the case in a convex domain, but only tc
H (curl, ) N H(div, ). In other words, the “physical” solution of Maxwell's equations,
which only belongs to the functional spakcurl, ) N H (div, 2), goes to infinity when
one comes close to a reentrant edge or a reentrant corner. It does not coincide witt
“smoothed” solution, that is, the one computed thanks to a formulation of the problem
H(2)2. In addition, there is no hope to converge to the “physical” solution by using me
refinement, as the space of fields which belongsi{g$2)? is not densen the space of
fields which belongs td1 (curl, ) N H (div, Q) (this situation also occurs in 3D). This is
major difficulty as far as the numerical computation of solutions is concerned.

Note that the numerical methods based on edge finite elements which are conformir
H (curl, ) [21], orthose based on finite volumes on orthogonal meshes (inthe 2D case)
allow one to approximate the solution. Indeed, the degrees of freedom of these mett
are located on the edges of the mesh, and therefore they do not “carry” the geomet
singularities. Nevertheless, in order to get a precise knowledge of the solution close to
singularities, one must perform very significant mesh refinements (which makes them
to use in some situations). What is more, in our case, usiedflC's second family of
nodal finite elements [22], which are also conformingHiicurl, 2), can be problematic.
As a matter of fact, the regularity required to define the associated moments (cf. [9]) is
automatically fulfilled by the solution of the time-dependent Maxwell equations.

Still, for most applications, computing the behavior of the solution outside of a neig
borhood of the singularity is not sufficient. It is required that one computes the soluti
precisely as close to this singularity as is possible.

In order to achieve sufficient precision, one @apriori try to use singular functions
methods. These methods, which have been developed for elliptic problems (see the e«
works in [12]), consist of augmenting the basis of numerical functions by adding a singu
function (H*-conformingat the reentrant corner). They are widely used when the lack
regularity of the solution leads to a slow convergence of the nodal finite element meth
In this case, a carefully choseefinementof the mesh would have been sufficient, and
the singular function method can be viewed as an alternative. Here, the key point is
the numerical basis, with or without the addition of singular functions or mesh refineme
already spans the whole set of solutions when the mesh size goes to zero.

Unfortunately, this methodannotbe applied to solving Maxwell’'s equations in a singular
domain, as the solution computed by a nodal finite element method does not span the w
space of the physical solutions (cf. the density problem mentioned above). Once again,
not a matter of speed of convergence, and a mesh refinement or the addition of a sing
function does not improve the overall numerical method.

To cope with this difficulty, we have developed a new method for solving time-depends
Maxwell equations in singular domains, called Biagular Complement Method (SCM)
One of its advantages is that it can easily be included in already existing numerical co
which allows one to increase their domain of application. As a matter of fact, it makes th
usable in the presence of geometrical singularities simply by adding a small numbe
functionalities, without having to rewrite them in their entirety.

The SCM is based on an orthogonal decomposition of the solution into a regular
and a singular part. The original ideas can be found in the works of Grisvard (see [14],
and the references herein). Let us consider the Laplace equation with a right-hand sic
L2(R). Its solution belongs té12(2) when the domain is smooth (or convex), but it only
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belongs toH*S(Q), with 1/2 < s < 1, when there are geometrical singularities (see [15
for a 2D domain, and also [10], [14] for a 3D domain). Relying omdmocdecomposition

of L?(Q), Grisvard showed that it is possible to split the solution in a regulaH@rs2))
part and a singular part. Along the same lines, let us mention another approach devel
by Hazardet al. (see [8], [17]) for the treatment of the time-harmonic Maxwell equations
which is also based on a decomposition of the space of solutions. Their decompositio
however slightly different from ours, thus leading to a different numerical scheme.

We introduced an orthogonal decomposition of the solution of Maxwell's equation
which is mathematically analyzed in [5]. We recall the principles of the method in Section
Hereafter, we build a constructive method for solving the original problem, and its associa
numerical algorithm, which are detailed in Sections 3 and 4. The algorithm makes ust
the explicit knowledge of the expression of the singularities near the reentrant corners
Section 5, we present some numerical results which illustrate the efficiency of the SC
applied to a number of realistic devices.

2. AMATHEMATICAL ANALYSIS OF THE PROBLEM

2.1. Maxwell's Equations

Let us consider a bounded, connected, and simply connected open Quiis&t, the
boundary of which is called’; let the infinite cylindei2 x R be the physical domain. Let
v=(vx, vy, 0)" be the outward unit normal to the domain, with the exception of the infinit
edges. If we let andeg be, respectively, the speed of light and the dielectric permittivity
Maxwell's equations read

1
g—czcurle——J, (1)

ot €o

oB
— 1€=0, 2
ot + cur (2)
dive =2, (3)
€0

div B =0, (4)

where¢ is the electric fieldB is the magnetic induction, angland.7 are the charge and
current densities. These quantities depend on the space vatiabteon the time variable
t. Note that the above system of equations (1-4) is considered ifisidg.

These equations are supplied with appropriate bounday conditions. In order to simp
the presentation, let us assume first that the boundary is a perfect conductor. In Sectic
the extension to the Silver-lér boundary condition will be handled: it can model either
an absorbing medium outside of the domain or an incident wave. For the moment, le
take the conditions

Exv=0onl xR, (5)
B-v=0onI xR. (6)

The charge conservation equation is a consequence of equations (1-3) and reads

dp

P +div7 =0. (7
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Last, initial conditions are provided (for instance at tilre 0)

g('9 O) = 505 (8)
B(-, 0) = Bo, 9)

where the couplégy, By) depends only on the variakie

In what follows, it is assumed that both the data and the initial conditionsot depend
on the transverse variabie Then the original problem can be identified with a probler
the domain of which is a section of the infinite cylinder, tha®isAs a matter of fact, the
set of first order in time equations (1-4) can be rewritten equivalently as two decoup
sets of first order in time equations. If, for the fiedt= (Zy, Zy, Z,)7 of R one uses the
notationZ = (Zy, Zy)T, the first set of equations is of unknowts B,), i.e., the so-called
TE mode, with data and p, while the second set is of unknow(g,, B) with datumJ,
(the TM mode).

In the 2D case, let us note that there exists a scalar curl operator, denoted by curl,
a vector curl operator, denoted byrl. Both systems can be equivalently formulated a:
second order in time systems (see [6]). The TE mode can be written as

PE 143

— 4c“curl curlE = ———, 10
oz * go ot (10)
dvE= "2, (11)

€0

7B, 1
—Cc‘AB, = —curlJ. (12)

8t2 €0

Let T = (vy, —y)" be the tangential vector associated to the normal vectotv,, vy)T.
With these notations, the perfectly conducting boundary condition can be written, for 1
electric field

E-t=0, (13)
and for the magnetic induction
9B, 1
——-—=J.-7=0. 14
dv  C2g f (14)

In addition to these conditions, the second order in time system of equations is closed
the help of initial conditions odE/at anda B,/at

oE 1
—(,0)=c?curl Bg— —J(-,0), (15)
ot &o

9B

a_tz(" 0) = —curl Eo. (16)

The TM system could be written in the same way. In this paper, we focus on the ab
system, keeping in mind that one can also handle the other system with no additic
difficulty (see [5] for more details). Also, we assume in the following that the dorftain

has a single reentrant corner. We refer the reader to [5] for the more general case, th
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a polygon with several reentrant corners. Again, there is no additional difficulty, with tt
exception of the formulas, which become a little bit more complicated.

The scalar product df 2(€2) is denoted by f | g)o = fQ fg dx and the related norm is
Il - llo. Let us introduce the functional spaces

L5(Q) = {f € L%(Q), (f | 1)o =0}, 17)
Ho(curl, Q) = {u e H(curl, ),u- 7z =0o0nT}, (18)
V = {u € Ho(curl, ), divu = 0}; (29)

V is equipped with the canonical scalar productbfcurl, 2):
U, V) > (U | Vot = (U | v)o+ (curlu | curlv)o.

In the present case, or more generally in a nhonconvex domain with several reent
corners, the spacé is not included inH1(2)? any more (see [14] for instance). It is thus
natural to introduce the regularized spageof V:

Ve ={ue HY(Q)2 divu=0u-t =00nT} =V NHYQ)?2 (20)

Itis proved in [1] (see also the Introduction) that tBecomponent, as the solution of a
wave equation, always belongskb (), even in a nonconvex domain. It can therefore be
computed numerically without any problem. On the contrary, the electricEglhich is
the solution of Maxwell’'s equation (10), (11), does not belonglf@Q)? as would be the
case in a convex domain, but it only belonga4oThis is the reason why we consider only
the computation of the fiel& in what follows.

Let us introduce the time-dependent problem:

Given a current)(t) such thatdiv J=0, and two initial dataEy and E,, find E(t) €
H (curl, ) such that

d°E 193

FTE c? curl curlE = e T (21)
divE = 0, (22)
E.-t=0o0nT, (23)

with the classical initial condition&(0) = Eq anddE/dt(0) =E;. It can be written in a
variational form:
Find E(t) € Ho(curl, ) such that

E 80&
divE =0, (25)

d? 1/3J
(E | F)o+ c?(curl E | curl F)g = —( F> VF € Ho(curl, ), (24)
0

with the same initial conditions. One could also formulate the equivalent of (21)—(23) a
of (24), (25) inHo(curl, ) N H(div, Q) orinV.
Thanks to [20], these exists one and only one solution to these problems.
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Remark 2.1. The problem (21)—(23) is written in the absence of charges, that is wi
divE=0. One can consider the problem with charges, where (22) is replacegd, ¢or
L2(R), by divE = p /g0, and where div = 0 is replaced byp/at + divJ = 0. As a matter
of fact, it can still be reduced to the divergence-free problem. In order to do so, one can,
instance, leE* = E — Vy, with ¢ the unique element dfif(Q2) that satisfie\yr = p/o;
this equation can be solved using its usual variational counterpart. This method is o
called the Poisson correction (see, among others, [7] and [18] for numerical experimer
In the present case, is a time-dependent function, and it is best to avoid the solution t
a linear system at each time step. To address this difficulty, we have built a method wt
is a generalization of the method we apply in this paper, that is, the decomposition of
solution in a regular part and a singular pardinto the case of fields with a nonvanishing
divergence (see [2]).

2.2. A Decomposition of the Solution in Regular and Singular Parts

Let us briefly recall, without proof, some useful theoretical results in order to underste
better the construction of the numerical method. The reader is referred to [5] for a thoro
study.

The underlying principle of the method consists of relating the singular solutions
Maxwell's equations to those of the Laplace problem, the properties of the latter hav
been investigated in a detailed manner (cf. [10, 14, 15]). On the one hand, there is
orthogonal decomposition &f3(2)

L2(Q) = A(PR) & Sy, (26)

whereA (®R) is the range ofbg by the operaton\, with

=o},
r

andS, is characterized as the set of distributiahs L%(Q) such that

99

dr = {cb e HX(Q)/R, —
ov

Ay =0inD(Q), (27)
W =0onr. (28)
av

Thanks to Grisvard [15]Sy is a finite dimensional vector space, it dimension being equi
to the number of reentrant corners, that is 1 in our case. Let upgaB basis.
On the other hand, we proved the following result:

LEMMA 2.1. The scalar operatocurlis anisomorphism from V ontcﬁm). In addition
the L?-norm of the curl defines on V a normhich is equivalent to the nori o cur.

Let V be equipped with the scalar product inducedvisy ||curl v||o. In this case, the
isomorphism of Lemma 2.1 preserves orthogonality. Having proved that the ¥paas
well as its range by the scalar curl operator, are closed and L(<2), respectively, it is
valid to introduce their orthogonal supplementary subspaces. This allows one to concl
that the orthogonal of culfy in LS(Q), denoted by(curl VR)*, is equal toSy. In this way,
one obtains a result concerning the orthogonal decomposition of vector fields in



226 ASSOUS, CIARLET, AND SEGR

1
THEOREM 2.1. The space V can be split in the orthogonal sum=Vr & Vs, where
Vs is a vector space of dimensidndefined bycurl Vs= Sy .

The electric field, solution of (21)—(23), depends continuously on the time variable wi
values inV [1]. Then, at any timé¢, one obtains the (orthogonal) decomposition

E@®) =Er(®) + Es(D). (29)

The fieldEg € VR is called the regular part of the solution, whereas the figla Vs is
called the singular part. Moreover, the spagds of dimension 1, so one may write

E() = Er(t) +«(Dvs, (30)

with vs a basis olVs andk a function which is smooth in time (at least continuous, cf. [1]).

Remark2.2. 1.Inthe particular cases wheg=0 (i.e., the domain is convex), or when
the singular coefficient is zero, one has obviously= Eg € H(2)?. This property must
be preserved numerically: this fact is illustrated in Section 5. '

2. When the domaii®2 hasK reentrant corners, difiws) = K. Then, for(v’s)lijK a
basis ofVg

E() =Er® + Y )V, (31)

1<j=<K

where(k)1<j<k areK smooth functions (cf. [1]).

3. ANUMERICAL METHOD TO COMPUTE THE SOLUTION

Starting from the orthogonal decomposition obtained previously, it is possible to builc
method, which allows one to compute numerically the solution.

Remark 3.1. Let us stress the fact that this method can be easily included into alrea
existing codes, without the costly procedure of rewriting them entirely. Here, we are sim|
stating that a code which computes the solution of Maxwell’'s equations in convex doma
actually computes the regular part, as the singular part is always equal to zero in this c
Thus, the method we present here provides an extension of the range of the code to the
of nonconvex (and nonsmooth) domains.

It can be summarized in two steps:

1. Determination of a basis of &/ One must solve a static problem. The computation:
are carried out only once as an initialization procedure.

2. Solution to the time-dependent probléad), (25). It will then be enough to couple
the classical method, which is already available, to the solution of an additional equati
of unknown (t).

Those steps are enumerated in the following subsections.

3.1. Determination of &, a Basis ofVg
3.1.1. Principle of the Method

To computevs, the isomophism of Lemma 2.1 is used. The framework of the algorithr
is as follows:
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e First step
The spacesy is of dimension 1: one computes first a basiSgf that is an nonvanishing
elementpg of L%(Q), which satisfies to

Aps=0inQ, (32)
s _ g onr. (33)
av

e Second step
One must then to look fors € H (curl, 2), the solution of

curlvs = psin Q, (34)
divvs =0in g, (35)
vs-T =0onT. (36)

Instead of using the direct solution to (34)—(36), it is more practical to make use of anot
isomorphism (see [5]), which is analogous to the one of Lemma 2.1. It shows tha&tv,
there corresponds one and only one poteiitisé H($2)/R such that

—A¢S = Ps in Q, (37)
s =0onTl. (38)
v

Now, asps s sufficiently smooth (i.e., with regularityi 1), one can easily solve this problem
with the help of a variational formulation. The computatiovgfe Vsthen stems from the
identity vs = curl ¢s.

3.1.2. A Numerical Solution Obtained by Substructuring

Thanks to the above results relating the singular figJdo ps, it is possible to derive
some useful information about the expression of the singularities in the neighborhoot
the reentrant corner (recall that its counterpart is well knowngkr In order to benefit
from this explicit knowledge, the computational algorithm is built using a substructurir
approach.

Let us begin with the computation gfs. It can be viewed as a generalization of the
method originally developed for the Laplace problem by Givoli and Keller [13, 19], the
transmission operator being a particular instance of the capacitance operators (see fc
stance [11]). With this approach, one gets an explicit expressiqs of a neighborhood
of the reentrant corner. Outside of this neighborhgoeglis smooth, and it can therefore
be computed with the help of a classical variational formulation. It should be noted tl
the information corresponding to the “exact” knowledgepgfclose to the reentrant corner
allows one to preserve (humerically) the orthogonality between the regular and sing
parts of the solution. This is not the case anymore if one chooses to regyafipeally,”
by substracting to it its most singular part, that is, this most singular part multiplied by
smooth cut-off function (cf. [15]).

Let us take the domaife such as it is pictured on Fig. 3. Its reentrant corner is locall
made up of two segments, which intersect at the corner with an anglel/2 <o < 1.
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(o

FIG. 3. Shape of the domaise.

A partition of Q in Q€ and2¢ is introduced, wher&°® stands for an open angular sector
of radiusR centered at the reentrant corner, and whefeas the open domain such that
QCNQe=¢ andQ°® U Q°= Q. Last, letl'® (respectivelyl"®) denote the boundary ¢
(respectively$2®), which is split in3 U I'¢ (respectively3 U I'®), with B=T¢ N T,

In this paper, either a (superscriptdpr € is added to refer to the restriction of quantities
to Q€ or Q€.

First Step: Computation of

Let us consider the detailed computatiorpef which is a nonvanishing element &§. It
can be further divided into four substeps. The first two are “formal” (but still mathematical
justified); the other two allow one to compuyte numerically. Substeps 1 and 2, respectively,
consistin finding an expression p§ as a series, then in determining a formula which allows
one to recover the coefficient of the series as a functiopggf, and finally in computing a
transmission operator on the interfd@eAfter these substeps have been completed, one c:
pose the problem if¢, the solution of which ig: it is then computed in Substep 3. From
that point on, in Substep 4, one computes the coefficients of the series,pising ps s,
to obtainpg.

1. An expression of the restrictigpk:
Using the separation of variables, one can find analytically the solution in a neic
borhood of the reentrant corner. One gets, using the polar coordinates (centered a
cornernr <R,0<6<7,

pE(r.0) = > Ajr™cosned),  with A_y #0. (39)

n>-1

Every A, can be written as an integral p§ ;. Let us recall here the expression of the
coefficientsA,

T/
Ag = 3/ PS(R., 6) do, (40)
T Jo
20 [T — 2
A =2R a/ PS(R, 0) cogad) dd — R™**A_4, (41)
s 0
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2 /o
A, = LR / pS(R, 6) cosgnad) b, vn > 2, (42)
V4 0

whereA; is given as a function of_1, which, by definition, is not equal to zero.
. The capacitance operafbr
Let v¢ denote the unit outward normal €Ff. Thanks to (40)—(42), one can define the

. ps
capacitance operatdr. pg; = 55 5, by

2 2 /o , ,
T(pS) = 2= n{/ PS(R, 6') cognaf’) do }cos(nae)—
7R =1 0
(43)
If we let Ty stand for the first term of the right-hand side, then
A
T(pg) = Ta(pg) — ot cogab). (44)

. Computing the solutiop§ to the exterior problem:

With the help of the transmission condltlopglg = pS‘B and 2'3§|B e |B, one gets
the boundary condition for the exterior problem®BnlLet v¢ denote the unit outward
normal to$2¢, the exterior problem then reads
Find p& € H1(Qe)/R such that

Apg =0inQ°, (45)
e
9Ps _ gonfee, (46)
Jave
ps A1
+ T1(pg) = 20— cogad) on B, 47)

R+1

which can be written in a variational form

ae

20A_,
(VpeS]Vq)one—i—/BTl(pes)q do = T /cos(ae)q do, Vq € HY(Q®)/R.
(48)

(- | -)o.qe Stands for the scalar productof(2¢). Clearly, the bilinear forntp, q) —

J T1(p)q do is symmetric positive. Thus, for a give¥._;, the above exterior problem
is well-posed. In order to solve the exterior problem numerically, a triangular me
of Q¢ is provided. The spackl1(Q®)/R is discretized with the help of Lagrange
Finite Elements: le\/® be the space of -conforming Finite Element functions
thus generated, and Ig€ be the associated discrete solution. It can be written i
the form pg = Zi’\':l pi A, where(}i)1<i<ne are the basis functions &4°. After the
discretization, the variational formulation (48) can be written as a linear system:

(ng + KB) pﬁ =F. (49)

Here, pg also stands for the vector &\° of entriesp;. The matrixKz is “locally”
full but, being defined only on the interfadg its size remains small. Fa; andA;
the support of which intersects the interface, the e(ty); ; reads

202

/o /o
— n{/ A (R, e)cos(nae)de/ A (R, 9)cos(na9)d6},
7R 0 0

n>1
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4. The computation of the coefficients is carried out with the help of (40)—(42). Thus,
one can reconstruct the solution in the whole domain (but not at the reentrant cort
which belongs to the boundary).

Remark 3.2. If the Maxwell equations are coupled with a particle method, such &
Vlasov’s equation, computing the trajectography requires that the electromagnetic fiel
known at every possible position of the particles, oftery closeo the boundary, but never
onthe boundary.

Second Step: Computation\of

e Computation of the scalar potential: As mentioned earliervgnis computedvia its
scalar potentiaps. One solves first the system (37), (38) in a manner which is similar t
the one kept foips.

1. The local solutiomg reads:

B A
C_— _ N Ne _ _ o n ne+2
Pg=—> 1" cosnaf) > Ty cognad), (50)
n>1 n>-1
where the coefficient&B,)n>1 can be expressed as functions of the tiggen B3, that
is:
n=1 B;= / #<(R, 0) cogab) do
7w R
o
— A_ R* % AiR? ), 51
(4—4a 1 + 4+4a 1 > (51)
2na 2
n>?2 B“:_ana/ PR, e)cos(nae)de— +4AnR . (52

2. The capacitance operatois

t(¢g) = Ti () — / ps(r, 0)dr +5 2a A_;RY@cogaf).  (53)
The exterior problem, of solutiapg, which can be written similarly tpg, is equivalent

to the variational formulation:
Find ¢& € H1(Q®)/R such that

T/
(Vo3| Vi )gq, + R/o Ti(¢2) ¥ (R, 6) do

1 /o R
=(PS|¥)gq, + ER/O {/0 pg(r,e)dr} ¥ (R, 6)do

o
2— 2o

/o
A R¥@ / cosaf) Y (R,0)dd, Yy € HY(Qe)/R. (54)
0

The solution to the exterior problem can be obtained by the Finite Element d
cretization of the formulation (54). Lef; denote the discrete solution W¢, that
is ¢p = ZI 1¢| Ai. Itis the solution to the linear system

(Ka,0f + Ks)¢p = Mo, pg + G, (55)
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whereMy, stands for the mass matrix, that is, the matrix associated tbisealar
product inQ€. The matrix being identical to that of (49), this formulation with the
potential requires only minor modifications. The coefficieBtsare then computed
with the help of (51), (52), and the potential is thus known everywhere except at
reentrant corner.

e Computation of/s:

One simply getys by taking the vector curl ops.
1. The local solutiorvg:

. ne
c _ ne—1  SIN(Na6) i1 aaia sin(na) .
Vs = Z Bnr (cos(na@) + Z Anr s , WwithB; #£0.

n>1 n>-1 Ina+4 COSI’]O[G)
(56)
2. The exterior solutiong:
One solves the equation of unknowgwhich reads:
Find v& € (H1(2®)/R)? such that
(V& A)gge = (curl @[ X) g ges VA € (HY(Q®)/R)2. (57)

Numerically, one does not simply perforrg= curl ¢s; some straightforward interpola-
tion is added, so that an approximat'w@is at hand. For that, the whole domain is meshec
(in our case, there remains only to me3fy in an admissible manner @).

Thus, in order to compute a numerical approximation§fthe basis oWs, (56) is inter-
polated at the vertices inside® to getvy (the coefficientsA, and B, have already been
computed). To computef, (57) is discretized

MQeVﬁ = Rge¢ﬁ, (58)

whereRqe stands for the curl matrix, associated to the téeonl ¢g | Ao qe.

Remark3.3. The analytical solutiongg, ¢<, andvg are knowrvia series (which con-
verge, the solutions being in?(Q°)), they must beruncatedfor the numerical computa-
tions. However, in practice, the series converge very rapidly (spectral convergence), wi
means that a small number of terms (less than 10) are sufficient to compute a solu
accurately.

Remark3.4. If, givenf e L3(R2), one wants to solve the (stationary) curl-div problem:
Find u € H(curl, ) such that

curlE = f, (59)
divE =0, (60)
E.-t=0onT, (61)

one simply must split the solution of (59)—(61) Bs= ERr + «Vs, with Er € VR, Vs the
(known) basis o/s andx a constant. The orthogonality Bfz andvs yields

(curl E | curlvs)g = (f | curlvs)g = «(curlvs | curl vs)e.
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Using (34), one finally obtains

_ (f I ps)o
K = 7
I Pslig

The computation of the regular pd&k can then be carried out with the help of a classica
numerical method. Thus, it is clear that only a few modifications are required, as long
a code, which computes the solution to similar problems in convex domains, is alread
hand.

3.2. Solution to the Time-Dependent Problem
3.2.1. The Variational Formulation

A new variational formulation (ff the problem (24), (25) is introduced, using the ortho
onal decomposition oV =Vr @ Vs, and of the solutionE(t) =ER(t) + « (t)vs(t)
(cf. (30)). In an equivalent manner, we add to the space of test functigrike func-
tion vs. With this orthogonal decomposition, the classical formulation (24) can be writte
Find Er € Vg such that

2
gz Er | FRlo+ c?(curlEg | curlFr)o
1d

=———|Fro—«"(t)(vs | FR)o, VFRr € Vg. (62)
€0 dt

This formulation projects the solution of Maxwell's equations on the spicef the
regular fields and carries the singularity onto the spaceA by-product is the additional
unknownk”(t), the second derivative efwith respect to the time variable. Therefore, one

must add an extra equation, obtained for instance by takirap a test function.
—2(E V8o + K" IVSIZ + e pslE = — = 3 | vg (63)
it R | Vs)o slip sllo 2o dt s)o-

Remark 3.5. Inthe more general case of a domain withlieentrant corners, the solution
has the form (31). The space of test functidfsis then completed with th& functions
(vis)lfigK. The formulation (24) then reads
Find Er € Vg such that

2
de2
1d

= —;Oa(\] | Fr)o — 1<]_Z<KKJ{/(t) (VJS’ FR)O’ VFRr € VR. (64)

(Er | Fr)o+c?(curlEg | curlFr)o

TheK additional unknowns (t))1<j<k appear. The above system is completed in thi
case withK additional equations, where tlie test functions arevis)lfifK. Thanks to the
orthogonality of regular and singular fields, one gets

d2 . . _—
gz (BrIVs)o+ D #]®(vs|vs)o + i) (ps | Ps)q

1=<j=K

1d i :
_S_Oa(Jyv's)O,lg <K. (65)
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3.2.2. Discretization of the Formulation (62), (63)

One proceeds in two steps: first a semidiscretization in space, then a discretizatio
time.

Let us consider the semidiscretization in space of the variational problem (62), (6
The triangle mesh is the (admissible) union of the meshes @¥end Q°. Let VS C VR
be the space of discretized test functions, andl&t) = E*,L(t) + Kk (t)vs be the discrete
solution. One knows thad % (t) = 3. ERA;, where); are the basis functions of the Finite
Element Method. Here); denotes a vector basis function: one of its component is equ
to A, and the other is equal to zero. If it is additionaly assumedwiag known exactly,
the orthogonality relationships still hold and the semidiscretized variational formulation
written (with the addition of the indey) in the same way as (62), (63).

Remark 3.6. 1. The semidiscrete system derived from (62), (63) is coupladhe
terms«” (t) andE'EQ(t). One can obtain a decoupled version with the help of the (orthogon:
projectionP, on VS with respect to the scalar productlof(2)?, by takingvs — P,vs as
a test function instead ofs. Equation (63) is then replaced by

k" (V)IIvs — Pavsll3 + Sk (O psll3

1d
= Cz(curl E?q ’ curl( PhVS))O — S—Oa(\]h ’ Vs — PhVs)o. (66)

Actually, if one considers the linear system resulting from (62), (63), this can be view
as the usual factorization which is performed to provide a block triangular matrix. T
functionk is then computed by solving the ordinary differential equation (66). Accordin
to the regularity ofvs [5], the estimation of the coefficient in front ef (t) yields

T .
Vs — Pavs|l3 < C.h* % Ve > 0, where— is the angle at the reentrant corner. (67)
o

This allows one to conclude that this differential equation is not stiff, and so that it can
solved with a classical discretization in time. Nevertheless, the numerical experiments
we have carried out with this approach (cf. [4]) yielded results which are less precise
the one obtained using (62), (63).

2. In order to simplify the presentation, we present the case of an internal approxir
tion, that isV; ¢ Vr. This assumption is, however, not required. As a matter of fact, tt
formulations which we implemented in our codes are not internal. Indeed, we kept mi
formulations in which the divergence constraint is dualized (see [6]). Under these cor
tions, the discrete functions of the approximation space, cZJTgchre not divergence-free.
One must add a Lagrange multiplipf € Q" to dualize the discrete divergence condition
div Eg =0, where the spac®" is chosen in such a way that the discrete inf-sup conditio
is satisfied. This mixed formulation consists of addingf | div Fg)o term to the formu-
lation (62). The loss of the orthogonality betweénand ZE (as ZQ ¢ VR) yields another
term in (62), which reads

(curlvs|curlF), #0, VFg € ZR. (68)
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3.2.3. Time Discretization

The formulation (62) can be written equivalently as a linear system

d?
dt2

1d
—MgER + CPRoER = ——aMQJ“ K" (A", (69)

whereM, is the mass matrix®q, is the curl matrix, and\" is the vector whose components
are the integrals ove® of the scalar product ofs and the basis functions M,Q. Now, vg
being singular, the computation must be carried out precisely in the neighborhood of
reentrant corner. This point shall be detailed in Subsection 3.3.

Starting from (63)«”(t) is expressed as

1 1
K'(t) = —— (— — (' | vs)o — |l pslld (t) — (ER | vS>o>, (70)
Ivslid \ o

where’ stands for the first derivative in time. This expression is included in (69). One th
obtains

1 / 1 /
MqEp 4 cPRoER = _;OMQJ + V2 <(J | Vs)o + €2 psligr (t) + (ER | Vs)o> ,
)

(71)

which is implicit in E%;. After a time discretization involving a second-order explicit (leap-
frog) scheme, the scheme reads

1

n+1_ -
2
IVsll§

oER (ER™ |vs), A" =G". (72)
The superscript is dropped. Here the notatiok” (respectively,X"*1) stands for a vari-
able X at timet" =nAt (respectivelyt"*! = (n+ 1) At), whereAt is the time step, and
G"=(GY, Gg) is a set of quantities known at tin@.

It can be checked in an elementary manner that the resulting linear system is invert
(cf. [4]). By constructionE’Qjrl can be decomposed over the basis functions, so that ol
actually has

(BB ve)o = 7 (A4 (ER), + A} (ER),). 73)

where then!, A‘y are the components af". Recall that the mass matiif, is diagonalized

thanks to a quadrature formula (see [6]), which preserves the accuracy. Note that th
of crucial importance, as far as the choice of the method for solving the time-depend
Maxwell equations is concerned. In this way, the linear system (72) can be written row-w

mi (ER%) i

sz 2 (AMERR); + A (ERS) o = (G, (79

I|Vs|

m (ER, i

oy S (ALCERD) + BB )0y = (@) 9

I|Vs|
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wheremy; is theith diagonal entry oMg,. This equation can be easily solved. With obvious
notations, it can be rewritten (for eveiry

AXi—> BX;=F. (76)
j

After a few algebraic manipulations, one can reach an explicit expression of the solutic

R(1-2 %)+ 2R
A(1-3 %)

: (77)

for which it is easily checked that the denominator never vanishes (cf. [4]).

Remark 3.7. 1. We presented the algorithm that allows one to compute the field
an interior node to simplify. The expression (74) is modified accordingly for a boundz
node, depending on the boundary condition (absorbing boundary condition, incoming w:
symmetry, etc.), but it is always analogous to (77).

2. For similar reasons, we have not taken into account the term which stems from
dualization of the constraint on the divergence of the electric field (the reader is referre
[6] for a detailed account). In the numerical codes that we developed, this term is taken
account and the above algorithm can easily be adapted.

Once the value oE%* is computed, one can also compute, at the corresponding tirr
the valuec"+1 &' « (t"1), with the help of a time discretization of the differential equation
(70). For practical reasons, the leap-frog scheme is used again:

n+1 n n—1 2 2|| pS”% n
=2«" —«k — CAt" —«k
lvsllg

(ER™ —2ER+ER'|vs)y At
Ivslig gollvslI§

K

(Jn+1/2 _ Jn—1/2 ‘ VS)O- (78)

Remark 3.8. As far as the numerical implementation is concerned, taking into accou
the singularities requires only the following modifications:

1. The addition, in the classical formulation (69), of the tarht)A", and therefore
the use of the modified solver (see the formula (77)),
2. The straightforward solution to the additional equation (78).

3.3. Some Details Concerning the Numerical Integration

To conclude this Section, the computation of the coefficigmis|3 and |vs||Z and the
computation of the components Af' are briefly presented.

1. Computation of| ps||3 and||vs||3
For the computation of ps||3, the integral oveg is split overQ = Q¢ U Q®, thus
resulting in a sum of an integral ov@f and one ovef2®. In Q°, the analytic expression
(39) of pg is kept. InQ®, the discrete fornpy = > piAi, with (Ai)1<i<ne, the basis
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functions ofVj¢, is used. Then

R x 2 Ne
[ psll%z/ / (Z Anr™ cos(nae)> rdrde + Z Pi Pj (Ai | Aj)o.qe-
0 0 n>-1 i,j=1
This gives

2+42na
+ 'piMeepy.  (79)

T
Ipslif = o | AARE+ ASRP+ S A7
nnz#—ol

2+ 2na

The computation ofvs|3 is carried out along the same lines.

2. Computation ofA".
Recall thatA" does not depend on the time variable, so it is computed only once. T
domain is split in three subdomaifs, 1 <i < 3. One writes

3
(Vs | VR)o = Y (Vs | VR)og (80)

i=1

and a different numerical integration scheme is used on each subdomain, depen

on the regularity of/s.

(a) 21 is the domain which is closest to the reentrant corner: it is made up of tl
triangles, one of the vertices of which is the reentrant corner. It is possible, withc
restricting the scope of the method, to build a mesh suchShas composed
of misoceles trianglesT;) =1, .m, of anglesd dzef% at the reentrant corner, and
with sides originating from this corner of fixed length (vs | Vr)o.o, IS equal to
Z’j“:l fT,- Vs - Vg, dx: using the analytical expressionwf (see (56)), of the basis
functionsvg,, and of the triangld; in thepolar coordinategr, ¢), one computes
the exact analytical form (in) of (vs, Vr)g,. The only expression (i) which
has to be numerically computed is

/55 cos(na + ko)

0 COS@ (na+l)

wherek andl belongto{—1, 0, 1, 2, 3, 4. It is computed with the help of a 7-point
Lobatto formula, between two consecutive zeros of the integrand.

(b) 2 is usually equal t&€2:\ 21, in which the analytical expression (56) still holds
for vs. In the polar coordinates, the mesh being unstructured, there is not ai
more an analytical expression of the basis functions. It is therefore preferable
use a nhumerical integration scheme (here, a 7-point Gauss formula exact uy
order 5).

(c) In Q3 (in practice,Q°), vs is smoother, and it has been numerically computec
on the basis functions o¢f. In this way, (Vs | VRr)o.q, IS computed with the
same quadrature formula as the one that is used for the Finite Element basis ft
tions.
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4. THE SILVER-M ULLER ABSORBING BOUNDARY CONDITION

Let us consider again briefly the problem se@irx R. It is assumed here that a perfectly
conducting boundary condition is applied on a patx R of the boundaryI{c c I') of the
domain:i.e.£ x v=0o0nI¢c x R. The interaction between the domain and the exterior i
modeled on the remaining part. The chosen boundary conditions are among the follow
absorbing condition, incoming or outgoing waves, that is, With=I'\I'c:

(E—-cBxv)yxv=Gxv onlaxR. (81)

In the case which is studied in this paper, that is, with the fields and the data indepent
onz, this condition reads in the TE mode

E-t—cB,=g-7 onrla. (82)

g is linked to the incoming wave, which is assumed to be a smooth field, definEd.on
Wheng =0, the condition (81) is actually a first-order absorbing boundary condition. It
often called the Silver—MIfer condition.

Remark 4.1. Without loss of generality, it is always possible to choose the artifici
boundaryl"» in such a way that it does not touch the reentrant corner. Mathematica
speaking, there exists a neighborhd@adf the corner such that N T'a = 3.

Let W stand for the space of solutions,

W ={E € H(curl,Q), dvE =0, E- 7 =00nIc}. (83)

As for V, W is not included inH(2)2. Let us thus defin®Vg, the regularized subspace
of W:

Wgr = {E € HY()?, divE =0, E- 7 = 0onl'c} = WN HY(Q)2 (84)

The variational formulation (21)—(23) must be modified accordingly. The integration |
parts formula, which is used to obtain the formulation, produces new integral terifg on
in such a way that the new formulation reads:

Find E(t) € H(curl, ) such that

2 d
—(E|Fo+c— | E-tF-tdo + c?(curlE | curlF
dﬂ('”+dt“ tF - tdo +c( | )o
1/9J d
:—( F) +c— g-tF-tdo VF e H(curl, Q)st.F- 7|, =0, (85)
€0 at 0 dt Ta
divE =0ing, (86)

E-7lr. =0. (87)

4.1. A Decomposition of the Solution in Regular and Singular Parts

The singular behavior of the solution comes from the shape of the domain. Thus, i
interesting to keep the same spatef singular solutiongVs ¢ W). Indeed, one can prove
that (see [4]W can be decomposed into

W =Wgr @ Vs, (88)



238 ASSOUS, CIARLET, AND SEGR

whereWk, is the subspace of regular solutions (84). In this case, the decomposition is
orthogonal. However, we choose to use it instead of an orthogonal decomposition, &
allows one to keeps (the basis function o¥/s) as a test function. The advantagevefis
that it does not depend on the time variahland therefore it is computed once and for all
(see the remark below).

Remark 4.2. 1. The loss of orthogonality has almost no consequences as far as
numerical computations are concerned. Ityields two additional terms in the final formulati
(see the details hereafter).

2. One can also split furth&r in Wg = VR @ Va, with Vg defined by (20) (themge Vr
is such thavy - t|r =0). The subspac¥, can be characterized as the set of solutions o
the problem

curlva = curl(wg — vR) in 2, (89)
divva = 0ingQ, (90)
va-T =0inTg, (92)
Va- T =CBy(t) +g) -ronla. (92)

With this decomposition, the nonvanishing term (amgl | curlvs)g, forwg € W andvs €

Vs, isreducedto (cumls | curlvs)e. This can be viewed as a “weak” orthogonality property

betweenWg in Vs. The drawback of this method is that it requires the computatian of

at each discrete time, thus increasing the overall cost of the method by a large factor.
3. In alsimilar manner, one could write an orthogonal decompositid of the form

W = Wgr & Ws, whereWs is the finite dimensional space of singular solutions, which satis

fies the Silver—Miller boundary condition. Unfortunately, this condition is time-dependen

the subspackVs is also be time-dependent, and the use of this second orthogonal decc

position would again require the computation of a basis function at each discrete time.
With the decomposition (88), if we IdEr(t) be the regular part of the solution which

belongs toWr, a formulation analogous to (62) can be written,

Find Er € Wk such that

2

d
W(EMFR)OJFCE/ Er-tFr-7do +c?(curlEg | curlFr)o+ % (t)(ps | curl Fr)o

Ca
1d

d
= — 77(‘] | FR)0+Cf g- ‘L'FR -tdo —K”(t)(VS | FR)o, VFR € WR, (93)
€0 dt dt Ta

where the only additional term (generated by the loss of orthogonalitfxi$)(ps | curl

Fr)o.
An equation is added in order to computé), with vs as a test function:

2

1d
G Er | Vs)o + k" (1) IVsll3 + c2(curlEr | ps)o + k(D) psll3 = ‘:Oa“ | Vs)o. (94)

The additional term ig?(curlEg | ps)o. It is worth mentioning that there is no integral
overI'a in (94), asvs - 7|, =0. This can be viewed as another advantage of the chost
formulation.

There remains to semidiscretize the formulation (93), (94) in space, which is done i
way similar to the one of the perfectly conducting boundary case. It is enough to take i
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account the two additional terms already mentioned (see above), which must be comp
accurately in the neighborhood of the reentrant corner (NB. The integralsiqvere
computed classicaly, sindg NI" o = ). To carry out those computations, the starting poin
is the evaluation of

(ps | curlXi)o, (95)

where () is the set of basis functions of the Finite Element Method. These terms ¢
computed in the same manner that is proposed for the componekiysée Section 3.3):
Qis partitioned in three subdomai(i®; )1 <i <3, and a different numerical integration scheme
is kept on each of them, depending upon the regularity<f

¢ Intheinnermost subdomai®, (the firstring of triangles surrounding the cornés),);
and ps|q1 = pg are known exactly (in polar coordinates): (95) is computed analytically.

¢ Inthe subdomai®, (equal toR2°\21), the mesh is unstructured, so that no expressio
of (Aj); is available in polar coordinates, whergas= pg is still known analytically. An
integration scheme exact up to the order 5 is chosen.

¢ In the exterior subdomaifs (in practiceQ2®), ps is smooth, and it has been numer-
ically determined as a linear combination of the basis functiongfofEquation (95) is
then obtained thanks to the same scheme that has already been used for the smooth
tions.

After a discretization in tim&ia an explicit scheme, one must check that the two addi
tional terms are available at the previous discrete time in order to coriiiite In this
way, the scheme can be rewritten in a form similar to (74), and the same algorithm
therefore be used, with the boundary condition taken into account (see [4] for the detalil
implementation).

5. NUMERICAL RESULTS

The set of cases encompassed within our presentation allows one to evaluate the c
related performances of ti8ngular Complement Method (SCNthas been checked that
the additional memory requirements are negligible. Moreover, the time needed to comy
the basis oW/s during the initialization step and the solution to the supplementary equati
at each discrete time is very small. About the presentation of the numerical results, we
chosen to compare them to analytical results (whenever available), or to results comp
by other codes.

5.1. Computation of a Basis oVs and Comparison to Analytical Solutions

First, let us evaluate the precision of the SCM by building a test case for which t
analytical expressions @2, ¢2, andvg are known. For that, let us consider the donmain
made up of three quarters of a disc, centered at the origin, of ré&diubus presenting a
reentrant corner with angle/a = 37 /2. The mesh is represented of Fig. 4. Note that the
results below remain true for all values@t ]1/2, 1.

Remark 5.1. The domaing is not a polygon. However, the results of the previous
Sections are still valid, sincg is locally convex at all the other corners of the boundary
and, anyhow, the mesh is a polygonal approximatiof® of
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FIG. 4. The mesh.

In order to find the analytical solution to problem (32), (33), it is better to use the pol
coordinatesr, 0) centered at the origin, and to look for a solution of the form

Pa(r.0) = > Axr™ cosnad) (96)

n>-1

with an arbritary nonzerd_;. Ap is the mean value ops over Q: pse L%(Q) yields
Ao =0. Ay is determined with the help of the conditiép%/dv = 0 on the boundary = Re
(but not directly from (41)), so thad; = A_1R;%*. Now,

A_1(r™ + Ry*r®) cogaf)

satisfies (32), (33). The uniqueness of the solution then leads to the conclusiég thaf
foralln> 2.

In the same way, one can look for the solutigihof the problem (37), (38) of the form
(50), that is

¢a=_zﬁr”“cos(na9)—A 1 ! ree 4 Re_za r2+¢ ) cogah)
7 Zna T\4-4a 4+ 4 ’

and computeB; so that the boundary conditiofg2/dv(Re, 6) =0 is satisfied (for
0 €10, 3 /af). Thus,

a?—2
B = A_ 2—201.
! 1pZ_2'e

As before, thanks to the uniqueness of the soluBge=0 for alln > 2.

Now, with (An), and (By), thus determined, it is a simple matter to check that the
expression ofrg given by (56) is the analytical solutior.

The analytical and computed solutions are pictured in Fig. 5 (with identical scales). Wt
representing functions or fields with a singular behavior, instead of truncating the rest
we have chosen to exclude the (infinite) singular node value, so as not to “flatten” the im
by an arbritary truncation value.
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analytical v} 5a v} computed with the singular
complement method

analytical Pg b p, computed with the singular

complement method

analytical ¢ 5c ¢, computed with the singular
complement method

FIG. 5. Analytical solutions and computed solutions.
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In Fig. 5a, one can see that the SCM captures well the figklVs near the corner (and
far away from it). Again, a conforming* Finite Element Method cannot yield such a resuilt.
In addition, the quantitative results are in very good accordance, even though the me:
not particularly refined near the corner. In Fig. 5b, one can check that the method is «
efficient to compute the most singular term. This behavior is not so obvious to capture w
an edge Finite Element (conforming lh(curl)). Finally, the result on the smooth function
¢s (see Fig. 5¢)¢s e H*~¢ Ve > 0, shows that the method is efficient for more regular
functions or fields: it generalizes the singular function method.

5.2. Time-Dependent Cases

In this section, the quality of the SCM is evaluated numerically on three cases. The
three cases are representative of situations that occur frequently when one is dealing
the interactions of particles and electromagnetic fields.

For instance, on the study of klystrons, one must consider the effect of a cavity on
electron beam. Thus, the first case focuses on the evolution in time of a cavity mode ina ce
with a geometrical singularity. In the second instance, one computes the electromagr
field generated by a current, the space and time characteristics of which are similar to tf
of a bunched beam of particles. Then, commonly studied devices such as hyperfreque
systems often include waveguides, either to conduct the field that excites the particles,
conduct the field induced by them. So, in the last example, a guided wave which propag
in a standard geometry is investigated.

Note that in order to evaluate the performances of our code properly, simplified examy
are presented, which are still representative of the difficulties one is usually faced with (
more involved simulations, see [4]).

5.2.1. The Evolution in Time of a 2D Cavity Mode

In this first case, the study of the numerical response of a cavity excited by one
its eigenmodes is presented. The same geometry and the same mesh as in the pre
example are used, once again to measure the quality of the numerical solution. To com
the analytical solution, one considers the dom@iwf Fig. 4, and Maxwell’s equations
(1)—(4) withd = 0 andp = 0, written in the form of a vector wave equation. One then look:
for a solution of the type

Ex, t) = E(X) explwt), 97)

so thatE(x) satisfies to a Helmholtz vector problem (wikh-= ¢ the wave number)

curl curlE — K’E = 0in €2, (98)
divE = 0ing, (99)
E-r=0o0nl. (100)

As before, one looks for a solution using the polar coordindte8). More pre-
cisely, with the help of ana priori separation of variables, one finds that the
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field

37 Car ~1Jhg (k1) sin(nad)

E n>1
Er,9)=( ’)= N : 101
( Eo > Cnt 8 3, (kr) cosnad) (o)

n>1

is a local solution of the problem, whe(€,), are constants andJ.,(-)), are Bessel
functions (N.B. the index of a Bessel function can be any real number). The series star
n=1 in order to keep only terms which belonghicurl, ) N H (div, £2). In addition to
the local properties (98), (99), the solution must also satisfy the boundary condition (1
on the boundary = R., so one gets

45 kR) =0 (102)

dr

Solving the Eq. (102) amounts to findikgo thatk R. be a zero of the first derivative of the
Bessel functiordy, . The indexna being real, there exists an infinite number of zeros, ever
one of them being simple (to the possible exceptiok Rf =0, but this is excluded in the
present situation as one would find that the related eigenmode vanisheg), L éenote
the sth nonnegative zero af;,,. In this instance, the following values are chosép=1
andC, =0, forn > 2; in this way, the solution belongs té(curl, ) N H(div, 2), but not

to HY(2).j; ; = ki Re is numerically computed, and we haj/g, ~ 1.401. The associated
frequency is denoted by; = %,

For the time-dependent case, i.e., (97) with w4, the initial conditions attimé=0 are
given by the analytical solution derived above. Figure 6 depicts the compénesftthe
computed solution after 2500 time steps and the analytical solution at the same time (:
4.25 periods). One can see that the SCM yields a very accurate computation, without
mesh refinement. It should be noted that the CPU time required for such a computatic
on the order of a few seconds on a common workstation.

To provide a different point of view, we also present in Fig. 7 the solutions at a give
location as a function of time, with the SCM or without it. It is worth mentioning that
without the SCM, neither the frequency nor the amplitude are captured: the solution wh
is computed in this cadge not equal tahe solution of the Egs. (97)—(100).

FIG. 6. Isovalues ofE,, analytical (left) and computed (right) after 4.25 periods.
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Ed

[r -

t

FIG. 7. ComponentE, at a given location as a function of time, without the SCM (left) and with the SCM
(right). The analytical solution is represented by a line, and the computed solutions are represented by a d
line.

Let us conclude the study of the first case by examining the behavior of the code wi
it must capture a smooth solution. Indeed, as mentioned earlier, the regularity in spac
the solutionE(x, t) (in particular any eigenmode), does not depend only on the geomet
but also on the regularity of the initial data. In this way, for an initial data of the forn
(101) withC; =0, the solution isH? in space for all timet, and as a consequence it does
requirea priori no specific treatment such as the SCM. We checked that, in this case,
code with the SCM still computes the solution well. For that, let us chose the coefficiel
C1=0,C,=0, forn> 3, andC; # 0, and the corresponding ,. The values (see Fig. 8),
computed and analytical, are very close to one another. Also, one gets that the values ¢
all vanish (cf. Remark 2.2). There are no artificially generated singularities.

5.2.2. Example with a Current J

In this second instance, an L-shaped donm@irs considered, see Fig. 9. A perfectly
conducting boundary condition is imposed. The initial conditions are set to zero. T
electromagnetic wave is generated by a curdgrit) = (Jy, Jy), the support of which is
presented inthe same figure, with, Jy) = (0, 10sinwt)), forw associated to a frequency
of 2.5 x 10° Hertz.

FIG. 8. Isovalues ofE,, analytical (left) and computed (right) for a smooth eigenmode.
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i

FIG. 9. L-shaped domain and support of the current.

support of J

This current generates a wave which propagates both on the left and on the right. Pt
cally, as long as the wave has not reached the reentrant corner, the field is smotatheLet
the impact time, then, if one writes

E(X, 1) = Er(X, 1) + k (DVs(X),

k(t) is equal to zero for alt lower thants, and soEgr(x, t) andE(x, t) coincide. Now,
on the one hand, fdr greater thang, «(t) # 0, and the support ofs being nonlocal (in
fact, the support of s spans the whole @®), one ha (t)vs(x) #0, forallx € Q andt > ts.
On the other hand, however, one wishes to reproduce the obvious physical behavior, w
is that for any poink and timet, E(x, t) =0 if t <ty, wheret, denotes the time at which
the wave reaches

One can check (see Fig. 10) tHag(x, t) takes nonzero values, and therefore that i
“compensates” fok (t)vs(X), i.e.,Er(X, 1) = —« (t)vs(X). Thus,E(x, t) remains equal to
zero whilets <t < ty.

In this instance, it is not possible to provide an analytical solution. Instead, let us co
pare our results to the computations made by another code, baséditenvolume (FV)
techniquea la Delaunay-Voronoi [18].

| Ept)#0

Eg(x,t)

E(x,1)

o
-

t

FIG. 10. At a given pointx,, comparison oEg(Xo, t) (top) andE(x,, t) (bottom) witht varying.
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Ex component

10* v/m

4.55

y-axis

-0.10

FIG.11. Componeng,, computed by FV (left) and by the SCM (right).

As mentioned in the Introduction, this method allows one to approximate the solution il
neighborhood of the reentrant corner (with an appropriate mesh refinement), the degre:
freedom being located on the edges. Figure 11 shows the isovalues of the electric field (
500 time steps), which has been computed by the two methods on the same mesh. The
yields a better precision near the corner, as the form of the singular part is explicitly tak
into account. For the SCM, the maximum value (corner excepted) is 10% higher, and
overall behavior is less noisy. Finally, the results obtained by both methods on the smc
(cf. [1]) componentB, of the magnetic induction are almost identical. This emphasize
once more that the difference stems from the singular part.

5.2.3. The Waveguide Case

In this last example, the propagation of a TE wave in a singular geometry is stud
numerically. This case provides an interesting illustration of the possibilities of the meth
when it is used on a more “complete” formulation, that is, with different types of bount
ary conditions. A step waveguide is considered, for which the geometry and the data
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II/:Z
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FIG. 12. Geometry of the waveguide.

not depend on the variable As noticed earlier, the computational domain reduces to
transversal section, pictured in Fig. 12. An incident wave enters the waveguide throt
the boundary'}, and exists through'4. This behavior is modeled thanks to the boundary
condition (81), which is expressed as

E-1—cB,=g. g()lr =Csinwt), gt)lrz =0, (103)

whereC is a constant ana is associated to the frequencypX 10° Hertz. At the initial
timet =0, the electromagnetic field is equal to zero all over the guide. As in the preced
case, the field is smooth until the wave reaches the reentrant corner, and then it bec
singular.

The result obtainedia the classical nodal FE code (without the SCM) is presente
in Fig. 13, and it shows a most unlikely approximation of the true solution (no singul
behavior).

As usual, the same computation with the addition of the SCM has been carried ¢
and the result has been compared to that produced by the FV code. Figure 14 depict
isovalues of the first component of the electric field after 1000 time steps.

Ex component

r

10°y/m

1.29

y-axis

-3.33

A\

xX-axis

FIG. 13. Isovalues ofE,, without the SCM.
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Ex component

4 j
" 10%v/m A

0.22!

y-axis

A J

< e

FIG. 14. ComponenE,, computed by FV (left) and by the SCM (right).

Once again, the SCM provides a numerical solution which is globally less noisy, a
more precise in the neighborhood of the corner (for the SCM, the maximum value (cor!
excepted) is 10% higher). Finally, the results are almost identicafor

6. CONCLUSION AND PERSPECTIVES

In this paper, we presented a method which allows one to solve (theoretically and) nun
ically Maxwell's equations in nonsmooth and nonconvex domains, the so-&iteglar
Complement Methodt is built from the mathematical analysis of the singularities gener
ated by the geometry in Maxwell's equations. We further inferred a numerical algorithi
which can be easily included into already existing nodal FE codes.

In 2D, the mathematical analysis has been carried out, a numerical scheme has |
proposed and implemented, and the code is operational. Numerical simulations have st
its efficiency in a series of examples based on practical devices. We presented a few
mentary, but significant, examples of concrete situations one is faced with when hand
particle—field interaction problems. For instance, we checked that the SCM allows one
simulate cavity fields, the governing phenomenon of klystron-like devices. In the sa
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way, we computed the propagation of electromagnetic waves in waveguides with nc
mooth boundaries thanks to the SCM. This shows that it can be used to realize an extel
study of stub filters. In addition, it can be coupled to particle methods (cf. [2]).

Handling 3D-axisymmetric domains is also possible [3], and numerical experiments

under way. The main theoretical aspects of the generalization to general 3D domains
now analyzed and well understood. Currently, we devote our attention to the developn

of

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.
20.

21
22

an efficient numerical algorithm to handle the singularities in 3D.
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