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In this paper, we present a method to solve numerically the time-dependent
Maxwell equations in nonsmooth and nonconvex domains. Indeed, the solution
is not of regularityH1 (in space) in general. Moreover, the space ofH1-regular
fields is not dense in the space of solutions. Thus anH1-conforming Finite Element
Method can fail, even with mesh refinement. The situation is different than in the
case of the Laplace problem or of the Lam´e system, for which mesh refinement or
the addition of conforming singular functions work. To cope with this difficulty, the
Singular Complement Method is introduced. This method consists of adding some
well-chosen test functions. These functions are derived from the singular solutions
of the Laplace problem. Also, the SCM preserves the interesting features of the orig-
inal method: easiness of implementation, low memory requirements, small cost in
terms of the CPU time. To ascertain its validity, some concrete problems are solved
numerically. c© 2000 Academic Press

Key Words:Maxwell’s equation; singularities; reentrant corners; conforming finite
elements.

1. INTRODUCTION

In recent years, modeling and solving numerically problems which couple charged par-
ticles to electromagnetic fields has given rise to challenging mathematical and scientific
computing developments. In the industry, a variety of examples can be thought of, such as
the ion or electron injectors for particle accelerators, the free electron lasers, or the hyperfre-
quency devices. The mathematical model which is most relevant in describing the physics
of these devices is the time-dependent coupled Vlasov–Maxwell system of equations.
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In this context, andindependentlyof any geometrical considerations, we have developed
a method to solve the time-dependent Maxwell equations (see [6]), which has been de-
signed with the help ofH(curl) ∩ H(div)-conforming Finite Elements.1 In this method,
the computed electromagnetic field is continuous (this condition is recommended to re-
duce the noise of the solution of thecoupled problem[7]), and the numerical scheme does
not require solving a linear system at each time step. The conditions on the divergence
of the fields are treated as constraints and dualized as such by using Lagrange multipli-
ers, which yields a saddle-point formulation. We refer the reader to [6] for an in-depth
analysis of the method and for a detailed bibliography. This method is also interesting as
nodal finite elements (LagrangeP1) are used, the implementation of which is common and
easy.

However, a number of industrial structures and objects that must be modeled present
a surface with edges, corners, etc., be it intentionally or not. The existence of those geo-
metrical distinctive features—of thosegeometrical singularities—on the boundaries of the
domains which must be studied can create singular fields, that is unbounded fields (in the
neighborhood of those singularities). Moreover, this difficulty is not restricted to exterior
problems, as it must be dealt with in bounded domains too, as soon as the boundary of the
domain contains such singularities. Such is the case in the following situations:

• The geometrical singularities are an active part of the device, for instance to generate
the powerful electromagnetic fields which are required to extract a strong electron current
at a velvet cathode in a microwave generator.
• The geometrical singularities are only the consequence of constraints on thea priori

configuration of the device, and it is mandatory to be able to control the induced negative
effects, such as the above-mentioned powerful fields which can produce breakdowns.

Finally, let us note that the presence of singularities changes the solution inthe whole
domainand not only in their neighborhood. In this respect, they have anonlocaleffect. We
present an example which illustrates the effect of singularities in a numerical computation.
Here, we focus on thequalitativeaspect of the results only.

We consider the propagation of a wave in a stub filter (see Fig. 1), which is propagated or
evanescent, depending on both the frequency of the wave and on the size of the stubs. For
given frequencies, the guide is transversally closed, thus becoming a plain waveguide of
rectangular section. In the example below, the guide is illuminated by a wave, the time-signal
of which is included in the range of the frequencies of propagated modes.

This filtering phenomenon can be modeled by thetime-dependentMaxwell equations.
The result of a simulation for a two-stub filter is shown in the left-hand side of Fig. 1 for
an incident wave with the frequency of a propagated mode. The data and the geometry are
assumed to be independent of one of the space variables, and therefore the model is 2D.
Contrary to the physics, the result is that of an evanescent mode for this frequency. In order
to emphasize the connection between the odd filtering effect and the reentrant corners (the
singularities), these edges are smoothed; that is, they are replaced by smooth structures
with a radius in the order of 1/20th of the wavelength. The results that are obtained in
this case (see Fig. 1 (right)) confirm that there is indeed a propagated mode. However, the
“smoothing” of the corners yields two problems which must be addressed:

1 Thanks to recent results [16], choosing a piecewise smoothH(curl) ∩ H(div)-conforming FE amounts to
using anH 1-conforming FE.
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FIG. 1. Ey component—sharp corners: evanescent mode in the guide—smoothed corners: propagated mode
in the guide.

• it requires a mesh refinement in the neighborhood of the reentrant corners (here, by a
factor of 10), which leads to high computational costs.
• The original geometry of the device is modified, and the simulation thus loses its

accuracy. Moreover, by smoothing the singularites, the very strong fields are numerically
underestimated, whereas one of the goals of the simulation is to control the negative effects
(breakdowns, etc.) by estimating them precisely.

Let us note however that there is no problem (in this configuration) as far as theBz

magnetic induction is concerned, either for the original geometry or for the smoothed
geometry (cf. Fig. 2). In this respect,Bz is sufficientlysmooth.

In order to address the problems raised by the singularities, we provided a mathematical
analysis of the singularities of Maxwell’s equations in a nonconvex geometry [5]. The key
point is the following: in a nonconvex polygonal (or polyhedral in 3D) domainÄ, the

FIG. 2. SmoothBz component, the mode is propagated in both cases.
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solutions (electric field and magnetic induction) of Maxwell’s equations at a given time
t do not belong toH1(Ä)2 (or H1(Ä)3) as is the case in a convex domain, but only to
H(curl, Ä) ∩ H(div, Ä). In other words, the “physical” solution of Maxwell’s equations,
which only belongs to the functional spaceH(curl, Ä) ∩ H(div, Ä), goes to infinity when
one comes close to a reentrant edge or a reentrant corner. It does not coincide with the
“smoothed” solution, that is, the one computed thanks to a formulation of the problem in
H1(Ä)2. In addition, there is no hope to converge to the “physical” solution by using mesh
refinement, as the space of fields which belongs toH1(Ä)2 is not densein the space of
fields which belongs toH(curl, Ä) ∩ H(div, Ä) (this situation also occurs in 3D). This is
major difficulty as far as the numerical computation of solutions is concerned.

Note that the numerical methods based on edge finite elements which are conforming in
H(curl, Ä) [21], or those based on finite volumes on orthogonal meshes (in the 2D case) [18],
allow one to approximate the solution. Indeed, the degrees of freedom of these methods
are located on the edges of the mesh, and therefore they do not “carry” the geometrical
singularities. Nevertheless, in order to get a precise knowledge of the solution close to the
singularities, one must perform very significant mesh refinements (which makes them hard
to use in some situations). What is more, in our case, using N´edélec’s second family of
nodal finite elements [22], which are also conforming inH(curl, Ä), can be problematic.
As a matter of fact, the regularity required to define the associated moments (cf. [9]) is not
automatically fulfilled by the solution of the time-dependent Maxwell equations.

Still, for most applications, computing the behavior of the solution outside of a neigh-
borhood of the singularity is not sufficient. It is required that one computes the solution
precisely as close to this singularity as is possible.

In order to achieve sufficient precision, one cana priori try to use singular functions
methods. These methods, which have been developed for elliptic problems (see the earlier
works in [12]), consist of augmenting the basis of numerical functions by adding a singular
function (H1-conformingat the reentrant corner). They are widely used when the lack of
regularity of the solution leads to a slow convergence of the nodal finite element method.
In this case, a carefully chosenrefinementof the mesh would have been sufficient, and
the singular function method can be viewed as an alternative. Here, the key point is that
the numerical basis, with or without the addition of singular functions or mesh refinement,
already spans the whole set of solutions when the mesh size goes to zero.

Unfortunately, this methodcannotbe applied to solving Maxwell’s equations in a singular
domain, as the solution computed by a nodal finite element method does not span the whole
space of the physical solutions (cf. the density problem mentioned above). Once again, it is
not a matter of speed of convergence, and a mesh refinement or the addition of a singular
function does not improve the overall numerical method.

To cope with this difficulty, we have developed a new method for solving time-dependent
Maxwell equations in singular domains, called theSingular Complement Method (SCM).
One of its advantages is that it can easily be included in already existing numerical codes,
which allows one to increase their domain of application. As a matter of fact, it makes them
usable in the presence of geometrical singularities simply by adding a small number of
functionalities, without having to rewrite them in their entirety.

The SCM is based on an orthogonal decomposition of the solution into a regular part
and a singular part. The original ideas can be found in the works of Grisvard (see [14], [15]
and the references herein). Let us consider the Laplace equation with a right-hand side in
L2(Ä). Its solution belongs toH2(Ä) when the domain is smooth (or convex), but it only
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belongs toH1+s(Ä), with 1/2< s< 1, when there are geometrical singularities (see [15]
for a 2D domain, and also [10], [14] for a 3D domain). Relying on anad hocdecomposition
of L2(Ä), Grisvard showed that it is possible to split the solution in a regular (inH2(Ä))

part and a singular part. Along the same lines, let us mention another approach developed
by Hazardet al. (see [8], [17]) for the treatment of the time-harmonic Maxwell equations,
which is also based on a decomposition of the space of solutions. Their decomposition is
however slightly different from ours, thus leading to a different numerical scheme.

We introduced an orthogonal decomposition of the solution of Maxwell’s equations,
which is mathematically analyzed in [5]. We recall the principles of the method in Section 2.
Hereafter, we build a constructive method for solving the original problem, and its associated
numerical algorithm, which are detailed in Sections 3 and 4. The algorithm makes use of
the explicit knowledge of the expression of the singularities near the reentrant corners. In
Section 5, we present some numerical results which illustrate the efficiency of the SCM,
applied to a number of realistic devices.

2. A MATHEMATICAL ANALYSIS OF THE PROBLEM

2.1. Maxwell’s Equations

Let us consider a bounded, connected, and simply connected open subsetÄ of R2, the
boundary of which is called0; let the infinite cylinderÄ×R be the physical domain. Let
ν= (νx, νy, 0)T be the outward unit normal to the domain, with the exception of the infinite
edges. If we letc andε0 be, respectively, the speed of light and the dielectric permittivity,
Maxwell’s equations read

∂E
∂t
− c2 curl B = − 1

ε0
J , (1)

∂B
∂t
+ curl E = 0, (2)

div E = ρ

ε0
, (3)

div B = 0, (4)

whereE is the electric field,B is the magnetic induction, andρ andJ are the charge and
current densities. These quantities depend on the space variablex and on the time variable
t . Note that the above system of equations (1–4) is considered insideÄ×R.

These equations are supplied with appropriate bounday conditions. In order to simplify
the presentation, let us assume first that the boundary is a perfect conductor. In Section 4,
the extension to the Silver–M¨uller boundary condition will be handled: it can model either
an absorbing medium outside of the domain or an incident wave. For the moment, let us
take the conditions

E × ν = 0 on0 × R, (5)

B · ν = 0 on0 × R. (6)

The charge conservation equation is a consequence of equations (1–3) and reads

∂ρ

∂t
+ div J = 0. (7)
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Last, initial conditions are provided (for instance at timet = 0)

E(·, 0) = E0, (8)

B(·, 0) = B0, (9)

where the couple(E0,B0) depends only on the variablex.
In what follows, it is assumed that both the data and the initial conditionsdo not depend

on the transverse variablez. Then the original problem can be identified with a problem
the domain of which is a section of the infinite cylinder, that isÄ. As a matter of fact, the
set of first order in time equations (1–4) can be rewritten equivalently as two decoupled
sets of first order in time equations. If, for the fieldZ = (Zx, Zy, Zz)

T of R3 one uses the
notationZ= (Zx, Zy)

T , the first set of equations is of unknowns(E, Bz), i.e., the so-called
TE mode, with dataJ andρ, while the second set is of unknowns(Ez,B) with datumJz

(the TM mode).
In the 2D case, let us note that there exists a scalar curl operator, denoted by curl, and

a vector curl operator, denoted bycurl . Both systems can be equivalently formulated as
second order in time systems (see [6]). The TE mode can be written as

∂2E
∂t2
+ c2 curl curl E = − 1

ε0

∂J
∂t
, (10)

div E = ρ

ε0
, (11)

∂2Bz

∂t2
− c21Bz = 1

ε0
curl J. (12)

Let τ = (νy,−νx)
T be the tangential vector associated to the normal vectorν= (νx, νy)

T .
With these notations, the perfectly conducting boundary condition can be written, for the
electric field

E · τ = 0, (13)

and for the magnetic induction

∂Bz

∂ν
− 1

c2ε0
J · τ = 0. (14)

In addition to these conditions, the second order in time system of equations is closed with
the help of initial conditions on∂E/∂t and∂Bz/∂t

∂E
∂t
(·, 0) = c2 curl Bz0− 1

ε0
J(·, 0), (15)

∂Bz

∂t
(·, 0) = −curl E0. (16)

The TM system could be written in the same way. In this paper, we focus on the above
system, keeping in mind that one can also handle the other system with no additional
difficulty (see [5] for more details). Also, we assume in the following that the domainÄ

has a single reentrant corner. We refer the reader to [5] for the more general case, that is
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a polygon with several reentrant corners. Again, there is no additional difficulty, with the
exception of the formulas, which become a little bit more complicated.

The scalar product ofL2(Ä) is denoted by( f | g)0=
∫
Ä

f g dx and the related norm is
‖ · ‖0. Let us introduce the functional spaces

L2
0(Ä) = { f ∈ L2(Ä), ( f | 1)0 = 0}, (17)

H0(curl, Ä) = {u ∈ H(curl, Ä),u · τ = 0 on0}, (18)

V = {u ∈ H0(curl, Ä),div u = 0}; (19)

V is equipped with the canonical scalar product ofH (curl,Ä):

(u, v) 7→ (u | v)0,curl
def= (u | v)0+ (curl u | curlv)0.

In the present case, or more generally in a nonconvex domain with several reentrant
corners, the spaceV is not included inH1(Ä)2 any more (see [14] for instance). It is thus
natural to introduce the regularized spaceVR of V :

VR = {u ∈ H1(Ä)2, div u = 0, u · τ = 0 on0} = V ∩ H1(Ä)2. (20)

It is proved in [1] (see also the Introduction) that theBz component, as the solution of a
wave equation, always belongs toH1(Ä), even in a nonconvex domain. It can therefore be
computed numerically without any problem. On the contrary, the electric fieldE, which is
the solution of Maxwell’s equation (10), (11), does not belong toH1(Ä)2 as would be the
case in a convex domain, but it only belongs toV . This is the reason why we consider only
the computation of the fieldE in what follows.

Let us introduce the time-dependent problem:
Given a currentJ(t) such thatdiv J= 0, and two initial dataE0 and E1, find E(t) ∈

H(curl, Ä) such that

∂2E
∂t2
+ c2 curl curl E = − 1

ε0

∂J
∂t
, (21)

div E = 0, (22)

E · τ = 0 on0, (23)

with the classical initial conditionsE(0)=E0 and∂E/∂t (0)=E1. It can be written in a
variational form:

Find E(t) ∈ H0(curl, Ä) such that

d2

dt2
(E | F)0+ c2(curl E | curl F)0 = − 1

ε0

(
∂J
∂t

∣∣∣∣F)
0

∀F∈ H0(curl, Ä), (24)

div E = 0, (25)

with the same initial conditions. One could also formulate the equivalent of (21)–(23) and
of (24), (25) inH0(curl, Ä) ∩ H(div, Ä) or in V .
Thanks to [20], these exists one and only one solution to these problems.
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Remark 2.1. The problem (21)–(23) is written in the absence of charges, that is with
div E= 0. One can consider the problem with charges, where (22) is replaced, forρ ∈
L2(Ä), by divE= ρ/ε0, and where divJ= 0 is replaced by∂ρ/∂t + div J= 0. As a matter
of fact, it can still be reduced to the divergence-free problem. In order to do so, one can, for
instance, letE?=E−∇ψ , withψ the unique element ofH1

0 (Ä) that satisfies1ψ = ρ/ε0;
this equation can be solved using its usual variational counterpart. This method is often
called the Poisson correction (see, among others, [7] and [18] for numerical experiments).
In the present case,ρ is a time-dependent function, and it is best to avoid the solution to
a linear system at each time step. To address this difficulty, we have built a method which
is a generalization of the method we apply in this paper, that is, the decomposition of the
solution in a regular part and a singular part inV , to the case of fields with a nonvanishing
divergence (see [2]).

2.2. A Decomposition of the Solution in Regular and Singular Parts

Let us briefly recall, without proof, some useful theoretical results in order to understand
better the construction of the numerical method. The reader is referred to [5] for a thorough
study.

The underlying principle of the method consists of relating the singular solutions of
Maxwell’s equations to those of the Laplace problem, the properties of the latter having
been investigated in a detailed manner (cf. [10, 14, 15]). On the one hand, there is the
orthogonal decomposition ofL2

0(Ä)

L2
0(Ä) = 1(8R)

⊥⊕ SN, (26)

where1(8R) is the range of8R by the operator1, with

8R =
{
φ ∈ H2(Ä)/R,

∂φ

∂ν

∣∣∣∣
0

= 0

}
,

andSN is characterized as the set of distributionsψ ∈ L2
0(Ä) such that

1ψ = 0 inD′(Ä), (27)

∂ψ

∂ν
= 0 on0. (28)

Thanks to Grisvard [15],SN is a finite dimensional vector space, it dimension being equal
to the number of reentrant corners, that is 1 in our case. Let us callpS its basis.

On the other hand, we proved the following result:

LEMMA 2.1. The scalar operatorcurl is an isomorphism from V onto L2
0(Ä). In addition,

the L2-norm of the curl defines on V a norm, which is equivalent to the norm‖·‖0,curl.

Let V be equipped with the scalar product induced byv 7→‖curl v‖0. In this case, the
isomorphism of Lemma 2.1 preserves orthogonality. Having proved that the spaceVR, as
well as its range by the scalar curl operator, are closed inV andL2

0(Ä), respectively, it is
valid to introduce their orthogonal supplementary subspaces. This allows one to conclude
that the orthogonal of curlVR in L2

0(Ä), denoted by(curl VR)
⊥, is equal toSN . In this way,

one obtains a result concerning the orthogonal decomposition of vector fields inV :
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THEOREM 2.1. The space V can be split in the orthogonal sum V=VR
⊥⊕ VS, where

VS is a vector space of dimension1, defined bycurl VS= SN.

The electric field, solution of (21)–(23), depends continuously on the time variable with
values inV [1]. Then, at any timet , one obtains the (orthogonal) decomposition

E(t) = ER(t)+ ES(t). (29)

The fieldER∈VR is called the regular part of the solution, whereas the fieldES∈VS is
called the singular part. Moreover, the spaceVS is of dimension 1, so one may write

E(t) = ER(t)+ κ(t)vS, (30)

with vS a basis ofVS andκ a function which is smooth in time (at least continuous, cf. [1]).

Remark2.2. 1. In the particular cases whenES= 0 (i.e., the domain is convex), or when
the singular coefficientκ is zero, one has obviouslyE=ER ∈ H1(Ä)2. This property must
be preserved numerically: this fact is illustrated in Section 5.

2. When the domainÄ hasK reentrant corners, dim(VS)= K . Then, for(v j
S)1≤ j≤K a

basis ofVS

E(t) = ER(t)+
∑

1≤ j≤K

κ j (t)v
j
S, (31)

where(κ j )1≤ j≤K areK smooth functions (cf. [1]).

3. A NUMERICAL METHOD TO COMPUTE THE SOLUTION

Starting from the orthogonal decomposition obtained previously, it is possible to build a
method, which allows one to compute numerically the solution.

Remark 3.1. Let us stress the fact that this method can be easily included into already
existing codes, without the costly procedure of rewriting them entirely. Here, we are simply
stating that a code which computes the solution of Maxwell’s equations in convex domains
actually computes the regular part, as the singular part is always equal to zero in this case.
Thus, the method we present here provides an extension of the range of the code to the case
of nonconvex (and nonsmooth) domains.

It can be summarized in two steps:

1. Determination of a basis of VS. One must solve a static problem. The computations
are carried out only once as an initialization procedure.

2. Solution to the time-dependent problem(24), (25). It will then be enough to couple
the classical method, which is already available, to the solution of an additional equation,
of unknownκ(t).

Those steps are enumerated in the following subsections.

3.1. Determination of vS, a Basis ofVS

3.1.1. Principle of the Method

To computevS, the isomophism of Lemma 2.1 is used. The framework of the algorithm
is as follows:
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• First step
The spaceSN is of dimension 1: one computes first a basis ofSN , that is an nonvanishing
elementpS of L2

0(Ä), which satisfies to

1pS = 0 inÄ, (32)

∂pS

∂ν
= 0 on0. (33)

• Second step
One must then to look forvS ∈ H(curl, Ä), the solution of

curl vS = pS in Ä, (34)

div vS = 0 inÄ, (35)

vS · τ = 0 on0. (36)

Instead of using the direct solution to (34)–(36), it is more practical to make use of another
isomorphism (see [5]), which is analogous to the one of Lemma 2.1. It shows that, tovS ∈ V ,
there corresponds one and only one potentialφS ∈ H1(Ä)/R such that

−1φS = pS in Ä, (37)

∂φS

∂ν
= 0 on0. (38)

Now, asφS is sufficiently smooth (i.e., with regularityH1), one can easily solve this problem
with the help of a variational formulation. The computation ofvS ∈ VS then stems from the
identityvS= curl φS.

3.1.2. A Numerical Solution Obtained by Substructuring

Thanks to the above results relating the singular fieldvS to pS, it is possible to derive
some useful information about the expression of the singularities in the neighborhood of
the reentrant corner (recall that its counterpart is well known forpS). In order to benefit
from this explicit knowledge, the computational algorithm is built using a substructuring
approach.

Let us begin with the computation ofpS. It can be viewed as a generalization of the
method originally developed for the Laplace problem by Givoli and Keller [13, 19], their
transmission operator being a particular instance of the capacitance operators (see for in-
stance [11]). With this approach, one gets an explicit expression ofpS in a neighborhood
of the reentrant corner. Outside of this neighborhood,pS is smooth, and it can therefore
be computed with the help of a classical variational formulation. It should be noted that
the information corresponding to the “exact” knowledge ofpS close to the reentrant corner
allows one to preserve (numerically) the orthogonality between the regular and singular
parts of the solution. This is not the case anymore if one chooses to regularizepS “locally,”
by substracting to it its most singular part, that is, this most singular part multiplied by a
smooth cut-off function (cf. [15]).

Let us take the domainÄ such as it is pictured on Fig. 3. Its reentrant corner is locally
made up of two segments, which intersect at the corner with an angleπ/α, 1/2<α<1.
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FIG. 3. Shape of the domainÄ.

A partition ofÄ in Äc andÄe is introduced, whereÄc stands for an open angular sector
of radiusR centered at the reentrant corner, and whereÄe is the open domain such that
Äc ∩ Äe=∅ andǞc ∪ Ǟe= Ǟ. Last, let0c (respectively,0e) denote the boundary ofÄc

(respectively,Äe), which is split inB ∪ 0̃c (respectively,B ∪ 0̃e), with B=0c ∩ 0e.
In this paper, either a (superscript)c or e is added to refer to the restriction of quantities

toÄc orÄe.

First Step: Computation of pS.

Let us consider the detailed computation ofpS, which is a nonvanishing element ofSN . It
can be further divided into four substeps. The first two are “formal” (but still mathematically
justified); the other two allow one to computepS numerically. Substeps 1 and 2, respectively,
consist in finding an expression ofpc

S as a series, then in determining a formula which allows
one to recover the coefficient of the series as a function ofpc

S|B, and finally in computing a
transmission operator on the interfaceB. After these substeps have been completed, one can
pose the problem inÄe, the solution of which ispe

S: it is then computed in Substep 3. From
that point on, in Substep 4, one computes the coefficients of the series, usingpc

S|B = pe
S|B,

to obtainpc
S.

1. An expression of the restrictionpc
S:

Using the separation of variables, one can find analytically the solution in a neigh-
borhood of the reentrant corner. One gets, using the polar coordinates (centered at the
corner)r ≤ R, 0≤ θ ≤ π

α
,

pc
S(r, θ) =

∑
n≥−1

Anr nα cos(nαθ), with A−1 6= 0. (39)

Every An can be written as an integral ofpc
S|B. Let us recall here the expression of the

coefficientsAn

A0 = α

π

∫ π/α

0
pc

S(R, θ)dθ, (40)

A1 = 2α

π
R−α

∫ π/α

0
pc

S(R, θ) cos(αθ) dθ − R−2αA−1, (41)
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An = 2α

π
R−nα

∫ π/α

0
pc

S(R, θ) cos(nαθ) dθ, ∀n ≥ 2, (42)

whereA1 is given as a function ofA−1, which, by definition, is not equal to zero.
2. The capacitance operatorT :

Let νc denote the unit outward normal toÄc. Thanks to (40)–(42), one can define the
capacitance operatorT : pc

S|B 7→ ∂pc
S

∂νc |B, by

T
(

pc
S

) = 2α2

πR

∑
n≥1

n

{∫ π/α

0
pc

S(R, θ
′) cos(nαθ

′
) dθ

′
}

cos(nαθ)−2α
A−1

Rα+1
cos(αθ).

(43)
If we let T1 stand for the first term of the right-hand side, then

T
(

pc
S

) = T1
(

pc
S

)− 2α
A−1

Rα+1
cos(αθ). (44)

3. Computing the solutionpe
S to the exterior problem:

With the help of the transmission conditionspe
S|B = pc

S|B and ∂pe
S

∂νc |B = ∂pc
S

∂νc |B, one gets
the boundary condition for the exterior problem onB. Let νe denote the unit outward
normal toÄe, the exterior problem then reads
Find pe

S ∈ H1(Äe)/R such that

1pe
S = 0 inÄe, (45)

∂pe
S

∂νe
= 0 on0̃e, (46)

∂pe
S

∂νe
+ T1

(
pe

S

) = 2α
A−1

Rα+1
cos(αθ) onB, (47)

which can be written in a variational form

(∇ pe
S

∣∣∇q
)

0,Äe +
∫
B

T1
(

pe
S

)
q dσ = 2αA−1

Rα+1

∫
B

cos(αθ)q dσ, ∀q ∈ H1(Äe)/R.

(48)

(· | ·)0,Äe stands for the scalar product ofL2(Äe). Clearly, the bilinear form(p,q) 7→∫
B T1(p)q dσ is symmetric positive. Thus, for a givenA−1, the above exterior problem

is well-posed. In order to solve the exterior problem numerically, a triangular mesh
of Äe is provided. The spaceH1(Äe)/R is discretized with the help of Lagrange
Finite Elements: letVe

h be the space ofH1-conforming Finite Element functions
thus generated, and letpe

h be the associated discrete solution. It can be written in
the form pe

h=
∑Ne

i=1 piλi , where(λi )1≤i≤Ne are the basis functions ofVe
h . After the

discretization, the variational formulation (48) can be written as a linear system:(
KÄe +KB

)
pe

h = F. (49)

Here, pe
h also stands for the vector ofRNe

of entriespi . The matrixKB is “locally”
full but, being defined only on the interfaceB, its size remains small. Forλi andλ j

the support of which intersects the interface, the entry(KB)i, j reads

2α2

πR

∑
n≥1

n

{∫ π/α

0
λi (R, θ) cos(nαθ) dθ

∫ π/α

0
λ j (R, θ) cos(nαθ) dθ

}
,
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4. The computation of the coefficientsAn is carried out with the help of (40)–(42). Thus,
one can reconstruct the solution in the whole domain (but not at the reentrant corner,
which belongs to the boundary).

Remark 3.2. If the Maxwell equations are coupled with a particle method, such as
Vlasov’s equation, computing the trajectography requires that the electromagnetic field is
known at every possible position of the particles, oftenvery closeto the boundary, but never
on the boundary.

Second Step: Computation ofvS

• Computation of the scalar potential: As mentioned earlier on,vS is computedvia its
scalar potentialφS. One solves first the system (37), (38) in a manner which is similar to
the one kept forpS.

1. The local solutionφc
S reads:

φc
S = −

∑
n≥1

Bn

nα
r nα cos(nαθ)−

∑
n≥−1

An

4nα + 4
r nα+2 cos(nαθ), (50)

where the coefficients(Bn)n≥1 can be expressed as functions of the traceφc
S onB, that

is:

n = 1 B1 = − 2α2

πRα

∫ π/α

0
φc

S(R, θ) cos(αθ) dθ

−
(

α

4− 4α
A−1R2−2α + α

4+ 4α
A1R2

)
, (51)

n ≥ 2 Bn = − 2nα2

πRnα

∫ π/α

0
φc

S(R, θ) cos(nαθ) dθ − nα

4nα + 4
An R2. (52)

2. The capacitance operatort is

t
(
φc

S

) = T1
(
φc

S

)− 1

2

∫ R

0
pc

S(r, θ)dr + α

2− 2α
A−1R1−α cos(αθ). (53)

The exterior problem, of solutionφe
S, which can be written similarly tope

S, is equivalent
to the variational formulation:
Find φe

S ∈ H1(Äe)/R such that

(∇φe
S

∣∣∇ψ)0,Äe
+ R

∫ π/α

0
T1
(
φe

S

)
ψ(R, θ)dθ

= (pe
S

∣∣ψ)0,Äe
+ 1

2
R
∫ π/α

0

{∫ R

0
pc

S(r, θ)dr

}
ψ(R, θ)dθ

− α

2− 2α
A−1R2−α

∫ π/α

0
cos(αθ)ψ(R, θ)dθ, ∀ψ ∈ H1(Äe)/R. (54)

The solution to the exterior problem can be obtained by the Finite Element dis-
cretization of the formulation (54). Letφe

h denote the discrete solution inVe
h , that

is φe
h =

∑Ne

i=1 φiλi . It is the solution to the linear system(
KÄeφ

e
h +KB

)
φe

h =MÄe pe
S+G, (55)
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whereMÄe stands for the mass matrix, that is, the matrix associated to theL2 scalar
product inÄe. The matrix being identical to that of (49), this formulation with the
potential requires only minor modifications. The coefficientsBn are then computed
with the help of (51), (52), and the potential is thus known everywhere except at the
reentrant corner.

• Computation ofvS:
One simply getsvS by taking the vector curl ofφS.

1. The local solutionvc
S:

vc
S =

∑
n≥1

Bnr nα−1

(
sin(nαθ)

cos(nαθ)

)
+
∑
n≥−1

Anr nα+ 1

( nα
4nα+ 4 sin(nαθ)

nα+2
4nα+ 4 cos(nαθ)

)
, with B1 6= 0.

(56)
2. The exterior solutionve

S:
One solves the equation of unknownve

S which reads:
Find ve

S ∈ (H1(Äe)/R)2 such that(
ve

S

∣∣λ)0,Äe =
(
curl φe

S

∣∣λ)0,Äe, ∀λ ∈ (H1(Äe)/R)2. (57)

Numerically, one does not simply performvS= curl φS; some straightforward interpola-
tion is added, so that an approximationvh

S is at hand. For that, the whole domain is meshed
(in our case, there remains only to meshÄc, in an admissible manner onB).
Thus, in order to compute a numerical approximation ofvS, the basis ofVS, (56) is inter-
polated at the vertices insideÄc to getvc

h (the coefficientsAn and Bn have already been
computed). To computeve

h, (57) is discretized

MÄeve
h = RÄeφe

h, (58)

whereRÄe stands for the curl matrix, associated to the term(curl φe
S | λ)0,Äe.

Remark3.3. The analytical solutionspc
S, φc

S, andvc
S are knownvia series (which con-

verge, the solutions being inL2(Äc)), they must betruncatedfor the numerical computa-
tions. However, in practice, the series converge very rapidly (spectral convergence), which
means that a small number of terms (less than 10) are sufficient to compute a solution
accurately.

Remark3.4. If, given f ∈ L2
0(Ä), one wants to solve the (stationary) curl–div problem:

Find u ∈ H(curl, Ä) such that

curl E = f, (59)

div E = 0, (60)

E · τ = 0 on0, (61)

one simply must split the solution of (59)–(61) asE=ER+ κvS, with ER∈VR, vS the
(known) basis ofVS andκ a constant. The orthogonality ofER andvS yields

(curl E | curl vS)0 = ( f | curl vS)0 = κ(curl vS | curl vS)0.
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Using (34), one finally obtains

κ = ( f | pS)0

‖pS‖20
.

The computation of the regular partER can then be carried out with the help of a classical
numerical method. Thus, it is clear that only a few modifications are required, as long as
a code, which computes the solution to similar problems in convex domains, is already at
hand.

3.2. Solution to the Time-Dependent Problem

3.2.1. The Variational Formulation

A new variational formulation of the problem (24), (25) is introduced, using the orthog-
onal decomposition ofV =VR

⊥⊕ VS, and of the solutionE(t)=ER(t)+ κ(t)vS(t)
(cf. (30)). In an equivalent manner, we add to the space of test functionsVR the func-
tion vS. With this orthogonal decomposition, the classical formulation (24) can be written
Find ER ∈ VR such that

d2

dt2
(ER | FR)0+ c2(curlER | curlFR)0

= − 1

ε0

d

dt
(J | FR)0− κ ′′(t)(vS | FR)0, ∀FR ∈ VR. (62)

This formulation projects the solution of Maxwell’s equations on the spaceVR of the
regular fields and carries the singularity onto the spaceVS. A by-product is the additional
unknownκ ′′(t), the second derivative ofκ with respect to the time variable. Therefore, one
must add an extra equation, obtained for instance by takingvS as a test function.

d2

dt2
(ER | vS)0+ κ ′′(t)‖vS‖20+ c2κ(t)‖pS‖20 = −

1

ε0

d

dt
(J | vS)0. (63)

Remark 3.5. In the more general case of a domain withK reentrant corners, the solution
has the form (31). The space of test functionsVR is then completed with theK functions
(vi

S)1≤i≤K . The formulation (24) then reads
Find ER ∈ VR such that

d2

dt2
(ER | FR)0+ c2(curlER | curlFR)0

=− 1

ε0

d

dt
(J | FR)0−

∑
1≤ j≤K

κ ′′j (t)
(
v j

S

∣∣FR
)

0, ∀FR ∈ VR. (64)

TheK additional unknowns (κ ′′j (t))1≤ j≤K appear. The above system is completed in this
case withK additional equations, where theK test functions are(vi

S)1≤i≤K . Thanks to the
orthogonality of regular and singular fields, one gets

d2

dt2
(
ER

∣∣ vi
S

)
0+

∑
1≤ j≤K

κ ′′j (t)
(
v j

S

∣∣ vi
S

)
0+ c2κi (t)

(
pj

S

∣∣ pi
S

)
0

= − 1

ε0

d

dt

(
J
∣∣ vi

S

)
0, 1≤ i ≤ K . (65)
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3.2.2. Discretization of the Formulation (62), (63)

One proceeds in two steps: first a semidiscretization in space, then a discretization in
time.

Let us consider the semidiscretization in space of the variational problem (62), (63).
The triangle mesh is the (admissible) union of the meshes overÄe andÄc. Let Vh

R⊂VR

be the space of discretized test functions, and letEh(t)=Eh
R(t)+ κ(t)vS be the discrete

solution. One knows thatEh
R(t)=

∑
i Ei

Rλi , whereλi are the basis functions of the Finite
Element Method. Here,λi denotes a vector basis function: one of its component is equal
to λi , and the other is equal to zero. If it is additionaly assumed thatvS is known exactly,
the orthogonality relationships still hold and the semidiscretized variational formulation is
written (with the addition of the indexh) in the same way as (62), (63).

Remark 3.6. 1. The semidiscrete system derived from (62), (63) is coupledvia the
termsκ ′′(t) andEh

R(t). One can obtain a decoupled version with the help of the (orthogonal)
projectionPh on Vh

R with respect to the scalar product ofL2(Ä)2, by takingvS− PhvS as
a test function instead ofvS. Equation (63) is then replaced by

κ ′′(t)‖vS− PhvS‖20+ c2κ(t)‖pS‖20
= c2

(
curlEh

R

∣∣ curl(PhvS)
)

0−
1

ε0

d

dt
(Jh
∣∣ vS− PhvS)0. (66)

Actually, if one considers the linear system resulting from (62), (63), this can be viewed
as the usual factorization which is performed to provide a block triangular matrix. The
functionκ is then computed by solving the ordinary differential equation (66). According
to the regularity ofvS [5], the estimation of the coefficient in front ofκ ′′(t) yields

‖vS− PhvS‖20 ≤ Cεh
2α−2ε, ∀ε > 0,where

π

α
is the angle at the reentrant corner. (67)

This allows one to conclude that this differential equation is not stiff, and so that it can be
solved with a classical discretization in time. Nevertheless, the numerical experiments that
we have carried out with this approach (cf. [4]) yielded results which are less precise than
the one obtained using (62), (63).

2. In order to simplify the presentation, we present the case of an internal approxima-
tion, that isVh

R⊂VR. This assumption is, however, not required. As a matter of fact, the
formulations which we implemented in our codes are not internal. Indeed, we kept mixed
formulations in which the divergence constraint is dualized (see [6]). Under these condi-
tions, the discrete functions of the approximation space, calledZh

R, are not divergence-free.
One must add a Lagrange multiplierph ∈ Qh to dualize the discrete divergence condition
div Eh

R= 0, where the spaceQh is chosen in such a way that the discrete inf–sup condition
is satisfied. This mixed formulation consists of adding a(ph | div FR)0 term to the formu-
lation (62). The loss of the orthogonality betweenVS andZh

R (asZh
R 6⊂VR) yields another

term in (62), which reads

(
curlvS

∣∣ curlFh
R

)
0 6= 0, ∀Fh

R ∈ Zh
R. (68)
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3.2.3. Time Discretization

The formulation (62) can be written equivalently as a linear system

d2

dt2
MÄEh

R+ c2RÄEh
R = −

1

ε0

d

dt
MÄJh − κ ′′(t)Λh, (69)

whereMÄ is the mass matrix,RÄ is the curl matrix, andΛh is the vector whose components
are the integrals overÄ of the scalar product ofvS and the basis functions ofVh

R. Now, vS

being singular, the computation must be carried out precisely in the neighborhood of the
reentrant corner. This point shall be detailed in Subsection 3.3.

Starting from (63),κ ′′(t) is expressed as

κ ′′(t) = 1

‖vS‖20

(
− 1

ε0
(J′ | vS)0− c2‖pS‖20κ(t)− (E′′R | vS)0

)
, (70)

where′ stands for the first derivative in time. This expression is included in (69). One then
obtains

MÄE′′R+ c2RÄEh
R = −

1

ε0
MÄJ′ + 1

‖vS‖20

(
1

ε0
(J′ | vS)0+ c2‖pS‖20κ(t)+ (E′′R | vS)0

)
Λh,

(71)

which is implicit inE′′R. After a time discretization involving a second-order explicit (leap-
frog) scheme, the scheme reads

MÄEn+1
R − 1

‖vS‖20
(
En+1

R

∣∣ vS
)

0Λ
h = Gn. (72)

The superscripth is dropped. Here the notationXn (respectively,Xn+1) stands for a vari-
able X at time tn= n1t (respectively,tn+1= (n+ 1)1t), where1t is the time step, and
Gn= (Gn

x,G
n
y) is a set of quantities known at timetn.

It can be checked in an elementary manner that the resulting linear system is invertible
(cf. [4]). By construction,En+1

R can be decomposed over the basis functions, so that one
actually has (

En+1
R

∣∣ vS
)

0 =
∑

i

(
3i

x

(
En+1

R,x

)
i +3i

y

(
En+1

R,y

)
i

)
, (73)

where the3i
x,3

i
y are the components ofΛh. Recall that the mass matrixMÄ is diagonalized

thanks to a quadrature formula (see [6]), which preserves the accuracy. Note that this is
of crucial importance, as far as the choice of the method for solving the time-dependent
Maxwell equations is concerned. In this way, the linear system (72) can be written row-wise

mi
(
En+1

R,x

)
i
− 1

‖vS‖20
∑

j

(
3 j

x

(
En+1

R,x

)
j
+3 j

y

(
En+1

R,y

)
j

)
3i

x =
(
Gn

x

)
i
, (74)

mi
(
En+1

R,y

)
i
− 1

‖vS‖20
∑

j

(
3 j

x

(
En+1

R,x

)
j
+3 j

y

(
En+1

R,y

)
j

)
3i

y =
(
Gn

y

)
i
, (75)
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wheremi is thei th diagonal entry ofMÄ. This equation can be easily solved. With obvious
notations, it can be rewritten (for everyi )

Ai Xi −
∑

j

Bj X j = Fi . (76)

After a few algebraic manipulations, one can reach an explicit expression of the solution

Xi =
Fi

(
1−∑ j

Bj

Aj

)
+∑ j

Bj

Aj
Fj

Ai

(
1−∑ j

Bj

Aj

) , (77)

for which it is easily checked that the denominator never vanishes (cf. [4]).

Remark 3.7. 1. We presented the algorithm that allows one to compute the field at
an interior node to simplify. The expression (74) is modified accordingly for a boundary
node, depending on the boundary condition (absorbing boundary condition, incoming wave,
symmetry, etc.), but it is always analogous to (77).

2. For similar reasons, we have not taken into account the term which stems from the
dualization of the constraint on the divergence of the electric field (the reader is referred to
[6] for a detailed account). In the numerical codes that we developed, this term is taken into
account and the above algorithm can easily be adapted.

Once the value ofEn+1
R is computed, one can also compute, at the corresponding time,

the valueκn+ 1 déf= κ(tn+1), with the help of a time discretization of the differential equation
(70). For practical reasons, the leap-frog scheme is used again:

κn+1 = 2κn − κn−1− c21t2‖pS‖20
‖vS‖20

κn

−
(
En+1

R − 2En
R+ En−1

R

∣∣ vS
)

0

‖vS‖20
− 1t

ε0‖vS‖20
(
Jn+1/2− Jn−1/2

∣∣ vS
)

0. (78)

Remark 3.8. As far as the numerical implementation is concerned, taking into account
the singularities requires only the following modifications:

1. The addition, in the classical formulation (69), of the termκ ′′(t)Λh, and therefore
the use of the modified solver (see the formula (77)),
2. The straightforward solution to the additional equation (78).

3.3. Some Details Concerning the Numerical Integration

To conclude this Section, the computation of the coefficients‖pS‖20 and‖vS‖20 and the
computation of the components ofΛh are briefly presented.

1. Computation of‖pS‖20 and‖vS‖20
For the computation of‖pS‖20, the integral overÄ is split overÄ=Äc ∪ Äe, thus
resulting in a sum of an integral overÄc and one overÄe. InÄc, the analytic expression
(39) of pc

S is kept. InÄe, the discrete formpe
h=

∑
i piλi , with (λi )1≤i≤Ne, the basis
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functions ofVe
h , is used. Then

‖pS‖20 =
∫ R

0

∫ π
α

0

(∑
n≥−1

Anr nα cos(nαθ)

)2

r dr dθ +
Ne∑

i, j=1

pi pj (λi | λ j )0,Äe.

This gives

‖pS‖20 =
π

2α

A−1A1R2+ A2
0R2+

∑
n≥−1
n6=0

A2
n

R2+2nα

2+ 2nα

+ t pe
hMÄe pe

h. (79)

The computation of‖vS‖20 is carried out along the same lines.
2. Computation ofΛh.

Recall thatΛh does not depend on the time variable, so it is computed only once. The
domain is split in three subdomainsÄi , 1≤ i ≤ 3. One writes

(vS | vR)0 =
3∑

i=1

(vS | vR)0,Äi (80)

and a different numerical integration scheme is used on each subdomain, depending
on the regularity ofvS.
(a) Ä1 is the domain which is closest to the reentrant corner: it is made up of the

triangles, one of the vertices of which is the reentrant corner. It is possible, without
restricting the scope of the method, to build a mesh such thatÄ1 is composed

of m isoceles triangles(Tj ) j=1,...m, of angleδθ
def= π/α

m at the reentrant corner, and
with sides originating from this corner of fixed lengthr1. (vS | vR)0,Ä1 is equal to∑m

j=1

∫
Tj

vS · vR| j dx: using the analytical expression ofvS (see (56)), of the basis
functionsvR| j , and of the triangleTj in thepolar coordinates(r, θ ), one computes
the exact analytical form (inr ) of (vS, vR)Ä1. The only expression (inθ ) which
has to be numerically computed is

∫ δθ
2

0

cos((nα + k)θ)

cosθ(nα+l )
dθ,

wherek andl belong to{−1, 0, 1, 2, 3, 4}. It is computed with the help of a 7-point
Lobatto formula, between two consecutive zeros of the integrand.

(b) Ä2 is usually equal toÄc\Ä1, in which the analytical expression (56) still holds
for vS. In the polar coordinates, the mesh being unstructured, there is not any-
more an analytical expression of the basis functions. It is therefore preferable to
use a numerical integration scheme (here, a 7-point Gauss formula exact up to
order 5).

(c) In Ä3 (in practice,Äe), vS is smoother, and it has been numerically computed
on the basis functions ofVe

h . In this way, (vS | vR)0,Ä3 is computed with the
same quadrature formula as the one that is used for the Finite Element basis func-
tions.
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4. THE SILVER–M ÜLLER ABSORBING BOUNDARY CONDITION

Let us consider again briefly the problem set inÄ×R. It is assumed here that a perfectly
conducting boundary condition is applied on a part0C ×R of the boundary (0C ⊂ 0) of the
domain: i.e.,E × ν= 0 on0C ×R. The interaction between the domain and the exterior is
modeled on the remaining part. The chosen boundary conditions are among the following:
absorbing condition, incoming or outgoing waves, that is, with0A=0\0C:

(E − cB × ν)× ν = G × ν on 0A × R. (81)

In the case which is studied in this paper, that is, with the fields and the data independent
on z, this condition reads in the TE mode

E · τ − cBz = g · τ on0A. (82)

g is linked to the incoming wave, which is assumed to be a smooth field, defined on0A.
Wheng= 0, the condition (81) is actually a first-order absorbing boundary condition. It is
often called the Silver–M¨uller condition.

Remark 4.1. Without loss of generality, it is always possible to choose the artificial
boundary0A in such a way that it does not touch the reentrant corner. Mathematically
speaking, there exists a neighborhoodVc of the corner such thatV ∩ 0A=∅.

Let W stand for the space of solutions,

W = {E ∈ H(curl, Ä), div E = 0, E · τ = 0 on0C}. (83)

As for V, W is not included inH1(Ä)2. Let us thus defineWR, the regularized subspace
of W:

WR = {E ∈ H1(Ä)2, div E = 0, E · τ = 0 on0C} = W ∩ H1(Ä)2. (84)

The variational formulation (21)–(23) must be modified accordingly. The integration by
parts formula, which is used to obtain the formulation, produces new integral terms on0A,
in such a way that the new formulation reads:
Find E(t)∈ H(curl, Ä) such that

d2

dt2
(E | F)0+ c

d

dt

∫
0A

E · τF · τ dσ + c2(curlE | curlF)0

= − 1

ε0

(
∂J
∂t

∣∣∣∣F)
0

+ c
d

dt

∫
0A

g · τF · τ dσ ∀F ∈ H(curl, Ä) s.t.F · τ |0C = 0, (85)

div E = 0 inÄ, (86)

E · τ |0C = 0. (87)

4.1. A Decomposition of the Solution in Regular and Singular Parts

The singular behavior of the solution comes from the shape of the domain. Thus, it is
interesting to keep the same spaceVS of singular solutions(VS⊂W). Indeed, one can prove
that (see [4])W can be decomposed into

W = WR⊕ VS, (88)
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whereWR is the subspace of regular solutions (84). In this case, the decomposition is not
orthogonal. However, we choose to use it instead of an orthogonal decomposition, as it
allows one to keepvS (the basis function ofVS) as a test function. The advantage ofvS is
that it does not depend on the time variablet , and therefore it is computed once and for all
(see the remark below).

Remark 4.2. 1. The loss of orthogonality has almost no consequences as far as the
numerical computations are concerned. It yields two additional terms in the final formulation
(see the details hereafter).

2. One can also split furtherWR in WR=VR⊕VA, with VR defined by (20) (thenvR∈VR

is such thatvR · τ |0 = 0). The subspaceVA can be characterized as the set of solutions of
the problem

curlvA = curl(wR− vR) inÄ, (89)

div vA = 0 inÄ, (90)

vA · τ = 0 in0C, (91)

vA · τ = cBz(t)+ g(t) · τ on0A. (92)

With this decomposition, the nonvanishing term (curlwR | curlvS)0, for wR∈WR andvS∈
VS, is reduced to (curlvA | curlvS)0. This can be viewed as a “weak” orthogonality property
betweenWR in VS. The drawback of this method is that it requires the computation ofvA

at each discrete time, thus increasing the overall cost of the method by a large factor.
3. In a similar manner, one could write an orthogonal decomposition ofW of the form

W=WR
⊥⊕WS, whereWS is the finite dimensional space of singular solutions, which satis-

fies the Silver–M¨uller boundary condition. Unfortunately, this condition is time-dependent:
the subspaceWS is also be time-dependent, and the use of this second orthogonal decom-
position would again require the computation of a basis function at each discrete time.

With the decomposition (88), if we letER(t) be the regular part of the solution which
belongs toWR, a formulation analogous to (62) can be written,
Find ER∈WR such that

d2

dt2
(ER | FR)0+ c

d

dt

∫
0A

ER · τ FR · τ dσ + c2(curlER | curlFR)0+ c2κ(t)(pS | curlFR)0

= − 1

ε0

d

dt
(J | FR)0+ c

d

dt

∫
0A

g · τFR · τ dσ − κ ′′(t)(vS | FR)0, ∀FR ∈ WR, (93)

where the only additional term (generated by the loss of orthogonality) isc2κ(t)(pS | curl
FR)0.

An equation is added in order to computeκ(t), with vS as a test function:

d2

dt2
(ER | vS)0+ κ ′′(t)‖vS‖20+ c2(curlER | pS)0+ c2κ(t)‖pS‖20 = −

1

ε0

d

dt
(J | vS)0. (94)

The additional term isc2(curlER | pS)0. It is worth mentioning that there is no integral
over0A in (94), asvS · τ |0A = 0. This can be viewed as another advantage of the chosen
formulation.

There remains to semidiscretize the formulation (93), (94) in space, which is done in a
way similar to the one of the perfectly conducting boundary case. It is enough to take into
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account the two additional terms already mentioned (see above), which must be computed
accurately in the neighborhood of the reentrant corner (NB. The integrals over0A are
computed classicaly, sinceVc∩0A=∅). To carry out those computations, the starting point
is the evaluation of

(pS | curlλi )0, (95)

where(λi )i is the set of basis functions of the Finite Element Method. These terms are
computed in the same manner that is proposed for the components ofΛh (see Section 3.3):
Ä is partitioned in three subdomains(Äi )1≤i≤3, and a different numerical integration scheme
is kept on each of them, depending upon the regularity ofpS.

• In the innermost subdomainÄ1 (the first ring of triangles surrounding the corner),(λi )i

and pS|Ä1= pc
S are known exactly (in polar coordinates): (95) is computed analytically.

• In the subdomainÄ2 (equal toÄc\Ä1), the mesh is unstructured, so that no expression
of (λi )i is available in polar coordinates, whereaspS= pc

S is still known analytically. An
integration scheme exact up to the order 5 is chosen.
• In the exterior subdomainÄ3 (in practiceÄe), pS is smooth, and it has been numer-

ically determined as a linear combination of the basis functions ofVe
h . Equation (95) is

then obtained thanks to the same scheme that has already been used for the smooth func-
tions.

After a discretization in timevia an explicit scheme, one must check that the two addi-
tional terms are available at the previous discrete time in order to computeEn+1

R . In this
way, the scheme can be rewritten in a form similar to (74), and the same algorithm can
therefore be used, with the boundary condition taken into account (see [4] for the details of
implementation).

5. NUMERICAL RESULTS

The set of cases encompassed within our presentation allows one to evaluate the code-
related performances of theSingular Complement Method (SCM). It has been checked that
the additional memory requirements are negligible. Moreover, the time needed to compute
the basis ofVS during the initialization step and the solution to the supplementary equation
at each discrete time is very small. About the presentation of the numerical results, we have
chosen to compare them to analytical results (whenever available), or to results computed
by other codes.

5.1. Computation of a Basis ofVS and Comparison to Analytical Solutions

First, let us evaluate the precision of the SCM by building a test case for which the
analytical expressions ofpa

s , φ
a
S, andva

S are known. For that, let us consider the domainÄ

made up of three quarters of a disc, centered at the origin, of radiusRe, thus presenting a
reentrant corner with angleπ/α= 3π/2. The mesh is represented of Fig. 4. Note that the
results below remain true for all values ofα ∈ ]1/2, 1[.

Remark 5.1. The domainÄ is not a polygon. However, the results of the previous
Sections are still valid, sinceÄ is locally convex at all the other corners of the boundary
and, anyhow, the mesh is a polygonal approximation ofÄ.



240 ASSOUS, CIARLET, AND SEGŔE

FIG. 4. The mesh.

In order to find the analytical solution to problem (32), (33), it is better to use the polar
coordinates(r, θ ) centered at the origin, and to look for a solution of the form

pa
S(r, θ) =

∑
n≥−1

Anr nα cos(nαθ) (96)

with an arbritary nonzeroA−1. A0 is the mean value ofpS overÄ: pS∈ L2
0(Ä) yields

A0= 0. A1 is determined with the help of the condition∂pa
S/∂ν= 0 on the boundaryr = Re

(but not directly from (41)), so thatA1= A−1R−2α
e . Now,

A−1
(
r−α + R−2α

e r α
)

cos(αθ)

satisfies (32), (33). The uniqueness of the solution then leads to the conclusion thatAn= 0,
for all n≥ 2.

In the same way, one can look for the solutionφa
S of the problem (37), (38) of the form

(50), that is

φa
S = −

∑
n≥1

Bn

nα
r nα cos(nαθ)− A−1

(
1

4− 4α
r 2−α + R−2α

e

4+ 4α
r 2+α

)
cos(αθ),

and computeB1 so that the boundary condition∂φa
S/∂ν(Re, θ)= 0 is satisfied (for

θ ∈ ]0, 3π/α[). Thus,

B1 = A−1
α2− 2

2α2− 2
R2−2α

e .

As before, thanks to the uniqueness of the solutionBn= 0 for all n≥ 2.
Now, with (An)n and (Bn)n thus determined, it is a simple matter to check that the

expression ofvc
S given by (56) is the analytical solutionva

S.
The analytical and computed solutions are pictured in Fig. 5 (with identical scales). When

representing functions or fields with a singular behavior, instead of truncating the results,
we have chosen to exclude the (infinite) singular node value, so as not to “flatten” the image
by an arbritary truncation value.
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FIG. 5. Analytical solutions and computed solutions.



242 ASSOUS, CIARLET, AND SEGŔE

In Fig. 5a, one can see that the SCM captures well the fieldvS∈VS near the corner (and
far away from it). Again, a conformingP1 Finite Element Method cannot yield such a result.
In addition, the quantitative results are in very good accordance, even though the mesh is
not particularly refined near the corner. In Fig. 5b, one can check that the method is also
efficient to compute the most singular term. This behavior is not so obvious to capture with
an edge Finite Element (conforming inH (curl)). Finally, the result on the smooth function
φS (see Fig. 5c),φS∈ H1+α−ε, ∀ε >0, shows that the method is efficient for more regular
functions or fields: it generalizes the singular function method.

5.2. Time-Dependent Cases

In this section, the quality of the SCM is evaluated numerically on three cases. Those
three cases are representative of situations that occur frequently when one is dealing with
the interactions of particles and electromagnetic fields.

For instance, on the study of klystrons, one must consider the effect of a cavity on an
electron beam. Thus, the first case focuses on the evolution in time of a cavity mode in a cavity
with a geometrical singularity. In the second instance, one computes the electromagnetic
field generated by a current, the space and time characteristics of which are similar to those
of a bunched beam of particles. Then, commonly studied devices such as hyperfrequency
systems often include waveguides, either to conduct the field that excites the particles, or to
conduct the field induced by them. So, in the last example, a guided wave which propagates
in a standard geometry is investigated.

Note that in order to evaluate the performances of our code properly, simplified examples
are presented, which are still representative of the difficulties one is usually faced with (for
more involved simulations, see [4]).

5.2.1. The Evolution in Time of a 2D Cavity Mode

In this first case, the study of the numerical response of a cavity excited by one of
its eigenmodes is presented. The same geometry and the same mesh as in the previous
example are used, once again to measure the quality of the numerical solution. To compute
the analytical solution, one considers the domainÄ of Fig. 4, and Maxwell’s equations
(1)–(4) withJ= 0 andρ= 0, written in the form of a vector wave equation. One then looks
for a solution of the type

E(x, t) = E(x) exp(ıωt), (97)

so thatE(x) satisfies to a Helmholtz vector problem (withk= ω
c the wave number)

curl curlE− k2E = 0 inÄ, (98)

div E = 0 inÄ, (99)

E · τ = 0 on0. (100)

As before, one looks for a solution using the polar coordinates(r, θ). More pre-
cisely, with the help of ana priori separation of variables, one finds that the
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field

E(r, θ) =
(

Er

Eθ

)
=


∑
n≥1

Cnr−1Jnα(kr) sin(nαθ)∑
n≥1

Cn
1

nα
d
dr Jnα(kr) cos(nαθ)

 , (101)

is a local solution of the problem, where(Cn)n are constants and(Jnα(·))n are Bessel
functions (N.B. the index of a Bessel function can be any real number). The series starts at
n= 1 in order to keep only terms which belong toH(curl, Ä) ∩ H(div, Ä). In addition to
the local properties (98), (99), the solution must also satisfy the boundary condition (100)
on the boundaryr = Re, so one gets

d

dr
Jnα(k Re) = 0. (102)

Solving the Eq. (102) amounts to findingk so thatk Re be a zero of the first derivative of the
Bessel functionJnα. The indexnα being real, there exists an infinite number of zeros, every
one of them being simple (to the possible exception ofk Re= 0, but this is excluded in the
present situation as one would find that the related eigenmode vanishes). Letj ′nα,s denote
thesth nonnegative zero ofJ ′nα. In this instance, the following values are chosen:C1= 1
andCn= 0, for n≥ 2; in this way, the solution belongs toH(curl, Ä)∩ H(div, Ä), but not
to H1(Ä)2. j ′α,1= k1Re is numerically computed, and we havej ′α,1' 1.401. The associated

frequency is denoted byω1= j ′
α,1c

Re
.

For the time-dependent case, i.e., (97) withω=ω1, the initial conditions at timet = 0 are
given by the analytical solution derived above. Figure 6 depicts the componentEx of the
computed solution after 2500 time steps and the analytical solution at the same time (after
4.25 periods). One can see that the SCM yields a very accurate computation, without any
mesh refinement. It should be noted that the CPU time required for such a computation is
on the order of a few seconds on a common workstation.

To provide a different point of view, we also present in Fig. 7 the solutions at a given
location as a function of time, with the SCM or without it. It is worth mentioning that,
without the SCM, neither the frequency nor the amplitude are captured: the solution which
is computed in this caseis not equal tothe solution of the Eqs. (97)–(100).

FIG. 6. Isovalues ofEx, analytical (left) and computed (right) after 4.25 periods.



244 ASSOUS, CIARLET, AND SEGŔE

FIG. 7. ComponentEx at a given location as a function of time, without the SCM (left) and with the SCM
(right). The analytical solution is represented by a line, and the computed solutions are represented by a dotted
line.

Let us conclude the study of the first case by examining the behavior of the code when
it must capture a smooth solution. Indeed, as mentioned earlier, the regularity in space of
the solutionE(x, t) (in particular any eigenmode), does not depend only on the geometry,
but also on the regularity of the initial data. In this way, for an initial data of the form
(101) withC1= 0, the solution isH1 in space for all timet , and as a consequence it does
requirea priori no specific treatment such as the SCM. We checked that, in this case, the
code with the SCM still computes the solution well. For that, let us chose the coefficients
C1= 0, Cn= 0, for n≥ 3, andC2 6= 0, and the correspondingj ′α,2. The values (see Fig. 8),
computed and analytical, are very close to one another. Also, one gets that the values ofκn

all vanish (cf. Remark 2.2). There are no artificially generated singularities.

5.2.2. Example with a Current J

In this second instance, an L-shaped domainÄ is considered, see Fig. 9. A perfectly
conducting boundary condition is imposed. The initial conditions are set to zero. The
electromagnetic wave is generated by a currentJ(x, t)= (Jx, Jy), the support of which is
presented in the same figure, with(Jx, Jy)= (0, 10 sin(ωt)), forω associated to a frequency
of 2.5× 109 Hertz.

FIG. 8. Isovalues ofEx, analytical (left) and computed (right) for a smooth eigenmode.
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FIG. 9. L-shaped domain and support of the current.

This current generates a wave which propagates both on the left and on the right. Physi-
cally, as long as the wave has not reached the reentrant corner, the field is smooth. Letts be
the impact time, then, if one writes

E(x, t) = ER(x, t)+ κ(t)vS(x),

κ(t) is equal to zero for allt lower thants, and soER(x, t) andE(x, t) coincide. Now,
on the one hand, fort greater thants, κ(t) 6= 0, and the support ofvS being nonlocal (in
fact, the support ofvS spans the whole ofÄ), one hasκ(t)vS(x) 6= 0, for allx∈Ä andt > ts.
On the other hand, however, one wishes to reproduce the obvious physical behavior, which
is that for any pointx and timet , E(x, t)= 0 if t < tx, wheretx denotes the time at which
the wave reachesx.

One can check (see Fig. 10) thatER(x, t) takes nonzero values, and therefore that it
“compensates” forκ(t)vS(x), i.e.,ER(x, t)= −κ(t)vS(x). Thus,E(x, t) remains equal to
zero whilets< t < tx.

In this instance, it is not possible to provide an analytical solution. Instead, let us com-
pare our results to the computations made by another code, based onFinite Volume (FV)
techniques `a la Delaunay-Voronoi [18].

FIG. 10. At a given pointx0, comparison ofER(x0, t) (top) andE(x0, t) (bottom) witht varying.
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FIG. 11. ComponentEx, computed by FV (left) and by the SCM (right).

As mentioned in the Introduction, this method allows one to approximate the solution in a
neighborhood of the reentrant corner (with an appropriate mesh refinement), the degrees of
freedom being located on the edges. Figure 11 shows the isovalues of the electric field (after
500 time steps), which has been computed by the two methods on the same mesh. The SCM
yields a better precision near the corner, as the form of the singular part is explicitly taken
into account. For the SCM, the maximum value (corner excepted) is 10% higher, and the
overall behavior is less noisy. Finally, the results obtained by both methods on the smooth
(cf. [1]) componentBz of the magnetic induction are almost identical. This emphasizes
once more that the difference stems from the singular part.

5.2.3. The Waveguide Case

In this last example, the propagation of a TE wave in a singular geometry is studied
numerically. This case provides an interesting illustration of the possibilities of the method,
when it is used on a more “complete” formulation, that is, with different types of bound-
ary conditions. A step waveguide is considered, for which the geometry and the data do
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FIG. 12. Geometry of the waveguide.

not depend on the variablez. As noticed earlier, the computational domain reduces to a
transversal section, pictured in Fig. 12. An incident wave enters the waveguide through
the boundary01

A, and exists through02
A. This behavior is modeled thanks to the boundary

condition (81), which is expressed as

E · τ − cBz = g, g(t)|01
A
= C sin(ωt), g(t)|02

A
= 0, (103)

whereC is a constant andω is associated to the frequency 2.5× 109 Hertz. At the initial
time t = 0, the electromagnetic field is equal to zero all over the guide. As in the preceding
case, the field is smooth until the wave reaches the reentrant corner, and then it becomes
singular.

The result obtainedvia the classical nodal FE code (without the SCM) is presented
in Fig. 13, and it shows a most unlikely approximation of the true solution (no singular
behavior).

As usual, the same computation with the addition of the SCM has been carried out,
and the result has been compared to that produced by the FV code. Figure 14 depicts the
isovalues of the first component of the electric field after 1000 time steps.

FIG. 13. Isovalues ofEx, without the SCM.
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FIG. 14. ComponentEx, computed by FV (left) and by the SCM (right).

Once again, the SCM provides a numerical solution which is globally less noisy, and
more precise in the neighborhood of the corner (for the SCM, the maximum value (corner
excepted) is 10% higher). Finally, the results are almost identical forBz.

6. CONCLUSION AND PERSPECTIVES

In this paper, we presented a method which allows one to solve (theoretically and) numer-
ically Maxwell’s equations in nonsmooth and nonconvex domains, the so-calledSingular
Complement Method. It is built from the mathematical analysis of the singularities gener-
ated by the geometry in Maxwell’s equations. We further inferred a numerical algorithm,
which can be easily included into already existing nodal FE codes.

In 2D, the mathematical analysis has been carried out, a numerical scheme has been
proposed and implemented, and the code is operational. Numerical simulations have shown
its efficiency in a series of examples based on practical devices. We presented a few ele-
mentary, but significant, examples of concrete situations one is faced with when handling
particle–field interaction problems. For instance, we checked that the SCM allows one to
simulate cavity fields, the governing phenomenon of klystron-like devices. In the same
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way, we computed the propagation of electromagnetic waves in waveguides with nons-
mooth boundaries thanks to the SCM. This shows that it can be used to realize an extensive
study of stub filters. In addition, it can be coupled to particle methods (cf. [2]).

Handling 3D-axisymmetric domains is also possible [3], and numerical experiments are
under way. The main theoretical aspects of the generalization to general 3D domains are
now analyzed and well understood. Currently, we devote our attention to the development
of an efficient numerical algorithm to handle the singularities in 3D.
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22. J. C. Nédélec, A new family of mixed finite elements inR3
, Numer. Math.50, 57 (1986).


	1. INTRODUCTION
	FIG. 1.
	FIG. 2.

	2. A MATHEMATICAL ANALYSIS OF THE PROBLEM
	3. A NUMERICAL METHOD TO COMPUTE THE SOLUTION
	FIG. 3.

	4. THE SILVER– MULLER ABSORBING BOUNDARY CONDITION
	5. NUMERICAL RESULTS
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.

	6. CONCLUSION AND PERSPECTIVES
	REFERENCES

