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What is T-coercivity?

A tool to study variational formulations [Chesnel-PC’13]

Abstract framework: Find u 2 V s.t. 8w 2 W, a(u,w) = W 0hf, wiW .
Approximate framework: Find u� 2 V� s.t. 8w� 2 W�, a(u�, w�) = W 0hf, w�iW .

1 First, analyse the variational formulation theoretically:
prove well-posedness ;

existence, uniqueness and continuous dependence of the solution with respect to the data.

2 Second, solve the variational formulation numerically:
find suitable approximations ;

prove convergence.

Within the framework of T-coercivity, steps 1 and 2 are very strongly correlated!
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What is T-coercivity?

As an abstract tool

Let
V , W be Hilbert spaces ;
a(·, ·) be a continuous sesquilinear form on V ⇥W ;
f be an element of W 0, the dual space of W .

Solve
(VF) Find u 2 V s.t. 8w 2 W, a(u,w) = W 0hf, wiW .

[Banach-Nečas-Babuška] The inf-sup condition writes

(isc) 9↵ > 0, 8v 2 V, sup
w2W\{0}

|a(v, w)|
kwkW

� ↵ kvkV .
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What is T-coercivity?

As an abstract tool

Let
V , W be Hilbert spaces ;
a(·, ·) be a continuous sesquilinear form on V ⇥W ;
f be an element of W 0, the dual space of W .

Solve
(VF) Find u 2 V s.t. 8w 2 W, a(u,w) = W 0hf, wiW .

Definition (T-coercivity)
The form a(·, ·) is T-coercive if

9T 2 L(V,W ) bijective, 9↵ > 0, 8v 2 V, |a(v, Tv)| � ↵ kvk2V .

NB. In other words, the form a(·, T·) is coercive on V ⇥ V .
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What is T-coercivity?

As an abstract tool

Let
V , W be Hilbert spaces ;
a(·, ·) be a continuous sesquilinear form on V ⇥W ;
f be an element of W 0, the dual space of W .

Solve
(VF) Find u 2 V s.t. 8w 2 W, a(u,w) = W 0hf, wiW .

Theorem (Well-posedness)
The three assertions below are equivalent:

(i) the Problem (VF) is well-posed ;

(ii) the form a(·, ·) satisfies (isc) and {w 2 W | 8v 2 V, a(v, w) = 0} = {0} ;

(iii) the form a(·, ·) is T-coercive.

The operator T realises the inf-sup condition (isc) explicitly: w = Tu works!
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What is T-coercivity?

As an abstract tool (simplified)

Let
V be a Hilbert space ;
a(·, ·) be a continuous, sesquilinear, hermitian form on V ⇥ V ;
f be an element of V 0, the dual space of V .

Solve
(VF) Find u 2 V s.t. 8w 2 V, a(u,w) = V 0hf, wiV .
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As an abstract tool (simplified)

Let
V be a Hilbert space ;
a(·, ·) be a continuous, sesquilinear, hermitian form on V ⇥ V ;
f be an element of V 0, the dual space of V .

Solve
(VF) Find u 2 V s.t. 8w 2 V, a(u,w) = V 0hf, wiV .

Definition (T-coercivity, hermitian case)
The form a(·, ·) is T-coercive if

9T 2 L(V ), 9↵ > 0, 8v 2 V, |a(v, Tv)| � ↵ kvk2V .
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What is T-coercivity?

As an abstract tool (simplified)

Let
V be a Hilbert space ;
a(·, ·) be a continuous, sesquilinear, hermitian form on V ⇥ V ;
f be an element of V 0, the dual space of V .

Solve
(VF) Find u 2 V s.t. 8w 2 V, a(u,w) = V 0hf, wiV .

Theorem (Well-posedness, hermitian case)
The three assertions below are equivalent:

(i) the Problem (VF) is well-posed ;

(ii) the form a(·, ·) satisfies (isc) ;

(iii) the form a(·, ·) is T-coercive (hermitian case).

The operator T realises the inf-sup condition (isc) explicitly.
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What is T-coercivity?

As an approximation tool

Let
(V�)� be a family of finite dimensional subspaces of V ;
(W�)� be a family of finite dimensional subspaces of W .

Assume that dim(V�) = dim(W�) for all � > 0.
Solve

(VF)
�

Find u� 2 V� s.t. 8w� 2 W�, a(u�, w�) = W 0hf, w�iW .
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What is T-coercivity?

As an approximation tool

Let
(V�)� be a family of finite dimensional subspaces of V ;
(W�)� be a family of finite dimensional subspaces of W .

Assume that dim(V�) = dim(W�) for all � > 0.
Solve

(VF)
�

Find u� 2 V� s.t. 8w� 2 W�, a(u�, w�) = W 0hf, w�iW .

[Banach-Nečas-Babuška] The uniform discrete inf-sup condition writes

(udisc) 9↵† > 0, 8� > 0, 8v� 2 V�, sup
w�2W�\{0}

|a(v�, w�)|
kw�kW

� ↵†kv�kV .

NB. When (udisc) is fulfilled, (VF)
�

is well-posed for all � > 0.
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What is T-coercivity?

As an approximation tool

Let
(V�)� be a family of finite dimensional subspaces of V ;
(W�)� be a family of finite dimensional subspaces of W .

Assume that dim(V�) = dim(W�) for all � > 0.
Solve

(VF)
�

Find u� 2 V� s.t. 8w� 2 W�, a(u�, w�) = W 0hf, w�iW .

Definition (uniform T�-coercivity)
The form a is uniformly T�-coercive if

9↵†,�† > 0, 8� > 0, 9T� 2 L(V�,W�), |||T�|||  �† and 8v� 2 V�, |a(v�, T�v�)| � ↵†kv�k2V .

NB. When a is uniformly T�-coercive, (VF)
�

is well-posed for all � > 0.
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What is T-coercivity?

As an approximation tool

Let
(V�)� be a family of finite dimensional subspaces of V ;
(W�)� be a family of finite dimensional subspaces of W .

Assume that dim(V�) = dim(W�) for all � > 0.
Solve

(VF)
�

Find u� 2 V� s.t. 8w� 2 W�, a(u�, w�) = W 0hf, w�iW .

Theorem (Céa’s lemma)
Assume that the family (V�)� fulfills the basic approximability property in V .

In addition, assume that

(i) either, the form a(·, ·) satisfies (udisc) ;

(ii) or, the form a(·, ·) is uniformly T�-coercive.

Then, lim�!0 ku� u�kV = 0.
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What is T-coercivity?

As an approximation tool

Let
(V�)� be a family of finite dimensional subspaces of V ;
(W�)� be a family of finite dimensional subspaces of W .

Assume that dim(V�) = dim(W�) for all � > 0.
Solve

(VF)
�

Find u� 2 V� s.t. 8w� 2 W�, a(u�, w�) = W 0hf, w�iW .

Theorem (Céa’s lemma)
Assume that the family (V�)� fulfills the basic approximability property in V .

In addition, assume that

(i) either, the form a(·, ·) satisfies (udisc) ;

(ii) or, the form a(·, ·) is uniformly T�-coercive.

Then, lim�!0 ku� u�kV = 0. And error estimates whenever possible...
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What is T-coercivity?

Two key ideas [Chesnel-PC’13]

[1st Key Idea] Use the knowledge on operator T to derive the discrete operators (T�)�!
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What is T-coercivity?

Two key ideas [Chesnel-PC’13]

[1st Key Idea] Use the knowledge on operator T to derive the discrete operators (T�)�!

[2nd Key Idea] Discretize the variational formulation with (bijective) operator T:

(VF)T Find u 2 V s.t. 8v 2 V, a(u, Tv) = W 0hf, TviW !
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What is T-coercivity?

As an approximation tool (solving the equivalent linear system)

Given � > 0, let N = dim(V�). (VF)
�

is equivalent to
Solve

Find U 2 CN
s.t. 8W 2 CN , (AU |W ) = (F |W ).

Or, find U 2 CN
s.t. AU = F.
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�
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What is T-coercivity?

As an approximation tool (solving the equivalent linear system)

Given � > 0, let N = dim(V�). (VF)
�

is equivalent to
Solve

Find U 2 CN
s.t. 8W 2 CN , (AU |W ) = (F |W ).

Or, find U 2 CN
s.t. AU = F.

[1st Key Idea] Using T associated with T�, (VF)
�

is equivalent to
Solve

Find U 2 CN
s.t. 8V 2 CN , (AU |TV ) = (F |TV ).

Or, find U 2 CN
s.t. T⇤AU = T⇤F.

According to the uniform T�-coercivity assumption

8V 2 CN , |(T⇤AV |V )| � ↵†(MV |V ).
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What is T-coercivity?

As an approximation tool (solving the equivalent linear system)

Given � > 0, let N = dim(V�). (VF)
�

is equivalent to
Solve

Find U 2 CN
s.t. 8W 2 CN , (AU |W ) = (F |W ).

Or, find U 2 CN
s.t. AU = F.

[1st Key Idea] Using T associated with T�, (VF)
�

is equivalent to
Solve

Find U 2 CN
s.t. 8V 2 CN , (AU |TV ) = (F |TV ).

Or, find U 2 CN
s.t. T⇤AU = T⇤F.

According to the uniform T�-coercivity assumption

8V 2 CN , |(T⇤AV |V )| � ↵†(MV |V ).

[2nd Key Idea] Use T associated with T for the approximation of (VF)T...
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What is T-coercivity?

Can be applied to various types of variational formulations

† = Abstract T-coercivity only.
1 Coercive plus compact formulations. See for instance:

integral equations: Buffa-Costabel-Schwab’02 [⇥-coercivity]; Buffa-Christiansen’03;
Buffa-Christiansen’05; Buffa’05; Unger’21; Levadoux (2022, HAL report) [⌧ -coercivity].

volume equations: Hiptmair’02 ["(X + S)-coercivity"]; Buffa’05; PC’12 ["elementary" proofs];

Hohage-Nannen’15 [S-coercivity]; Sayas-Brown-Hassell’19†; Halla’21 ["generalized" proofs].

2 Formulations with sign-changing coefficients. See for instance:
for scalar models: BonnetBenDhia-PC-Zwölf’10; BonnetBenDhia-Chesnel-Haddar’11†;
Nicaise-Venel’11; BonnetBenDhia-Chesnel-PC’12†; Chesnel-PC’13; Bunoiu-Ramdani’16†;
Carvalho-Chesnel-PC’17; BonnetBenDhia-Carvalho-PC’18; Bunoiu-Ramdani-Timofte’21-’22-’23†;
Carvalho-Moitier’23; Halla-Hohage-Oberender (2024, ArXiv report).
for EM models: BonnetBenDhia-Chesnel-PC’14† (2D-3D); PC’22 (3D); Halla’23 (2D);

Yang-Wang-Mao’23 (3D).

3 Mixed formulations.
for the Stokes model: see below!

for diffusion models: Jamelot-PC’13; PC-Jamelot-Kpadonou’17; see below!

for static models in electromagnetism: Barré-PC (to appear, 2023); PC-Jamelot’24; see below!
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Magnetostatics

The model

1 Let ⌦ be a simply connected domain of R3 with a connected boundary. The
magnetostatic equations write

8
<

:

curl(µ�1
B) = J in ⌦

divB = 0 in ⌦
B · n = 0 on @⌦,

for some uniformly elliptic, bounded tensor x 7! µ(x) (magnetic permeability).
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Magnetostatics

The model

1 Assuming that J 2 H(div 0;⌦), one analyses mathematically the model

(MSt)
B

8
>><

>>:

Find B 2 L
2(⌦) such that

curl(µ�1
B) = J in ⌦

divB = 0 in ⌦
B · n = 0 on @⌦.
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Magnetostatics

The model

1 Assuming that J 2 H(div 0;⌦), one analyses mathematically the model

(MSt)
B

8
>><

>>:

Find B 2 L
2(⌦) such that

curl(µ�1
B) = J in ⌦

divB = 0 in ⌦
B · n = 0 on @⌦.

Since B 2 H0(div 0;⌦), there exists one, and only one, A 2 H0(curl;⌦) \H(div 0;⌦)
such that B = curlA in ⌦. We study the model in the vector potential A.
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Magnetostatics

The model

1 Assuming that J 2 H(div 0;⌦), one analyses mathematically the model

(MSt)
A

8
<

:

Find A 2 H0(curl;⌦) such that
curl(µ�1 curlA) = J in ⌦
divA = 0 in ⌦.

2 The equivalent variational formulation writes

(FV-MSt)
A

8
>>>>>>><

>>>>>>>:

Find A 2 H0(curl;⌦) such that

8v 2 H0(curl;⌦),

Z

⌦
µ�1 curlA · curlv d⌦

=

Z

⌦
J · v d⌦

8q 2 H1
0 (⌦),

Z

⌦
A ·rq d⌦ = 0.
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Magnetostatics

The model

1 Assuming that J 2 H(div 0;⌦), one analyses mathematically the model

(MSt)
A

8
<

:

Find A 2 H0(curl;⌦) such that
curl(µ�1 curlA) = J in ⌦
divA = 0 in ⌦.

2 Let � > 0. Introducing an artificial pressure p, another equivalent variational formulation is

(FV-MSt)�
A

8
>>>>>>><

>>>>>>>:

Find A 2 H0(curl;⌦), p 2 H1
0 (⌦) such that

8v 2 H0(curl;⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+�

Z

⌦
v ·rp d⌦ =

Z

⌦
J · v d⌦

8q 2 H1
0 (⌦), �

Z

⌦
A ·rq d⌦ = 0.

Taking v = rp, one finds that p = 0!
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Magnetostatics

The model

1 Assuming that J 2 H(div 0;⌦), one analyses mathematically the model

(MSt)
A

8
<

:

Find A 2 H0(curl;⌦) such that
curl(µ�1 curlA) = J in ⌦
divA = 0 in ⌦.

2 Let � > 0. Introducing an artificial pressure p, another equivalent variational formulation is

(FV-MSt)�
A

8
>>><

>>>:

Find (A, p) 2 H0(curl;⌦)⇥H1
0 (⌦) such that

8(v, q) 2 H0(curl;⌦)⇥H1
0 (⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+ �

Z

⌦
v ·rp d⌦+ �

Z

⌦
A ·rq d⌦ =

Z

⌦
J · v d⌦.
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Magnetostatics

The model

1 Assuming that J 2 H(div 0;⌦), one analyses mathematically the model

(MSt)
A
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:

Find A 2 H0(curl;⌦) such that
curl(µ�1 curlA) = J in ⌦
divA = 0 in ⌦.

2 Let � > 0. Introducing an artificial pressure p, another equivalent variational formulation is

(FV-MSt)�
A

8
>>><

>>>:

Find (A, p) 2 H0(curl;⌦)⇥H1
0 (⌦) such that

8(v, q) 2 H0(curl;⌦)⇥H1
0 (⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+ �

Z

⌦
v ·rp d⌦+ �

Z

⌦
A ·rq d⌦ =

Z

⌦
J · v d⌦.

Question: how to prove well-posedness "easily"?
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Magnetostatics

The model

1 Assuming that J 2 H(div 0;⌦), one analyses mathematically the model

(MSt)
A

8
<

:

Find A 2 H0(curl;⌦) such that
curl(µ�1 curlA) = J in ⌦
divA = 0 in ⌦.

2 Let � > 0. Introducing an artificial pressure p, another equivalent variational formulation is

(FV-MSt)�
A

8
>>><

>>>:

Find (A, p) 2 H0(curl;⌦)⇥H1
0 (⌦) such that

8(v, q) 2 H0(curl;⌦)⇥H1
0 (⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+ �

Z

⌦
v ·rp d⌦+ �

Z

⌦
A ·rq d⌦ =

Z

⌦
J · v d⌦.

Question: how to prove well-posedness "easily"?

Use T-coercivity for the magnetostatics model!
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 1

Let
V = H0(curl;⌦)⇥H1

0 (⌦), endowed with k(v, q)kV = (kvk2
H(curl;⌦) + |q|21,⌦)1/2 ;

a((v, q), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
w ·rq d⌦+ �

Z

⌦
v ·rr d⌦ ;

V 0hf, (w, r)iV =

Z

⌦
J ·w d⌦.
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 1

Let
V = H0(curl;⌦)⇥H1

0 (⌦), endowed with k(v, q)kV = (kvk2
H(curl;⌦) + |q|21,⌦)1/2 ;

a((v, q), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
w ·rq d⌦+ �

Z

⌦
v ·rr d⌦ ;

V 0hf, (w, r)iV =

Z

⌦
J ·w d⌦.

The first goal is to prove that the form a(·, ·) is T-coercive.
NB. The form a is not coercive, because a((0, q), (0, q)) = 0 for q 2 H1

0 (⌦).
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 1

Let
V = H0(curl;⌦)⇥H1

0 (⌦), endowed with k(v, q)kV = (kvk2
H(curl;⌦) + |q|21,⌦)1/2 ;

a((v, q), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
w ·rq d⌦+ �

Z

⌦
v ·rr d⌦ ;

V 0hf, (w, r)iV =

Z

⌦
J ·w d⌦.

The first goal is to prove that the form a(·, ·) is T-coercive.
Given (v, q) 2 V , we look for (w?, r?) 2 V with linear dependence such that

|a((v, q), (w?, r?))| � ↵ k(v, q)k2V ,

with ↵ > 0 independent of (v, q). In other words, T is defined by T((v, q)) = (w?, r?).
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 1

Let
V = H0(curl;⌦)⇥H1

0 (⌦), endowed with k(v, q)kV = (kvk2
H(curl;⌦) + |q|21,⌦)1/2 ;

a((v, q), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
w ·rq d⌦+ �

Z

⌦
v ·rr d⌦ ;

V 0hf, (w, r)iV =

Z

⌦
J ·w d⌦.

The first goal is to prove that the form a(·, ·) is T-coercive.
Given (v, q) 2 V , we look for (w?, r?) 2 V with linear dependence such that

|a((v, q), (w?, r?))| � ↵ k(v, q)k2V ,

with ↵ > 0 independent of (v, q). Three steps:
1 v = 0 ;
2 q = 0 ;
3 General case.
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 2

Recall a((v, q), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
w ·rq d⌦+ �

Z

⌦
v ·rr d⌦.

1 a((0, q), (w, r)) = �

Z

⌦
w ·rq d⌦: so choosing (w?, r?) = (rq, 0) yields

|a((0, q), (w?, r?))| = �

Z

⌦
|rq|2 d⌦ = � k(0, q)k2V .
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 2

Recall a((v, q), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
w ·rq d⌦+ �

Z

⌦
v ·rr d⌦.

1 a((0, q), (w, r)) = �

Z

⌦
w ·rq d⌦: choose (w?, r?) = (rq, 0).

2 a((v, 0), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·rr d⌦: according to eg.

Monk’03, one has the (double) orthogonal Helmholtz decomposition

H0(curl;⌦) = KN (⌦)
?
� r[H1

0 (⌦)] where KN (⌦) = H0(curl;⌦) \H(div 0;⌦),

and k 7! k curlkk defines a norm on KN (⌦), equivalent to k · kH(curl;⌦).
Let v = kv +r�v, then choosing (w?, r?) = (kv,�v) yields

|a((v, 0), (w?, r?))| =
Z

⌦
µ�1 curlkv · curlkv d⌦+ �

Z

⌦
|r�v|2 d⌦ & k(v, 0)k2V .
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 2

Recall a((v, q), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
w ·rq d⌦+ �

Z

⌦
v ·rr d⌦.

1 a((0, q), (w, r)) = �

Z

⌦
w ·rq d⌦: choose (w?, r?) = (rq, 0).

2 a((v, 0), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·rr d⌦: choose

(w?, r?) = (kv,�v).
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 2

Recall a((v, q), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
w ·rq d⌦+ �

Z

⌦
v ·rr d⌦.

1 a((0, q), (w, r)) = �

Z

⌦
w ·rq d⌦: choose (w?, r?) = (rq, 0).

2 a((v, 0), (w, r)) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·rr d⌦: choose

(w?, r?) = (kv,�v).
3 General case: the linear combination (w?, r?) = (rq + kv,�v) now leads to

a((v, q), (w?, r?)) =

Z

⌦
µ�1 curlkv · curlkv d⌦+ �

Z

⌦
|rq|2 d⌦+ �

Z

⌦
|r�v|2 d⌦

& k(v, q)k2V .
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 3

Regarding the proof with T-coercivity, one can make several observations:
1 The (double) orthogonal Helmholtz decomposition plays a crucial role!
2 The operator T is independent of the chosen value for �.
3 The approach can be transposed to the approximation, see below!
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 3

Regarding the proof with T-coercivity, one can make several observations:
1 The (double) orthogonal Helmholtz decomposition plays a crucial role!
2 The operator T is independent of the chosen value for �.
3 The approach can be transposed to the approximation, see below!

The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform
T�-coercivity. Given finite dimensional subspaces (V�)� of H0(curl;⌦), resp. (Q�)� of H1

0 (⌦),
one can build an approximation of the magnetostatics model. Question: how to choose them?
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Magnetostatics

Constructive proof of well-posedness with T-coercivity - 3

Regarding the proof with T-coercivity, one can make several observations:
1 The (double) orthogonal Helmholtz decomposition plays a crucial role!
2 The operator T is independent of the chosen value for �.
3 The approach can be transposed to the approximation, see below!

The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform
T�-coercivity. Given finite dimensional subspaces (V�)� of H0(curl;⌦), resp. (Q�)� of H1

0 (⌦),
one can build an approximation of the magnetostatics model. Question: how to choose them?

Mimic the previous proof to guarantee uniform T�-coercivity! [1st Key Idea]
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Magnetostatics

Constructive proof of convergence with uniform T�-coercivity

The discrete variational formulation writes

(FV-MSt)�,�
A

8
>>><

>>>:

Find (A�, p�) 2 V� ⇥Q� such that

8(v�, q�) 2 V� ⇥Q�,

Z

⌦
µ�1 curlA� · curlv� d⌦

+ �

Z

⌦
v� ·rp� d⌦+ �

Z

⌦
A� ·rq� d⌦ =

Z

⌦
J · v� d⌦.
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Magnetostatics

Constructive proof of convergence with uniform T�-coercivity

The discrete variational formulation writes

(FV-MSt)�,�
A

8
>>><

>>>:

Find (A�, p�) 2 V� ⇥Q� such that

8(v�, q�) 2 V� ⇥Q�,

Z

⌦
µ�1 curlA� · curlv� d⌦

+ �

Z

⌦
v� ·rp� d⌦+ �

Z

⌦
A� ·rq� d⌦ =

Z

⌦
J · v� d⌦.

Given (v�, q�) 2 V� ⇥Q�, we look for (w?

�
, r?

�
) 2 V� ⇥Q� with linear dependence such that

|a((v�, q�), (w?

�
, r?

�
))| � ↵† k(v�, q�)k2V ,

with ↵† > 0 independent of � and of (v�, q�).
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Magnetostatics

Constructive proof of convergence with uniform T�-coercivity

The discrete variational formulation writes

(FV-MSt)�,�
A

8
>>><

>>>:

Find (A�, p�) 2 V� ⇥Q� such that

8(v�, q�) 2 V� ⇥Q�,

Z

⌦
µ�1 curlA� · curlv� d⌦

+ �

Z

⌦
v� ·rp� d⌦+ �

Z

⌦
A� ·rq� d⌦ =

Z

⌦
J · v� d⌦.

Given (v�, q�) 2 V� ⇥Q�, we look for (w?

�
, r?

�
) 2 V� ⇥Q� with linear dependence such that

|a((v�, q�), (w?

�
, r?

�
))| � ↵† k(v�, q�)k2V ,

with ↵† > 0 independent of � and of (v�, q�). To mimick the T-coercivity approach, one needs
that r[Q�] ⇢ V�, so that a discrete Helmholtz decomposition holds in V�:

V� = K�

?
� r[Q�] where K� =

�
k� 2 V� | 8q� 2 Q�, (k�,rq�)L2(⌦) = 0

 
.
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Magnetostatics

Constructive proof of convergence with uniform T�-coercivity

The discrete variational formulation writes

(FV-MSt)�,�
A

8
>>><

>>>:

Find (A�, p�) 2 V� ⇥Q� such that

8(v�, q�) 2 V� ⇥Q�,

Z

⌦
µ�1 curlA� · curlv� d⌦

+ �

Z

⌦
v� ·rp� d⌦+ �

Z

⌦
A� ·rq� d⌦ =

Z

⌦
J · v� d⌦.

Given (v�, q�) 2 V� ⇥Q�, we look for (w?

�
, r?

�
) 2 V� ⇥Q� with linear dependence such that

|a((v�, q�), (w?

�
, r?

�
))| � ↵† k(v�, q�)k2V ,

with ↵† > 0 independent of � and of (v�, q�). Mimicking the T-coercivity approach, using the
discrete decomposition v� = k� +r��, one chooses: (w?

�
, r?

�
) = (rq� + k�,��).

Hipothec, March 2024 36 / 44



Magnetostatics

Constructive proof of convergence with uniform T�-coercivity

The discrete variational formulation writes

(FV-MSt)�,�
A

8
>>><

>>>:

Find (A�, p�) 2 V� ⇥Q� such that

8(v�, q�) 2 V� ⇥Q�,

Z

⌦
µ�1 curlA� · curlv� d⌦

+ �

Z

⌦
v� ·rp� d⌦+ �

Z

⌦
A� ·rq� d⌦ =

Z

⌦
J · v� d⌦.

Given (v�, q�) 2 V� ⇥Q�, we look for (w?

�
, r?

�
) 2 V� ⇥Q� with linear dependence such that

|a((v�, q�), (w?

�
, r?

�
))| � ↵† k(v�, q�)k2V ,

with ↵† > 0 independent of � and of (v�, q�). Mimicking the T-coercivity approach, using the
discrete decomposition v� = k� +r��, one chooses: (w?

�
, r?

�
) = (rq� + k�,��).

Difficulty: does k� 7! k curlk�k define a norm on K�, uniformly equivalent to k · kH(curl;⌦)?
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Magnetostatics

Constructive proof of convergence with uniform T�-coercivity

The discrete variational formulation writes

(FV-MSt)�,�
A

8
>>><

>>>:

Find (A�, p�) 2 V� ⇥Q� such that

8(v�, q�) 2 V� ⇥Q�,

Z

⌦
µ�1 curlA� · curlv� d⌦

+ �

Z

⌦
v� ·rp� d⌦+ �

Z

⌦
A� ·rq� d⌦ =

Z

⌦
J · v� d⌦.

Given (v�, q�) 2 V� ⇥Q�, we look for (w?

�
, r?

�
) 2 V� ⇥Q� with linear dependence such that

|a((v�, q�), (w?

�
, r?

�
))| � ↵† k(v�, q�)k2V ,

with ↵† > 0 independent of � and of (v�, q�). Mimicking the T-coercivity approach, using the
discrete decomposition v� = k� +r��, one chooses: (w?

�
, r?

�
) = (rq� + k�,��).

Browsing Monk’03, a classical choice is:
Nédélec FE (1st family) of order k � 1 for V�, resp. Lagrange FE of order k � 1 for Q�.

The proof is "elementary"! Convergence and error estimates follow...
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Magnetostatics

Solving numerically the variational formulation with operator T - 1

Given � > 0, the variational formulation is

(FV-MSt)�
A

8
>>><

>>>:

Find (A, p) 2 H0(curl;⌦)⇥H1
0 (⌦) such that

8(v, q) 2 H0(curl;⌦)⇥H1
0 (⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+ �

Z

⌦
v ·rp d⌦+ �

Z

⌦
A ·rq d⌦ =

Z

⌦
J · v d⌦.
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Magnetostatics

Solving numerically the variational formulation with operator T - 1

Given � > 0, the variational formulation is

(FV-MSt)�
A

8
>>><

>>>:

Find (A, p) 2 H0(curl;⌦)⇥H1
0 (⌦) such that

8(v, q) 2 H0(curl;⌦)⇥H1
0 (⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+ �

Z

⌦
v ·rp d⌦+ �

Z

⌦
A ·rq d⌦ =

Z

⌦
J · v d⌦.

Replace the test-fields (v, q) = (kv +r�v, q) by T(v, q) = (kv +rq,�v).
An equivalent variational formulation is

(FV-MSt)�T

8
>>><

>>>:

Find (A, p) 2 H0(curl;⌦)⇥H1
0 (⌦) such that

8(v, q) 2 H0(curl;⌦)⇥H1
0 (⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+ �

Z

⌦
rq ·rp d⌦+ �

Z

⌦
r�A ·r�v d⌦ =

Z

⌦
J · v d⌦.
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Magnetostatics

Solving numerically the variational formulation with operator T - 1

Given � > 0, the variational formulation is

(FV-MSt)�
A

8
>>><

>>>:

Find (A, p) 2 H0(curl;⌦)⇥H1
0 (⌦) such that

8(v, q) 2 H0(curl;⌦)⇥H1
0 (⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+ �

Z

⌦
v ·rp d⌦+ �

Z

⌦
A ·rq d⌦ =

Z

⌦
J · v d⌦.

Replace the test-fields (v, q) = (kv +r�v, q) by T(v, q) = (kv +rq,�v).
The equivalent variational formulation also writes

(FV-MSt)�T

8
>>>>>>><

>>>>>>>:

Find A 2 H0(curl;⌦), p 2 H1
0 (⌦) such that

8v 2 H0(curl;⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+�

Z

⌦
r�A ·r�v d⌦ =

Z

⌦
J · v d⌦

8q 2 H1
0 (⌦), �

Z

⌦
rq ·rp d⌦ = 0.
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Magnetostatics

Solving numerically the variational formulation with operator T - 1

Given � > 0, the variational formulation is

(FV-MSt)�
A

8
>>><

>>>:

Find (A, p) 2 H0(curl;⌦)⇥H1
0 (⌦) such that

8(v, q) 2 H0(curl;⌦)⇥H1
0 (⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+ �

Z

⌦
v ·rp d⌦+ �

Z

⌦
A ·rq d⌦ =

Z

⌦
J · v d⌦.

Replace the test-fields (v, q) = (kv +r�v, q) by T(v, q) = (kv +rq,�v).
The equivalent variational formulation also writes

(FV-MSt)�T

8
>>>>>>><

>>>>>>>:

Find A 2 H0(curl;⌦), p 2 H1
0 (⌦) such that

8v 2 H0(curl;⌦),

Z

⌦
µ�1 curlA · curlv d⌦

+�

Z

⌦
r�A ·r�v d⌦ =

Z

⌦
J · v d⌦

8q 2 H1
0 (⌦), �

Z

⌦
rq ·rp d⌦ = 0 =) p = 0 .
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Magnetostatics

Solving numerically the variational formulation with operator T - 2

Given � > 0, the (simplified) variational formulation to be solved is

(FV-MSt)�T

8
<

:

Find A 2 H0(curl;⌦) such that

8v 2 H0(curl;⌦), b�(A,v) =

Z

⌦
J · v d⌦,

with b�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
r�v ·r�w d⌦.
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Magnetostatics

Solving numerically the variational formulation with operator T - 2

Given � > 0, the (simplified) variational formulation to be solved is

(FV-MSt)�T

8
<

:

Find A 2 H0(curl;⌦) such that

8v 2 H0(curl;⌦), b�(A,v) =

Z

⌦
J · v d⌦,

with b�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
r�v ·r�w d⌦.

To approximate (FV-MSt)�T :
either one can evaluate simply the second term in the expression of b�(·, ·), that is
evaluate the gradient part in the (discrete) Helmholtz decomposition ;
or, one has to modify this second term.

We study next the second option.
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Magnetostatics

Solving numerically the variational formulation with operator T - 2

Given � > 0, the (simplified) variational formulation to be solved is

(FV-MSt)�T

8
<

:

Find A 2 H0(curl;⌦) such that

8v 2 H0(curl;⌦), b�(A,v) =

Z

⌦
J · v d⌦,

with b�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
r�v ·r�w d⌦.

To approximate (FV-MSt)�T :
either one can evaluate simply the second term in the expression of b�(·, ·), that is
evaluate the gradient part in the (discrete) Helmholtz decomposition ;
or, one has to modify this second term.

We study next the second option. Observe that A is independent of �, so a natural idea is to
choose a "small" value of � and add a perturbation in the order of �.
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Magnetostatics

Solving numerically the variational formulation with operator T - 2

Given � > 0, the (simplified) variational formulation to be solved is

(FV-MSt)�T

8
<

:

Find A 2 H0(curl;⌦) such that

8v 2 H0(curl;⌦), b�(A,v) =

Z

⌦
J · v d⌦,

with b�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
r�v ·r�w d⌦.

To approximate (FV-MSt)�T :
either one can evaluate simply the second term in the expression of b�(·, ·), that is
evaluate the gradient part in the (discrete) Helmholtz decomposition ;
or, one has to modify this second term.

We study next the second option. Observe that A is independent of �, so a natural idea is to
choose a "small" value of � and add a perturbation in the order of �:

c�(v,w) = b�(v,w) + �

Z

⌦
kv · kw d⌦ =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·w d⌦.

Hipothec, March 2024 38 / 44



Magnetostatics

Solving numerically the variational formulation with operator T - 3

Given � > 0, the perturbed variational formulation to be solved is

(FV-MSt)�
pert

8
<

:

Find A� 2 H0(curl;⌦) such that

8v 2 H0(curl;⌦), c�(A� ,v) =

Z

⌦
J · v d⌦,

with c�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·w d⌦.
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Magnetostatics

Solving numerically the variational formulation with operator T - 3

Given � > 0, the perturbed variational formulation to be solved is

(FV-MSt)�
pert

8
<

:

Find A� 2 H0(curl;⌦) such that

8v 2 H0(curl;⌦), c�(A� ,v) =

Z

⌦
J · v d⌦,

with c�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·w d⌦.

Observe that curl(µ�1 curlA�) + �A� = J in ⌦, so in general A� 6= A.
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Magnetostatics

Solving numerically the variational formulation with operator T - 3

Given � > 0, the perturbed variational formulation to be solved is

(FV-MSt)�
pert

8
<

:

Find A� 2 H0(curl;⌦) such that

8v 2 H0(curl;⌦), c�(A� ,v) =

Z

⌦
J · v d⌦,

with c�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·w d⌦.

Observe that curl(µ�1 curlA�) + �A� = J in ⌦, so in general A� 6= A.
On the other hand, A� 2 KN (⌦), with �-robust estimates

k curl(A� �A)k . � kJk and kA� �Ak . � kJk.
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Magnetostatics

Solving numerically the variational formulation with operator T - 3

Given � > 0, the perturbed variational formulation to be solved is

(FV-MSt)�
pert

8
<

:

Find A� 2 H0(curl;⌦) such that

8v 2 H0(curl;⌦), c�(A� ,v) =

Z

⌦
J · v d⌦,

with c�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·w d⌦.

Observe that curl(µ�1 curlA�) + �A� = J in ⌦, so in general A� 6= A.
On the other hand, A� 2 KN (⌦), with �-robust estimates

k curl(A� �A)k . � kJk and kA� �Ak . � kJk.

Approximate the perturbed variational formulation with ad hoc �!
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Magnetostatics

Solving numerically the variational formulation with operator T - 4

Given � > 0, the discrete perturbed variational formulation writes

(FV-MSt)�,�
pert

8
<

:

Find A
�
� 2 V� such that

8v� 2 V�, c�(A
�

� ,v�) =

Z

⌦
J · v� d⌦,

with c�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·w d⌦.
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�
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Solving numerically the variational formulation with operator T - 4

Given � > 0, the discrete perturbed variational formulation writes

(FV-MSt)�,�
pert

8
<

:

Find A
�
� 2 V� such that

8v� 2 V�, c�(A
�

� ,v�) =

Z

⌦
J · v� d⌦,

with c�(v,w) =

Z

⌦
µ�1 curlv · curlw d⌦+ �

Z

⌦
v ·w d⌦.

One has a variant of Céa’s lemma, with �-robust estimates

k curl(A� �A
�

�)k . inf
v�2V�

h
�1/2kA� � v�k+ k curl(A� � v�)k

i
.

Let A� be the solution of the perturbed variational formulation for � = �(�) : A� = A
�

�(�).
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Magnetostatics

Solving numerically the variational formulation with operator T - 5

One can use Nédélec FE (1st family) of order k � 1 with ad hoc � = �(�).
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Solving numerically the variational formulation with operator T - 5

One can use Nédélec FE (1st family) of order k � 1 with ad hoc � = �(�).
Introduce the regularity exponent �Neu(µ) 2 ]0, 1]:

H(curl;⌦) \H0(div µ;⌦) ⇢ \0s0<�Neu(µ)PH
s0(⌦).
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Introduce the regularity exponent �Neu(µ) 2 ]0, 1]:

H(curl;⌦) \H0(div µ;⌦) ⇢ \0s0<�Neu(µ)PH
s0(⌦).

Using classical interpolation estimates, one finds that if �(�) . ��Neu(µ), then:
for s0 = 1 if �Neu(µ) = 1,
for s0 2 ]0,�Neu(µ)[ else,

one has the error estimate k curl(A�A�)k .s0 �s
0kJk.
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Using classical interpolation estimates, one finds that if �(�) . ��Neu(µ), then:
for s0 = 1 if �Neu(µ) = 1,
for s0 2 ]0,�Neu(µ)[ else,

one has the error estimate k curl(A�A�)k .s0 �s
0kJk.

In terms of B, one concludes that

kB � curlA�kH(div ;⌦) .s0 �
s0kJk.
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Magnetostatics

Solving numerically the variational formulation with operator T - 5

One can use Nédélec FE (1st family) of order k � 1 with ad hoc � = �(�).
Introduce the regularity exponent �Neu(µ) 2 ]0, 1]:

H(curl;⌦) \H0(div µ;⌦) ⇢ \0s0<�Neu(µ)PH
s0(⌦).

Using classical interpolation estimates, one finds that if �(�) . ��Neu(µ), then:
for s0 = 1 if �Neu(µ) = 1,
for s0 2 ]0,�Neu(µ)[ else,

one has the error estimate k curl(A�A�)k .s0 �s
0kJk.

In terms of B, one concludes that

kB � curlA�kH(div ;⌦) .s0 �
s0kJk.

The method is similar to that of Reitzinger-Schöberl’02, Duan-Li-Tan-Zheng’12
and PC-Wu-Zou’14. However the derivation is completely different!
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Magnetostatics

Solving numerically the variational formulation with operator T - 6

A numerical illustration ( c�PC-Wu-Zou’14):
the permeability is µ = 1, the domain ⌦ is a cube ;

computations are made with COMSOL Multiphysics.
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Magnetostatics

Solving numerically the variational formulation with operator T - 6

A numerical illustration ( c�PC-Wu-Zou’14):
the permeability is µ = 1, the domain ⌦ is a cube ;

computations are made with COMSOL Multiphysics.

Expected convergence rate is O(h):
error kA�A�k (dashed line) ;

error kB � curlA�kH(div ;⌦) = k curl(A�A�)k (solid line).
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Further remarks

Some extensions:

1 Stokes model: see Jamelot (2022, HAL report) for a non-conforming discretisation
(Crouzeix-Raviart FE or Fortin-Soulié FE); see master’s thesis by MRoueh (2022) for DG
discretisation ; see Barré-Grandmont-Moireau’22 for a poromechanics model.

2 diffusion model: see PhD thesis by Giret (2018) for a SPN multigroup model.
3 2D elastodynamics: see Falletta-Ferrari-Scuderi (2023, arXiv report) for a

virtual element method.
4 "classical" mixed variational formulations: see Barré-PC (to appear, 2023).
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Some extensions:

1 Stokes model: see Jamelot (2022, HAL report) for a non-conforming discretisation
(Crouzeix-Raviart FE or Fortin-Soulié FE); see master’s thesis by MRoueh (2022) for DG
discretisation ; see Barré-Grandmont-Moireau’22 for a poromechanics model.

2 diffusion model: see PhD thesis by Giret (2018) for a SPN multigroup model.
3 2D elastodynamics: see Falletta-Ferrari-Scuderi (2023, arXiv report) for a

virtual element method.
4 "classical" mixed variational formulations: see Barré-PC (to appear, 2023).

5 in Banach spaces, T-coercivity implies Hilbert structure, see Ern-Guermont’21-Vol.II.
6 T-coercivity still usable with the Strang lemmas (approximate forms).
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Thank you for your attention!
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