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What is T-coercivity?
A tool to study variational formulations [Chesnel-PC’13]

Abstract framework: Find u ∈ V s.t. ∀w ∈W, a(u,w) = 〈f, w〉W .
Approximate framework: Find uδ ∈ Vδ s.t. ∀wδ ∈Wδ, a(uδ, wδ) = 〈f, wδ〉W .

1 First, analyse the variational formulation theoretically:
prove well-posedness ;
existence, uniqueness and continuous dependence of the solution with respect to the data.

2 Second, solve the variational formulation numerically:
find suitable approximations ;
prove convergence.

Within the framework of T-coercivity, steps 1 and 2 are very strongly correlated!
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What is T-coercivity?
Basic T-coercivity as an abstract tool

Let
V , W be Hilbert spaces over C ;
a(·, ·) be a bounded sesquilinear form on V ×W ;
f be an element of W ′, the dual space of W .

Solve
(VF) Find u ∈ V s.t. ∀w ∈W, a(u,w) = 〈f, w〉W .

[Banach-Nečas-Babuška] The inf-sup condition writes

(isc) ∃α > 0, ∀v ∈ V, sup
w∈W\{0}

|a(v, w)|
‖w‖W

≥ α ‖v‖V .

If in addition {w ∈W | ∀v ∈ V, a(v, w) = 0} = {0}, then the variational formulation (VF) is
well-posed.
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What is T-coercivity?
Basic T-coercivity as an abstract tool

Let
V , W be Hilbert spaces over C ;
a(·, ·) be a bounded sesquilinear form on V ×W ;
f be an element of W ′, the dual space of W .

Solve
(VF) Find u ∈ V s.t. ∀w ∈W, a(u,w) = 〈f, w〉W .

Definition (T-coercivity)
The form a(·, ·) is T-coercive if

∃T ∈ L(V,W ) bijective, ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2V .

NB. In other words, the form a(·, T·) is coercive on V × V .
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What is T-coercivity?
Basic T-coercivity as an abstract tool

Let
V , W be Hilbert spaces over C ;
a(·, ·) be a bounded sesquilinear form on V ×W ;
f be an element of W ′, the dual space of W .

Solve
(VF) Find u ∈ V s.t. ∀w ∈W, a(u,w) = 〈f, w〉W .

Theorem (Well-posedness)
The three assertions below are equivalent:
(i) the variational formulation (VF) is well-posed ;
(ii) the form a(·, ·) satisfies (isc) and {w ∈W | ∀v ∈ V, a(v, w) = 0} = {0} ;
(iii) the form a(·, ·) is T-coercive.

The operator T realises the inf-sup condition (isc) explicitly: w = Tu works!
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What is T-coercivity?
Explicit T-coercivity

Let
V , W be Hilbert spaces over C ;
a(·, ·) be a bounded sesquilinear form on V ×W ;
f be an element of W ′, the dual space of W .

Solve
(VF) Find u ∈ V s.t. ∀w ∈W, a(u,w) = 〈f, w〉W .

Theorem
For any bijective operator T ∈ L(V,W ), the variational formulation (VF) is equivalent to

(VF)T Find u ∈ V s.t. ∀v ∈ V, a(u, Tv) = 〈f, Tv〉W
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What is T-coercivity?
Discrete T-coercivity as an approximation tool

Let
(Vδ)δ be a family of finite dimensional subspaces of V ;
(Wδ)δ be a family of finite dimensional subspaces of W .

Assume that dim(Vδ) = dim(Wδ) for all δ > 0.
Solve

(VF)δ Find uδ ∈ Vδ s.t. ∀wδ ∈Wδ, a(uδ, wδ) = 〈f, wδ〉W .
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What is T-coercivity?
Discrete T-coercivity as an approximation tool

Let
(Vδ)δ be a family of finite dimensional subspaces of V ;
(Wδ)δ be a family of finite dimensional subspaces of W .

Assume that dim(Vδ) = dim(Wδ) for all δ > 0.
Solve

(VF)δ Find uδ ∈ Vδ s.t. ∀wδ ∈Wδ, a(uδ, wδ) = 〈f, wδ〉W .

[Banach-Nečas-Babuška] The uniform discrete inf-sup condition writes

(udisc) ∃α† > 0, ∀δ > 0, ∀vδ ∈ Vδ, sup
wδ∈Wδ\{0}

|a(vδ, wδ)|
‖wδ‖W

≥ α†‖vδ‖V .

NB. When (udisc) is fulfilled, (VF)δ is well-posed for all δ > 0.
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What is T-coercivity?
Discrete T-coercivity as an approximation tool

Let
(Vδ)δ be a family of finite dimensional subspaces of V ;
(Wδ)δ be a family of finite dimensional subspaces of W .

Assume that dim(Vδ) = dim(Wδ) for all δ > 0.
Solve

(VF)δ Find uδ ∈ Vδ s.t. ∀wδ ∈Wδ, a(uδ, wδ) = 〈f, wδ〉W .

Definition (uniform Tδ-coercivity)
The form a is uniformly Tδ-coercive if

∃α†, β† > 0, ∀δ > 0, ∃Tδ ∈ L(Vδ,Wδ), |||Tδ||| ≤ β† and ∀vδ ∈ Vδ, |a(vδ, Tδvδ)| ≥ α†‖vδ‖2V .

NB. When a is uniformly Tδ-coercive, (VF)δ is well-posed for all δ > 0.
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What is T-coercivity?
Discrete T-coercivity as an approximation tool

Let
(Vδ)δ be a family of finite dimensional subspaces of V ;
(Wδ)δ be a family of finite dimensional subspaces of W .

Assume that dim(Vδ) = dim(Wδ) for all δ > 0.
Solve

(VF)δ Find uδ ∈ Vδ s.t. ∀wδ ∈Wδ, a(uδ, wδ) = 〈f, wδ〉W .

Theorem (Céa’s lemma)
Assume that
(i) either, the form a(·, ·) satisfies (udisc) ;
(ii) or, the form a(·, ·) is uniformly Tδ-coercive.
In addition, assume that the family (Vδ)δ fulfills the basic approximability property in V .
Then, limδ→0 ‖u− uδ‖V = 0.
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What is T-coercivity?
Discrete T-coercivity as an approximation tool

Let
(Vδ)δ be a family of finite dimensional subspaces of V ;
(Wδ)δ be a family of finite dimensional subspaces of W .

Assume that dim(Vδ) = dim(Wδ) for all δ > 0.
Solve

(VF)δ Find uδ ∈ Vδ s.t. ∀wδ ∈Wδ, a(uδ, wδ) = 〈f, wδ〉W .

Theorem (Céa’s lemma)
Assume that
(i) either, the form a(·, ·) satisfies (udisc) ;
(ii) or, the form a(·, ·) is uniformly Tδ-coercive.
In addition, assume that the family (Vδ)δ fulfills the basic approximability property in V .
Then, limδ→0 ‖u− uδ‖V = 0. And error estimates whenever possible...
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What is T-coercivity?
Two key ideas [Chesnel-PC’13]

[1st Key Idea] Use the knowledge on operator T to derive the discrete operators (Tδ)δ!

[2nd Key Idea] Discretize the variational formulation with (bijective) operator T:

(VF)T Find u ∈ V s.t. ∀v ∈ V, a(u, Tv) = 〈f, Tv〉W !
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What is T-coercivity?
As an approximation tool (solving the equivalent linear system)

Given δ > 0, let N = dim(Vδ). (VF)δ is equivalent to
Solve

Find U ∈ CN s.t. ∀W ∈ CN , (AU |W ) = (F |W ).

Or, find U ∈ CN s.t. AU = F.

[Discrete T-coercivity] Using T associated with Tδ, (VF)δ is equivalent to
Solve

Find U ∈ CN s.t. ∀V ∈ CN , (AU |TV ) = (F |TV ).

Or, find U ∈ CN s.t. T∗AU = T∗F.

According to the uniform Tδ-coercivity assumption

∀V ∈ CN , |(T∗AV |V )| ≥ α†(MV |V ).

[Explicit T-coercivity] Use T associated with T for the approximation of (VF)T. Same results...
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Stokes model
The model

1 Let Ω be a domain of Rd, d = 2, 3. The "simplest" Stokes equations write
−ν∆u +∇p = f in Ω
divu = g in Ω
u = 0 on ∂Ω,

for some ν > 0 (viscosity). For "classical" Stokes, g = 0.
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Stokes model
The model

1 Assuming that f ∈ (H1
0 (Ω))′ and g ∈ L2

zmv(Ω), one analyses mathematically the model

(Stokes)


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

−ν∆u +∇p = f in Ω
divu = g in Ω.
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Stokes model
The model

1 Assuming that f ∈ (H1
0 (Ω))′ and g ∈ L2

zmv(Ω), one analyses mathematically the model

(Stokes)


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

−ν∆u +∇p = f in Ω
divu = g in Ω.

2 The equivalent variational formulation writes

(VF-Stokes)


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

∀(v, q) ∈H1
0 (Ω)× L2

zmv(Ω), ν

∫
Ω
∇u : ∇v dΩ

−
∫

Ω
p div v dΩ−

∫
Ω
q divu dΩ = 〈f ,v〉H1

0 (Ω) −
∫

Ω
gq dΩ.
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Stokes model
The model

1 Assuming that f ∈ (H1
0 (Ω))′ and g ∈ L2

zmv(Ω), one analyses mathematically the model

(Stokes)


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

−ν∆u +∇p = f in Ω
divu = g in Ω.

2 The equivalent variational formulation writes

(VF-Stokes)


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

∀(v, q) ∈H1
0 (Ω)× L2

zmv(Ω), ν

∫
Ω
∇u : ∇v dΩ

−
∫

Ω
p div v dΩ−

∫
Ω
q divu dΩ = 〈f ,v〉H1

0 (Ω) −
∫

Ω
gq dΩ.

Question: how to prove well-posedness "easily"?
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Stokes model
The model

1 Assuming that f ∈ (H1
0 (Ω))′ and g ∈ L2

zmv(Ω), one analyses mathematically the model

(Stokes)


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

−ν∆u +∇p = f in Ω
divu = g in Ω.

2 The equivalent variational formulation writes

(VF-Stokes)


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

∀(v, q) ∈H1
0 (Ω)× L2

zmv(Ω), ν

∫
Ω
∇u : ∇v dΩ

−
∫

Ω
p div v dΩ−

∫
Ω
q divu dΩ = 〈f ,v〉H1

0 (Ω) −
∫

Ω
gq dΩ.

Question: how to prove well-posedness "easily"?

Prove T-coercivity for the Stokes model!
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Stokes model
Basic T-coercivity - 1

Let
V = H1

0 (Ω)× L2
zmv(Ω), endowed with ‖(v, q)‖V,ν = (|v|21,Ω + ν−2‖q‖2)1/2 ;

a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ ;

〈f, (w, r)〉V = 〈f ,w〉H1
0 (Ω) −

∫
Ω
r g dΩ.
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Stokes model
Basic T-coercivity - 1

Let
V = H1

0 (Ω)× L2
zmv(Ω), endowed with ‖(v, q)‖V,ν = (|v|21,Ω + ν−2‖q‖2)1/2 ;

a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ ;

〈f, (w, r)〉V = 〈f ,w〉H1
0 (Ω) −

∫
Ω
r g dΩ.

Basic T-coercivity: prove well-posedness with T-coercivity.
NB. The form a is not coercive, because a((0, q), (0, q)) = 0 for q ∈ L2

zmv(Ω).
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Stokes model
Basic T-coercivity - 1

Let
V = H1

0 (Ω)× L2
zmv(Ω), endowed with ‖(v, q)‖V,ν = (|v|21,Ω + ν−2‖q‖2)1/2 ;

a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ ;

〈f, (w, r)〉V = 〈f ,w〉H1
0 (Ω) −

∫
Ω
r g dΩ.

Basic T-coercivity: prove well-posedness with T-coercivity.
Given (v, q) ∈ V, we look for (w?, r?) ∈ V with linear dependence such that

|a((v, q), (w?, r?))| ≥ α ‖(v, q)‖2V,ν ,

with α > 0 independent of (v, q). In other words, T is defined by T((v, q)) = (w?, r?).
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Stokes model
Basic T-coercivity - 1

Let
V = H1

0 (Ω)× L2
zmv(Ω), endowed with ‖(v, q)‖V,ν = (|v|21,Ω + ν−2‖q‖2)1/2 ;

a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ ;

〈f, (w, r)〉V = 〈f ,w〉H1
0 (Ω) −

∫
Ω
r g dΩ.

Basic T-coercivity: prove well-posedness with T-coercivity.
Given (v, q) ∈ V, we look for (w?, r?) ∈ V with linear dependence such that

|a((v, q), (w?, r?))| ≥ α ‖(v, q)‖2V,ν ,

with α > 0 independent of (v, q). Three steps:
1 q = 0 ;
2 v = 0 ;
3 General case.

ECCOMAS, June 2024 11 / 23



Stokes model
Basic T-coercivity - 2

Recall a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ.

1 a((v, 0), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
r div v dΩ: so choosing (w?, r?) = (v, 0)

yields

|a((v, 0), (w?, r?))| = ν

∫
Ω
|∇v|2 dΩ = ν ‖(v, 0)‖2V,ν .
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Stokes model
Basic T-coercivity - 2

Recall a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ.

1 a((v, 0), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
r div v dΩ: choose (w?, r?) = (v, 0).

2 a((0, q), (w, r)) = −
∫

Ω
q divw dΩ: according to eg. Girault-Raviart’86,

∃Cdiv > 0, ∀q ∈ L2
zmv(Ω), ∃wq ∈H1

0 (Ω) such that divwq = q, with |wq|1,Ω ≤ Cdiv ‖q‖.

So choosing (w?, r?) = (−wq, 0) yields

|a((0, q), (w?, r?))| =
∫

Ω
q2 dΩ = ν2‖(0, q)‖2V,ν .

NB. From now on, we take wq in the orthogonal of V0 = {w ∈H1
0 (Ω) |divw = 0}.
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Stokes model
Basic T-coercivity - 2

Recall a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ.

1 a((v, 0), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
r div v dΩ: choose (w?, r?) = (v, 0).

2 a((0, q), (w, r)) = −
∫

Ω
q divw dΩ: choose (w?, r?) = (−wq, 0).

3 General case: beginning with the linear combination w? = λv − µwq, λ, µ > 0, one finds

a((v, q), (w?, r)) = λν |v|21,Ω − µν
∫

Ω
∇v : ∇wq dΩ−

∫
Ω

(λq + r) div v dΩ + µ‖q‖2.
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Stokes model
Basic T-coercivity - 2

Recall a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ.

1 a((v, 0), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
r div v dΩ: choose (w?, r?) = (v, 0).

2 a((0, q), (w, r)) = −
∫

Ω
q divw dΩ: choose (w?, r?) = (−wq, 0).

3 General case: w? = λv − µwq, λ, µ > 0. Next, r? = −λq leads to

a((v, q), (w?, r?)) = λν |v|21,Ω + µ‖q‖2 − µν
∫

Ω
∇v : ∇wq dΩ.
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Stokes model
Basic T-coercivity - 2

Recall a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ.

1 a((v, 0), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
r div v dΩ: choose (w?, r?) = (v, 0).

2 a((0, q), (w, r)) = −
∫

Ω
q divw dΩ: choose (w?, r?) = (−wq, 0).

3 General case: w? = λv − µwq, λ, µ > 0. Next, r? = −λq leads to

a((v, q), (w?, r?)) = λν |v|21,Ω + µ‖q‖2 − µν
∫

Ω
∇v : ∇wq dΩ.

Finally, the last term can be controlled by the first two terms thanks to
|wq|1,Ω ≤ Cdiv ‖q‖, using Young’s inequality.
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Stokes model
Basic T-coercivity - 2

Recall a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ.

1 a((v, 0), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
r div v dΩ: choose (w?, r?) = (v, 0).

2 a((0, q), (w, r)) = −
∫

Ω
q divw dΩ: choose (w?, r?) = (−wq, 0).

3 General case: w? = λv − µwq, λ, µ > 0. Next, r? = −λq leads to

a((v, q), (w?, r?)) = λν |v|21,Ω + µ‖q‖2 − µν
∫

Ω
∇v : ∇wq dΩ.

Finally, the last term can be controlled by the first two terms thanks to
|wq|1,Ω ≤ Cdiv ‖q‖, using Young’s inequality.
Eg., choose (λ, µ) = ((Cdiv )2, ν−1): T((v, q)) = ((Cdiv )2v − ν−1wq,−(Cdiv )2q).
The operator T is bijective (one easily builds its inverse).
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Stokes model
Basic T-coercivity - 2

Recall a((v, q), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
q divw dΩ−

∫
Ω
r div v dΩ.

1 a((v, 0), (w, r)) = ν

∫
Ω
∇v : ∇w dΩ−

∫
Ω
r div v dΩ: choose (w?, r?) = (v, 0).

2 a((0, q), (w, r)) = −
∫

Ω
q divw dΩ: choose (w?, r?) = (−wq, 0).

3 General case: w? = λv − µwq, λ, µ > 0. Next, r? = −λq leads to

a((v, q), (w?, r?)) = λν |v|21,Ω + µ‖q‖2 − µν
∫

Ω
∇v : ∇wq dΩ.

Finally, the last term can be controlled by the first two terms thanks to
|wq|1,Ω ≤ Cdiv ‖q‖, using Young’s inequality.
Eg., choose (λ, µ) = ((Cdiv )2, ν−1): T((v, q)) = ((Cdiv )2v − ν−1wq,−(Cdiv )2q).
NB. Playing with Young’s inequality, one finds that there is an "admissible" family of
coefficients (λ, µ) that yield T-coercivity: eg. for µ = ν−1, one needs that λ > 1

4(Cdiv )2.
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Stokes model
Basic T-coercivity - 3

Regarding the basic T-coercivity, one can make several observations:
1 The result of Girault-Raviart’86 appears as a requirement to derive the T-coercivity!
2 The T-coercivity approach is flexible, in the sense that one has at hand a family of

operators T (depending on the chosen linear combination). Among others, one may
"optimize" the value of the stability constant with respect to ν.

3 The approach is easily transposed to the approximation, see next!
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1 The result of Girault-Raviart’86 appears as a requirement to derive the T-coercivity!
2 The T-coercivity approach is flexible, in the sense that one has at hand a family of

operators T (depending on the chosen linear combination). Among others, one may
"optimize" the value of the stability constant with respect to ν.

3 The approach is easily transposed to the approximation, see next!

Discrete T-coercivity: prove the uniform discrete inf-sup condition, with the help of the
uniform Tδ-coercivity.
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Stokes model
Basic T-coercivity - 3

Regarding the basic T-coercivity, one can make several observations:
1 The result of Girault-Raviart’86 appears as a requirement to derive the T-coercivity!
2 The T-coercivity approach is flexible, in the sense that one has at hand a family of

operators T (depending on the chosen linear combination). Among others, one may
"optimize" the value of the stability constant with respect to ν.

3 The approach is easily transposed to the approximation, see next!

Discrete T-coercivity: prove the uniform discrete inf-sup condition, with the help of the
uniform Tδ-coercivity. How to choose finite dimensional subspaces (Vδ)δ of H1

0 (Ω), resp.
(Qδ)δ of L2

zmv(Ω) to build an approximation of the Stokes model?
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Stokes model
Basic T-coercivity - 3

Regarding the basic T-coercivity, one can make several observations:
1 The result of Girault-Raviart’86 appears as a requirement to derive the T-coercivity!
2 The T-coercivity approach is flexible, in the sense that one has at hand a family of

operators T (depending on the chosen linear combination). Among others, one may
"optimize" the value of the stability constant with respect to ν.

3 The approach is easily transposed to the approximation, see next!

Discrete T-coercivity: prove the uniform discrete inf-sup condition, with the help of the
uniform Tδ-coercivity. How to choose finite dimensional subspaces (Vδ)δ of H1

0 (Ω), resp.
(Qδ)δ of L2

zmv(Ω) to build an approximation of the Stokes model?

Mimic the previous proof to guarantee uniform Tδ-coercivity! [1st Key Idea]

Discrete T-coercivity Explicit T-coercivity
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Stokes model
Discrete T-coercivity - 1

The discrete variational formulation writes

(VF-Stokes)δ


Find (uδ, pδ) ∈ Vδ ×Qδ such that
∀(vδ, qδ) ∈ Vδ ×Qδ,

ν

∫
Ω
∇uδ : ∇vδ dΩ−

∫
Ω
pδ div vδ dΩ−

∫
Ω
qδ divuδ dΩ = 〈f, (vδ, qδ)〉V.
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(VF-Stokes)δ


Find (uδ, pδ) ∈ Vδ ×Qδ such that
∀(vδ, qδ) ∈ Vδ ×Qδ,

ν

∫
Ω
∇uδ : ∇vδ dΩ−

∫
Ω
pδ div vδ dΩ−

∫
Ω
qδ divuδ dΩ = 〈f, (vδ, qδ)〉V.

Given (vδ, qδ) ∈ Vδ ×Qδ, we look for (w?
δ , r

?
δ ) ∈ Vδ ×Qδ with linear dependence such that

|a((vδ, qδ), (w
?
δ , r

?
δ ))| ≥ α† ‖(vδ, qδ)‖2V,

with α† > 0 independent of δ and of (vδ, qδ).
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The discrete variational formulation writes

(VF-Stokes)δ


Find (uδ, pδ) ∈ Vδ ×Qδ such that
∀(vδ, qδ) ∈ Vδ ×Qδ,

ν

∫
Ω
∇uδ : ∇vδ dΩ−

∫
Ω
pδ div vδ dΩ−

∫
Ω
qδ divuδ dΩ = 〈f, (vδ, qδ)〉V.

Given (vδ, qδ) ∈ Vδ ×Qδ, we look for (w?
δ , r

?
δ ) ∈ Vδ ×Qδ with linear dependence such that

|a((vδ, qδ), (w
?
δ , r

?
δ ))| ≥ α† ‖(vδ, qδ)‖2V,

with α† > 0 independent of δ and of (vδ, qδ). Mimicking the T-coercivity approach, one chooses

w? = (Cdiv )2vδ − ν−1wqδ and r? = −(Cdiv )2qδ,

with wqδ ∈H1
0 (Ω) such that divwqδ = qδ, and |wqδ |1,Ω ≤ Cdiv ‖qδ‖.
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Stokes model
Discrete T-coercivity - 1

The discrete variational formulation writes

(VF-Stokes)δ


Find (uδ, pδ) ∈ Vδ ×Qδ such that
∀(vδ, qδ) ∈ Vδ ×Qδ,

ν

∫
Ω
∇uδ : ∇vδ dΩ−

∫
Ω
pδ div vδ dΩ−

∫
Ω
qδ divuδ dΩ = 〈f, (vδ, qδ)〉V.

Given (vδ, qδ) ∈ Vδ ×Qδ, we look for (w?
δ , r

?
δ ) ∈ Vδ ×Qδ with linear dependence such that

|a((vδ, qδ), (w
?
δ , r

?
δ ))| ≥ α† ‖(vδ, qδ)‖2V,

with α† > 0 independent of δ and of (vδ, qδ). Mimicking the T-coercivity approach, one chooses

w? = (Cdiv )2vδ − ν−1wqδ and r? = −(Cdiv )2qδ,

with wqδ ∈H1
0 (Ω) such that divwqδ = qδ, and |wqδ |1,Ω ≤ Cdiv ‖qδ‖.

Difficulty: wqδ /∈ Vδ in general, whereas vδ ∈ Vδ and r? ∈ Qδ.
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Stokes model
Discrete T-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

Find w+
δ ∈ Vδ such that "divw+

δ = qδ weakly", and |w+
δ |1,Ω ≤ C+ ‖qδ‖ with C+ > 0

independent of δ, qδ.
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Stokes model
Discrete T-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

Find w+
δ ∈ Vδ such that "divw+

δ = qδ weakly", and |w+
δ |1,Ω ≤ C+ ‖qδ‖ with C+ > 0

independent of δ, qδ.

As a matter of fact, choosing w?
δ = (C+)2vδ − ν−1w+

δ and r?δ = −(C+)2qδ immediately yields
the uniform discrete inf-sup condition!
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Stokes model
Discrete T-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

Find w+
δ ∈ Vδ such that "divw+

δ = qδ weakly", and |w+
δ |1,Ω ≤ C+ ‖qδ‖ with C+ > 0

independent of δ, qδ.

As a matter of fact, choosing w?
δ = (C+)2vδ − ν−1w+

δ and r?δ = −(C+)2qδ immediately yields
the uniform discrete inf-sup condition! How so? Just add δs to the previous computations!
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Stokes model
Discrete T-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

Find w+
δ ∈ Vδ such that "divw+

δ = qδ weakly", and |w+
δ |1,Ω ≤ C+ ‖qδ‖ with C+ > 0

independent of δ, qδ.

To finish the computations as before, we look for pairs of discrete spaces (Vδ, Qδ)δ such that

∃C+ > 0, ∀δ, ∀qδ ∈ Qδ, ∃w+
δ ∈ Vδ with the properties

∀q′δ ∈ Qδ,
∫

Ω
q′δ divw+

δ dΩ =

∫
Ω
q′δ qδ dΩ ;

|w+
δ |1,Ω ≤ C

+ ‖qδ‖.
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Stokes model
Discrete T-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

Find w+
δ ∈ Vδ such that "divw+

δ = qδ weakly", and |w+
δ |1,Ω ≤ C+ ‖qδ‖ with C+ > 0

independent of δ, qδ.

In other words, one is looking for pairs of discrete spaces (Vδ, Qδ)δ such that

∃Cπ > 0, ∀δ, ∃πδ ∈ L(H1
0 (Ω),Vδ) with the properties

∀v ∈H1
0 (Ω), ∀q′δ ∈ Qδ,

∫
Ω
q′δ div (πδv) dΩ =

∫
Ω
q′δ div v dΩ ;

∀v ∈H1
0 (Ω), |πδv|1,Ω ≤ Cπ|v|1,Ω.

Then one chooses w+
δ = πδwqδ to get the desired properties with C+ = CπCdiv .
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Stokes model
Discrete T-coercivity - 3

Regarding the proof of discrete T-coercivity, we observe that:
1 The so-called Fortin lemma appears "naturally" in the proof.
2 One needs to have some knowledge of finite element spaces.
3 The proof is "simple"!
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Stokes model
Discrete T-coercivity - 3

Regarding the proof of discrete T-coercivity, we observe that:
1 The so-called Fortin lemma appears "naturally" in the proof.
2 One needs to have some knowledge of finite element spaces.
3 The proof is "simple"!

Browsing Boffi-Brezzi-Fortin’13, one finds that discrete T-coercivity is achieved with:
the MINI FE, or the Taylor-Hood FE Pk+1 − P k, of order k ≥ 1 ;
the nonconforming Crouzeix-Raviart P1

nc − P 0 is also possible...
Convergence and error estimates follow.
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Stokes model
Discrete T-coercivity - 3

Regarding the proof of discrete T-coercivity, we observe that:
1 The so-called Fortin lemma appears "naturally" in the proof.
2 One needs to have some knowledge of finite element spaces.
3 The proof is "simple"!

Browsing Boffi-Brezzi-Fortin’13, one finds that discrete T-coercivity is achieved with:
the MINI FE, or the Taylor-Hood FE Pk+1 − P k, of order k ≥ 1 ;
the nonconforming Crouzeix-Raviart P1

nc − P 0 is also possible...
Convergence and error estimates follow.

T-coercivity and uniform Tδ-coercivity are indeed strongly correlated! [1st Key Idea]

ECCOMAS, June 2024 16 / 23



Stokes model with small viscosity
Explicit T-coercivity - 1

Let Ω be a domain of Rd, d = 2, 3. We consider the "classical" Stokes equations
−ν∆u +∇p = f in Ω
divu = 0 in Ω
u = 0 on ∂Ω,

for some small ν > 0 (viscosity).
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Stokes model with small viscosity
Explicit T-coercivity - 1

[2nd Key Idea] The operator T((w, r)) = (λw − ν−1wr,−λr) is bijective for all λ > 0.
Consider the bilinear form on V× V

a((v, q), T(w, r)) = νλ

∫
Ω
∇v : ∇w dΩ−

∫
Ω
∇v : ∇wr dΩ

−λ
∫

Ω
q divw dΩ + ν−1

∫
Ω
q r dΩ + λ

∫
Ω
r div v dΩ,

and the linear form on V

〈f, T(w, r)〉V = λ〈f ,w〉H1
0 (Ω) − ν−1〈f ,wr〉H1

0 (Ω).
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Stokes model with small viscosity
Explicit T-coercivity - 1

[2nd Key Idea] The operator T((w, r)) = (λw − ν−1wr,−λr) is bijective for all λ > 0.
Consider the bilinear form on V× V

a((v, q), T(w, r)) = νλ

∫
Ω
∇v : ∇w dΩ−

∫
Ω
∇v : ∇wr dΩ

−λ
∫

Ω
q divw dΩ + ν−1

∫
Ω
q r dΩ + λ

∫
Ω
r div v dΩ,

and the linear form on V

〈f, T(w, r)〉V = λ〈f ,w〉H1
0 (Ω) − ν−1〈f ,wr〉H1

0 (Ω).

Two difficulties in practice:
1 Explicit expression of the terms involving wr ∈ (V0)⊥?
2 Choice of λ?
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Stokes model with small viscosity
Explicit T-coercivity - 2

Given f ∈ (H1
0 (Ω))′, solving the "classical" Stokes model with ν = 1,

∃!(wf , zf ) ∈ V0 × L2
zmv(Ω) such that f = −∆wf +∇zf .

For all r ∈ L2
zmv(Ω), one has 〈f ,wr〉H1

0 (Ω) = −
∫

Ω
zf r dΩ.

The linear form on V is equal to

f
λ

: (w, r) 7→ λ〈f ,w〉H1
0 (Ω) + ν−1

∫
Ω
zf r dΩ.

For the "classical" Stokes equations, the solution u belongs to V0.

For all r ∈ L2
zmv(Ω), one has

∫
Ω
∇u : ∇wr dΩ = 0 by orthogonality.

One may consider the simplified bilinear form

aλ : ((v, q), (w, r)) 7→ νλ

∫
Ω
∇v : ∇w dΩ− λ

∫
Ω
q divw dΩ

λ

∫
Ω
r div v dΩ + ν−1

∫
Ω
q r dΩ.
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Stokes model with small viscosity
Explicit T-coercivity - 3

1 Explicit T-coercivity: the variational formulation with forms aλ and f
λ
is

(VF)
λ


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

∀v ∈H1
0 (Ω), νλ

∫
Ω
∇u : ∇v dΩ− λ

∫
Ω
p div v dΩ = λ〈f ,v〉H1

0 (Ω)

∀q ∈ L2
zmv(Ω), λ

∫
Ω
q divu dΩ + ν−1

∫
Ω
p q dΩ = ν−1

∫
Ω
zf q dΩ.
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Stokes model with small viscosity
Explicit T-coercivity - 3

1 Explicit T-coercivity: the variational formulation with forms aλ and f
λ
is

(VF)
λ


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

∀v ∈H1
0 (Ω), νλ

∫
Ω
∇u : ∇v dΩ− λ

∫
Ω
p div v dΩ = λ〈f ,v〉H1

0 (Ω)

∀q ∈ L2
zmv(Ω), λ

∫
Ω
q divu dΩ + ν−1

∫
Ω
p q dΩ = ν−1

∫
Ω
zf q dΩ.

Theorem (Well-posedness)
For all λ > 0, the variational formulation (VF)

λ
is equivalent to the "classical" Stokes

equations, and it is well-posed.

NB. The form aλ is coercive on V× V for all λ > 0.
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Stokes model with small viscosity
Explicit T-coercivity - 3

1 Explicit T-coercivity: the variational formulation with forms aλ and f
λ
is

(VF)
λ


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

∀v ∈H1
0 (Ω), νλ

∫
Ω
∇u : ∇v dΩ− λ

∫
Ω
p div v dΩ = λ〈f ,v〉H1

0 (Ω)

∀q ∈ L2
zmv(Ω), λ

∫
Ω
q divu dΩ + ν−1

∫
Ω
p q dΩ = ν−1

∫
Ω
zf q dΩ.

2 For the approximation:
One must have some knowledge of zf to compute the solution.
One can choose any FE pair, eg. P1 − P 0, to discretize (VF)

λ
!
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1 Explicit T-coercivity: the variational formulation with forms aλ and f
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∀q ∈ L2
zmv(Ω), λ

∫
Ω
q divu dΩ + ν−1

∫
Ω
p q dΩ = ν−1

∫
Ω
zf q dΩ.

2 For the approximation:
One must have some knowledge of zf to compute the solution.
One can choose any FE pair, eg. P1 − P 0, to discretize (VF)

λ
!

3 Proposed strategy:
ν = 1 Compute first some approximation zf ,δ of zf .
ν > 0 Post-process by solving the discrete VF (VF)

λ
with rhs zf ,δ.
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Stokes model with small viscosity
Explicit T-coercivity - 3

1 Explicit T-coercivity: the variational formulation with forms aλ and f
λ
is

(VF)
λ


Find (u, p) ∈H1

0 (Ω)× L2
zmv(Ω) such that

∀v ∈H1
0 (Ω), νλ

∫
Ω
∇u : ∇v dΩ− λ

∫
Ω
p div v dΩ = λ〈f ,v〉H1

0 (Ω)

∀q ∈ L2
zmv(Ω), λ

∫
Ω
q divu dΩ + ν−1

∫
Ω
p q dΩ = ν−1

∫
Ω
zf q dΩ.

2 For the approximation:
One must have some knowledge of zf to compute the solution.
One can choose any FE pair, eg. P1 − P 0, to discretize (VF)

λ
!

3 Proposed strategy:
ν = 1 Compute first some approximation zf ,δ of zf : we use the Crouzeix-Raviart P1

nc − P 0 FE .

ν > 0 Post-process by solving the discrete VF (VF)
λ
with rhs zf ,δ: we use the P1 − P 0 FE .
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Stokes model with small viscosity
Explicit T-coercivity - 4

For the numerical experiments: Ω = (0, 1)2, and ν = 10−6.
Manufactured test cases:

1 With a smooth solution.
2 With a singular solution: u ∈H1(Ω) \H2(Ω).
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Stokes model with small viscosity
Explicit T-coercivity - 4

For the numerical experiments: Ω = (0, 1)2, and ν = 10−6.
Manufactured test cases:

1 With a smooth solution.
2 With a singular solution: u ∈H1(Ω) \H2(Ω).

Triangular meshes, with meshsize h, h−1 ∈ (10, 160):
1 Smooth solution: 103 − 272.103 dof for the P1

nc − P 0 FE (50% less for the P1 − P 0 FE).
2 Singular solution: 2.103 − 464.103 dof for the P1

nc − P 0 FE (50% less for the P1 − P 0 FE).
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Stokes model with small viscosity
Explicit T-coercivity - 4

For the numerical experiments: Ω = (0, 1)2, and ν = 10−6.
Manufactured test cases:

1 With a smooth solution.
2 With a singular solution: u ∈H1(Ω) \H2(Ω).

Triangular meshes, with meshsize h, h−1 ∈ (10, 160):
1 Smooth solution: 103 − 272.103 dof for the P1

nc − P 0 FE (50% less for the P1 − P 0 FE).
2 Singular solution: 2.103 − 464.103 dof for the P1

nc − P 0 FE (50% less for the P1 − P 0 FE).

Error indicators:
Velocity: εν0(uh) = ‖u− uh‖/‖(u, p)‖V,ν .
Pressure: εν0(ph) = ν−1‖p− ph‖/‖(u, p)‖V,ν .
Results with the P1 − P 0 FE for solving (VF)

λ=1
with zf are proposed as a reference.
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Stokes model with small viscosity
Explicit T-coercivity - 5

Post-processing is carried out iteratively (initialization with rhs zf ,δ; 1 or 8 iterations).
For the post-processing steps, one solves (VF)

λ=1
.
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Stokes model with small viscosity
Explicit T-coercivity - 5

Post-processing is carried out iteratively (initialization with rhs zf ,δ; 1 or 8 iterations).
For the post-processing steps, one solves (VF)

λ=1
.
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Figure: [Smooth solution] Plots of εν0(uh) and εν0(ph) against h.
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Stokes model with small viscosity
Explicit T-coercivity - 5

Post-processing is carried out iteratively (initialization with rhs zf ,δ; 1 or 8 iterations).
For the post-processing steps, one solves (VF)

λ=1
.
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Figure: [Singular solution] Plots of εν0(uh) and εν0(ph) against h.
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Stokes model with small viscosity
Explicit T-coercivity - 5

Post-processing is carried out iteratively (initialization with rhs zf ,δ; 1 or 8 iterations).
[Octave code] overhead cost (CPU time) due to post-processing goes from 125% to 13%.
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Stokes model with small viscosity
Explicit T-coercivity - 5

Post-processing is carried out iteratively (initialization with rhs zf ,δ; 1 or 8 iterations).
[Octave code] overhead cost (CPU time) due to post-processing goes from 125% to 13%.
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Figure: [Smooth solution] Plots of εν0(uh) and εν0(ph) against CPU time.
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Post-processing is carried out iteratively (initialization with rhs zf ,δ; 1 or 8 iterations).
[Octave code] overhead cost (CPU time) due to post-processing goes from 125% to 13%.
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Figure: [Singular solution] Plots of εν0(uh) and εν0(ph) against CPU time.
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Further remarks

Other uses of T-coercivity:
Mixed variational formulations:

Stokes model: non-conforming discretisation; DG discretisation; poromechanics model.
Neutron diffusion model: with Domain Decomposition; SPN multigroup model.
Static models in electromagnetism.

Coercive plus compact formulations.
Formulations with sign-changing coefficients.
...

From the mathematical side:
Weak T-coercivity: the form a(·, T·) is coercive + compact on V × V , see PhD thesis by
Chesnel (2012), BonnetBenDhia-Carvalho-PC’18, Halla’21...
In Banach spaces, T-coercivity implies Hilbert structure, see Ern-Guermont’21-Vol.II.
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Thank you for your attention!
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