T-coercivity for the Stokes problem with small viscosity

$\overline{\text{Patrick Ciarlet}}^1$ and Erell Jamelot 2

 1 POEMS, ENSTA Paris, Institut Polytechnique de Paris, France

² STMF, CEA, Université Paris-Saclay, France

ECCOMAS, June 2024

Outline

1 What is T[-coercivity?](#page-2-0)

2 [Stokes model](#page-14-0)

- [The model](#page-15-0)
- Basic T[-coercivity](#page-20-0)
- Discrete T[-coercivity](#page-35-0)
- Explicit T[-coercivity](#page-47-0)

3 [Further remarks](#page-65-0)

Abstract framework: Find $u \in V$ s.t. $\forall w \in W$, $a(u, w) = \langle f, w \rangle_W$. Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}$, $a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}$.

- ¹ First, analyse the variational formulation theoretically:
	- prove well-posedness;
	- existence, uniqueness and continuous dependence of the solution with respect to the data.
- ² Second, solve the variational formulation numerically:
	- find suitable approximations;
	- prove convergence.

Within the framework of T-coercivity, steps 1 and 2 are very strongly correlated!

- \bullet V, W be Hilbert spaces over \mathbb{C} ;
- $a(\cdot, \cdot)$ be a bounded sesquilinear form on $V \times W$;
- f be an element of W' , the dual space of W .

Solve

(VF) Find
$$
u \in V
$$
 s.t. $\forall w \in W$, $a(u, w) = \langle f, w \rangle_W$.

[Banach-Nečas-Babuška] The *inf-sup condition* writes

$$
\text{(isc)} \quad \exists \alpha > 0, \ \forall v \in V, \ \sup_{w \in W \setminus \{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \ge \alpha \|v\|_{V}.
$$

If in addition $\{w \in W \mid \forall v \in V, a(v, w) = 0\} = \{0\}$, then the variational formulation (VF) is well-posed.

- \bullet V, W be Hilbert spaces over \mathbb{C} ;
- $a(\cdot, \cdot)$ be a bounded sesquilinear form on $V \times W$;
- f be an element of W' , the dual space of W .

Solve

(VF) Find
$$
u \in V
$$
 s.t. $\forall w \in W$, $a(u, w) = \langle f, w \rangle_W$.

Definition (T-coercivity)

The form $a(\cdot, \cdot)$ is T-coercive if

 $\exists \texttt{T} \in \mathcal{L}(V,W)$ bijective, $\exists \underline{\alpha} > 0, \; \forall v \in V, \; |a(v,\texttt{T}v)| \geq \underline{\alpha} \, ||v||_V^2.$

NB. In other words, the form $a(\cdot, T)$ is coercive on $V \times V$.

Basic T-coercivity as an abstract tool

Let

- \bullet V, W be Hilbert spaces over \mathbb{C} ;
- $a(\cdot, \cdot)$ be a bounded sesquilinear form on $V \times W$;
- f be an element of W' , the dual space of W .

Solve

```
(VF) Find u \in V s.t. \forall w \in W, a(u, w) = \langle f, w \rangle_W.
```
Theorem (Well-posedness)

The three assertions below are equivalent:

- (i) the variational formulation (VF) is well-posed;
- (ii) the form $a(\cdot, \cdot)$ satisfies (isc) and $\{w \in W \mid \forall v \in V, a(v, w) = 0\} = \{0\}$;
- (iii) the form $a(\cdot, \cdot)$ is T-coercive.

The operator T realises the inf-sup condition (isc) explicitly: $w = Tu$ works!

- \bullet V, W be Hilbert spaces over \mathbb{C} ;
- $a(\cdot, \cdot)$ be a bounded sesquilinear form on $V \times W$;
- f be an element of W' , the dual space of W .

Solve

(VF) Find
$$
u \in V
$$
 s.t. $\forall w \in W$, $a(u, w) = \langle f, w \rangle_W$.

Theorem

For any bijective operator $T \in \mathcal{L}(V, W)$, the variational formulation (VF) is equivalent to

$$
(\mathsf{VF})_{\mathrm{T}}
$$
 Find $u \in V$ s.t. $\forall v \in V$, $a(u, \mathrm{T}v) = \langle f, \mathrm{T}v \rangle_W$

- \bullet ($V_{\delta}\$ _δ be a family of finite dimensional subspaces of V;
- \bullet $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_\delta) = \dim(W_\delta)$ for all $\delta > 0$. Solve

 $(\mathsf{VF})_{\delta}$ Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}$.

- \bullet (V_{δ})_δ be a family of finite dimensional subspaces of V ;
- \bullet $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_\delta) = \dim(W_\delta)$ for all $\delta > 0$. Solve

$$
(\mathsf{VF})_{\delta} \quad \text{Find } u_{\delta} \in V_{\delta} \text{ s.t. } \forall w_{\delta} \in W_{\delta}, \ a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}.
$$

[Banach-Nečas-Babuška] The uniform discrete inf-sup condition writes

$$
\text{(udisc)} \quad \exists \alpha_{\dagger} > 0, \ \forall \delta > 0, \ \forall v_{\delta} \in V_{\delta}, \ \sup_{w_{\delta} \in W_{\delta} \setminus \{0\}} \frac{|a(v_{\delta}, w_{\delta})|}{\|w_{\delta}\|_{W}} \ge \alpha_{\dagger} \|v_{\delta}\|_{V}.
$$

NB. When (udisc) is fulfilled, $(\mathsf{VF})_\delta$ is well-posed for all $\delta>0.$

- \bullet (V_{δ})_δ be a family of finite dimensional subspaces of V ;
- \bullet $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_\delta) = \dim(W_\delta)$ for all $\delta > 0$. Solve

$$
(\mathsf{VF})_{\delta} \quad \text{Find } u_{\delta} \in V_{\delta} \text{ s.t. } \forall w_{\delta} \in W_{\delta}, \ a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}.
$$

Definition (uniform T_{δ} -coercivity)

The form α is uniformly T_{δ} -coercive if

 $\exists \underline{\alpha}_{\dagger}, \underline{\beta}_{\dagger} > 0, \; \forall \delta > 0, \; \exists \mathtt{T}_{\delta} \in \mathcal{L}(V_{\delta}, W_{\delta}), \; \Vert \vert \mathtt{T}_{\delta} \Vert \vert \leq \underline{\beta}_{\dagger} \; \mathsf{and} \; \forall v_{\delta} \in V_{\delta}, \; |a(v_{\delta}, \mathtt{T}_{\delta} v_{\delta})| \geq \underline{\alpha}_{\dagger} \Vert v_{\delta} \Vert_{V}^2.$

NB. When a is uniformly T $_\delta$ -coercive, (VF) $_\delta$ is well-posed for all $\delta>0.$

- \bullet $(V_{\delta})_{\delta}$ be a family of finite dimensional subspaces of V;
- \bullet $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_\delta) = \dim(W_\delta)$ for all $\delta > 0$. Solve

 $(\mathsf{VF})_{\delta}$ Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}$.

Theorem (Céa's lemma)

Assume that

- (i) either, the form $a(\cdot, \cdot)$ satisfies (udisc);
- (ii) or, the form $a(\cdot, \cdot)$ is uniformly T_{δ} -coercive.

In addition, assume that the family $(V_{\delta})_{\delta}$ fulfills the basic approximability property in V. Then, $\lim_{\delta \to 0} ||u - u_{\delta}||_V = 0.$

- \bullet $(V_{\delta})_{\delta}$ be a family of finite dimensional subspaces of V;
- \bullet $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_\delta) = \dim(W_\delta)$ for all $\delta > 0$. Solve

 $(\mathsf{VF})_{\delta}$ Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}$.

Theorem (Céa's lemma)

Assume that

- (i) either, the form $a(\cdot, \cdot)$ satisfies (udisc);
- (ii) or, the form $a(\cdot, \cdot)$ is uniformly T_{δ} -coercive.

In addition, assume that the family $(V_{\delta})_{\delta}$ fulfills the basic approximability property in V. Then, $\lim_{\delta \to 0} ||u - u_{\delta}||_V = 0$. And error estimates whenever possible...

[1st Key Idea] Use the knowledge on operator T to derive the discrete operators $(T_{\delta})_{\delta}!$

[2nd Key Idea] Discretize the variational formulation with (bijective) operator T:

 $(VF)_{T}$ Find $u \in V$ s.t. $\forall v \in V, a(u, Tv) = \langle f, Tv \rangle_{W}$!

Given $\delta > 0$, let $N = \dim(V_{\delta})$. (VF)_{δ} is equivalent to Solve

Find
$$
U \in \mathbb{C}^N
$$
 s.t. $\forall W \in \mathbb{C}^N$, $(\mathbb{A}U|W) = (F|W)$.
Or, find $U \in \mathbb{C}^N$ s.t. $\mathbb{A}U = F$.

[Discrete T-coercivity] Using $\mathbb T$ associated with T_δ , $(\mathsf{VF})_\delta$ is equivalent to Solve

Find
$$
U \in \mathbb{C}^N
$$
 s.t. $\forall V \in \mathbb{C}^N$, $(\mathbb{A}U|\mathbb{T}V) = (F|\mathbb{T}V)$.
Or, find $U \in \mathbb{C}^N$ s.t. $\mathbb{T}^*\mathbb{A}U = \mathbb{T}^*F$.

According to the uniform T_{δ} -coercivity assumption

$$
\forall V \in \mathbb{C}^N, \ |(\mathbb{T}^* \mathbb{A} V | V)| \ge \underline{\alpha}_{\dagger}(\mathbb{M} V | V).
$$

[Explicit T-coercivity] Use $\mathbb T$ associated with T for the approximation of $\mathsf{(VF)}_{\mathtt{T}}$. Same results...

What is T[-coercivity?](#page-2-0)

2 [Stokes model](#page-14-0)

- [The model](#page-15-0)
- Basic T[-coercivity](#page-20-0)
- Discrete T[-coercivity](#page-35-0)
- Explicit T[-coercivity](#page-47-0)

[Further remarks](#page-65-0)

 $\bullet\,$ Let Ω be a domain of \mathbb{R}^d , $d=2,3.$ The "simplest" Stokes equations write

$$
\begin{cases}\n-\nu \Delta u + \nabla p = f \text{ in } \Omega \\
\text{div } u = g \text{ in } \Omega \\
u = 0 \text{ on } \partial \Omega,\n\end{cases}
$$

for some $\nu > 0$ (viscosity). For "classical" Stokes, $g = 0$.

 ${\bf D}$ Assuming that $\bm{f}\in (\bm{H}^1_0(\Omega))'$ and $g\in L^2_{zmv}(\Omega)$, one analyses mathematically the model

(Stokes)
$$
\begin{cases}\n\text{Find } (\boldsymbol{u}, p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\
-\nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \text{ in } \Omega \\
\text{div } \boldsymbol{u} = g \text{ in } \Omega.\n\end{cases}
$$

 ${\bf D}$ Assuming that $\bm{f}\in (\bm{H}^1_0(\Omega))'$ and $g\in L^2_{zmv}(\Omega)$, one analyses mathematically the model

(Stokes)
$$
\begin{cases}\n\text{Find } (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\
-\nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \text{ in } \Omega \\
\text{div } \boldsymbol{u} = g \text{ in } \Omega.\n\end{cases}
$$

² The equivalent variational formulation writes

$$
\text{(VF-Stokes)} \begin{cases} \text{Find } (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\ \forall (\boldsymbol{v},q) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega), \quad \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega \\ - \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega = \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_0^1(\Omega)} - \int_{\Omega} g q \, d\Omega. \end{cases}
$$

 ${\bf D}$ Assuming that $\bm{f}\in (\bm{H}^1_0(\Omega))'$ and $g\in L^2_{zmv}(\Omega)$, one analyses mathematically the model

(Stokes)
$$
\begin{cases}\n\text{Find } (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\
-\nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \text{ in } \Omega \\
\text{div } \boldsymbol{u} = g \text{ in } \Omega.\n\end{cases}
$$

² The equivalent variational formulation writes

$$
\text{(VF-Stokes)} \begin{cases} \text{Find } (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\ \forall (\boldsymbol{v},q) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega), \quad \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega \\ - \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega = \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_0^1(\Omega)} - \int_{\Omega} g q \, d\Omega. \end{cases}
$$

Question: how to prove well-posedness "easily"?

 ${\bf D}$ Assuming that $\bm{f}\in (\bm{H}^1_0(\Omega))'$ and $g\in L^2_{zmv}(\Omega),$ one analyses mathematically the model (Stokes) $\sqrt{ }$ $\left\langle \mathbf{r}_{i}\right\rangle =\left\langle \mathbf{r}_{i}\right\rangle \left\langle \mathbf{r$ \mathcal{L} Find $(\boldsymbol{u},p)\in \boldsymbol{H}^1_0(\Omega)\times L^2_{zmv}(\Omega)$ such that $-\nu\,\Delta\boldsymbol{u}+\nabla p=\boldsymbol{f}$ in Ω div $u = g$ in Ω .

2 The equivalent variational formulation writes

$$
\text{(VF-Stokes)} \begin{cases} \text{Find } (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\ \forall (\boldsymbol{v},q) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega), \quad \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega \\ - \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega = \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_0^1(\Omega)} - \int_{\Omega} g q \, d\Omega. \end{cases}
$$

Question: how to prove well-posedness "easily"?

Prove T-coercivity for the Stokes model!

Let

\n- \n
$$
\mathbb{V} = \mathbf{H}_0^1(\Omega) \times L_{zmv}^2(\Omega)
$$
, endowed with $\|(v, q)\|_{\mathbb{V}, \nu} = (|\mathbf{v}|_{1,\Omega}^2 + \nu^{-2} ||q||^2)^{1/2}$;\n
\n- \n $a((v, q), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla v : \nabla w \, d\Omega - \int_{\Omega} q \operatorname{div} w \, d\Omega - \int_{\Omega} r \operatorname{div} v \, d\Omega$;\n
\n- \n $\langle f, (\mathbf{w}, r) \rangle_{\mathbb{V}} = \langle f, \mathbf{w} \rangle_{\mathbf{H}_0^1(\Omega)} - \int_{\Omega} r \, g \, d\Omega.$ \n
\n

Let

\n- \n
$$
\mathbb{V} = \mathbf{H}_0^1(\Omega) \times L_{zmv}^2(\Omega)
$$
, endowed with $\|(v, q)\|_{\mathbb{V}, \nu} = (|\mathbf{v}|_{1,\Omega}^2 + \nu^{-2} ||q||^2)^{1/2}$;\n
\n- \n $a((v, q), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla v : \nabla w \, d\Omega - \int_{\Omega} q \operatorname{div} w \, d\Omega - \int_{\Omega} r \operatorname{div} v \, d\Omega$;\n
\n- \n $\langle f, (\mathbf{w}, r) \rangle_{\mathbb{V}} = \langle f, \mathbf{w} \rangle_{\mathbf{H}_0^1(\Omega)} - \int_{\Omega} r \, g \, d\Omega.$ \n
\n

Basic T-coercivity: prove well-posedness with T-coercivity. NB. The form a is not coercive, because $a((0, q), (0, q)) = 0$ for $q \in L^2_{zmv}(\Omega)$.

Let

\n- \n
$$
\mathbb{V} = \mathbf{H}_0^1(\Omega) \times L_{zmv}^2(\Omega)
$$
, endowed with $\|(v, q)\|_{\mathbb{V}, \nu} = (|\mathbf{v}|_{1,\Omega}^2 + \nu^{-2} ||q||^2)^{1/2}$;\n
\n- \n $a((v, q), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla v : \nabla w \, d\Omega - \int_{\Omega} q \operatorname{div} w \, d\Omega - \int_{\Omega} r \operatorname{div} v \, d\Omega$;\n
\n- \n $\langle f, (\mathbf{w}, r) \rangle_{\mathbb{V}} = \langle f, \mathbf{w} \rangle_{\mathbf{H}_0^1(\Omega)} - \int_{\Omega} r \, g \, d\Omega.$ \n
\n

Basic T-coercivity: prove well-posedness with T-coercivity. Given $(\bm{v},q) \in \mathbb{V}$, we look for $(\bm{w}^\star,r^\star) \in \mathbb{V}$ with linear dependence such that

 $|a((\boldsymbol{v},q),(\boldsymbol{w}^\star,r^\star))|\geq \underline{\alpha} \, \|(\boldsymbol{v},q)\|_{\mathbb{V},\nu}^2,$

with $\underline{\alpha} > 0$ independent of (\bm{v}, q) . In other words, T is defined by $\mathtt{T}((\bm{v}, q)) = (\bm{w}^\star, r^\star)$.

Let

\n- \n
$$
\mathbb{V} = \mathbf{H}_0^1(\Omega) \times L_{zmv}^2(\Omega)
$$
, endowed with $\|(v, q)\|_{\mathbb{V}, \nu} = (|\mathbf{v}|_{1,\Omega}^2 + \nu^{-2} ||q||^2)^{1/2}$;\n
\n- \n $a((v, q), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla v : \nabla w \, d\Omega - \int_{\Omega} q \operatorname{div} \mathbf{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \mathbf{v} \, d\Omega$;\n
\n- \n $\langle f, (\mathbf{w}, r) \rangle_{\mathbb{V}} = \langle f, \mathbf{w} \rangle_{\mathbf{H}_0^1(\Omega)} - \int_{\Omega} r \, g \, d\Omega.$ \n
\n

Basic T-coercivity: prove well-posedness with T-coercivity. Given $(\bm{v},q) \in \mathbb{V}$, we look for $(\bm{w}^\star,r^\star) \in \mathbb{V}$ with linear dependence such that

 $|a((\boldsymbol{v},q),(\boldsymbol{w}^\star,r^\star))|\geq \underline{\alpha} \, \|(\boldsymbol{v},q)\|_{\mathbb{V},\nu}^2,$

with $\alpha > 0$ independent of (v, q) . Three steps:

 \bullet $q = 0$;

- 2 $v = 0$:
- **3** General case.

Recall
$$
a((v, q), (w, r)) = \nu \int_{\Omega} \nabla v : \nabla w d\Omega - \int_{\Omega} q \operatorname{div} w d\Omega - \int_{\Omega} r \operatorname{div} v d\Omega.
$$

\n**6** $a((v, 0), (w, r)) = \nu \int_{\Omega} \nabla v : \nabla w d\Omega - \int_{\Omega} r \operatorname{div} v d\Omega$: so choosing $(w^*, r^*) = (v, 0)$
\nyields
\n
$$
|a((v, 0), (w^*, r^*))| = \nu \int_{\Omega} |\nabla v|^2 d\Omega = \nu ||(v, 0)||^2_{\mathbb{V}, \nu}.
$$

Recall
$$
a((v, q), (w, r)) = \nu \int_{\Omega} \nabla v : \nabla w d\Omega - \int_{\Omega} q \operatorname{div} w d\Omega - \int_{\Omega} r \operatorname{div} v d\Omega.
$$

\n**6** $a((v, 0), (w, r)) = \nu \int_{\Omega} \nabla v : \nabla w d\Omega - \int_{\Omega} r \operatorname{div} v d\Omega$: choose $(w^*, r^*) = (v, 0)$.
\n**8** $a((0, q), (w, r)) = -\int_{\Omega} q \operatorname{div} w d\Omega$: according to eg. Girault-Raviart'86,
\n $\exists C_{\operatorname{div}} > 0, \forall q \in L^2_{zmv}(\Omega), \exists w_q \in H^1_0(\Omega)$ such that $\operatorname{div} w_q = q$, with $|w_q|_{1,\Omega} \le C_{\operatorname{div}} ||q||$.
\nSo choosing $(w^*, r^*) = (-w_q, 0)$ yields

$$
|a((0, q), (\mathbf{w}^{\star}, r^{\star}))| = \int_{\Omega} q^2 d\Omega = \nu^2 ||(0, q)||_{\mathbb{V}, \nu}^2.
$$

NB. From now on, we take \bm{w}_q in the orthogonal of $\bm{V}_0 = \{\bm{w}\in \bm{H}^1_0(\Omega)\,|\,\mathrm{div}\,\bm{w}=0\}.$

Recall
$$
a((v, q), (w, r)) = \nu \int_{\Omega} \nabla v : \nabla w d\Omega - \int_{\Omega} q \operatorname{div} w d\Omega - \int_{\Omega} r \operatorname{div} v d\Omega
$$
.
\n• $a((v, 0), (w, r)) = \nu \int_{\Omega} \nabla v : \nabla w d\Omega - \int_{\Omega} r \operatorname{div} v d\Omega$: choose $(w^*, r^*) = (v, 0)$.
\n• $a((0, q), (w, r)) = -\int_{\Omega} q \operatorname{div} w d\Omega$: choose $(w^*, r^*) = (-w_q, 0)$.
\n• General case: beginning with the linear combination $w^* = \lambda v - \mu w_q$, $\lambda, \mu > 0$, one finds

$$
a((\boldsymbol{v},q),(\boldsymbol{w}^\star,r))=\lambda\nu\|\boldsymbol{v}\|_{1,\Omega}^2-\mu\nu\int_\Omega\boldsymbol{\nabla}\boldsymbol{v}:\boldsymbol{\nabla}\boldsymbol{w}_q\,d\Omega-\int_\Omega(\lambda q+r)\operatorname{div}\boldsymbol{v}\,d\Omega+\mu\|q\|^2.
$$

Recall
$$
a((\mathbf{v}, q), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} d\Omega - \int_{\Omega} q \operatorname{div} \mathbf{w} d\Omega - \int_{\Omega} r \operatorname{div} \mathbf{v} d\Omega
$$
.
\n**6** $a((\mathbf{v}, 0), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} d\Omega - \int_{\Omega} r \operatorname{div} \mathbf{v} d\Omega$: choose $(\mathbf{w}^*, r^*) = (\mathbf{v}, 0)$.
\n**8** $a((0, q), (\mathbf{w}, r)) = -\int_{\Omega} q \operatorname{div} \mathbf{w} d\Omega$: choose $(\mathbf{w}^*, r^*) = (-\mathbf{w}_q, 0)$.
\n**9** General case: $\mathbf{w}^* = \lambda \mathbf{v} - \mu \mathbf{w}_q$, $\lambda, \mu > 0$. Next, $r^* = -\lambda q$ leads to $a((\mathbf{v}, q), (\mathbf{w}^*, r^*)) = \lambda \nu |\mathbf{v}|_{1, \Omega}^2 + \mu ||q||^2 - \mu \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w}_q d\Omega$.

Recall
$$
a((\mathbf{v}, q), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} d\Omega - \int_{\Omega} q \operatorname{div} \mathbf{w} d\Omega - \int_{\Omega} r \operatorname{div} \mathbf{v} d\Omega
$$
.
\n**6** $a((\mathbf{v}, 0), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} d\Omega - \int_{\Omega} r \operatorname{div} \mathbf{v} d\Omega$: choose $(\mathbf{w}^*, r^*) = (\mathbf{v}, 0)$.
\n**8** $a((0, q), (\mathbf{w}, r)) = -\int_{\Omega} q \operatorname{div} \mathbf{w} d\Omega$: choose $(\mathbf{w}^*, r^*) = (-\mathbf{w}_q, 0)$.
\n**9** General case: $\mathbf{w}^* = \lambda \mathbf{v} - \mu \mathbf{w}_q$, $\lambda, \mu > 0$. Next, $r^* = -\lambda q$ leads to $a((\mathbf{v}, q), (\mathbf{w}^*, r^*)) = \lambda \nu |\mathbf{v}|_{1,\Omega}^2 + \mu ||q||^2 - \mu \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w}_q d\Omega$.

Finally, the last term can be controlled by the first two terms thanks to $|\mathbf{w}_q|_{1,\Omega} \leq C_{\mathrm{div}} ||q||$, using Young's inequality.

Recall
$$
a((\mathbf{v}, q), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} d\Omega - \int_{\Omega} q \operatorname{div} \mathbf{w} d\Omega - \int_{\Omega} r \operatorname{div} \mathbf{v} d\Omega
$$
.
\n**6** $a((\mathbf{v}, 0), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} d\Omega - \int_{\Omega} r \operatorname{div} \mathbf{v} d\Omega$: choose $(\mathbf{w}^*, r^*) = (\mathbf{v}, 0)$.
\n**8** $a((0, q), (\mathbf{w}, r)) = -\int_{\Omega} q \operatorname{div} \mathbf{w} d\Omega$: choose $(\mathbf{w}^*, r^*) = (-\mathbf{w}_q, 0)$.
\n**9** General case: $\mathbf{w}^* = \lambda \mathbf{v} - \mu \mathbf{w}_q, \lambda, \mu > 0$. Next, $r^* = -\lambda q$ leads to $a((\mathbf{v}, q), (\mathbf{w}^*, r^*)) = \lambda \nu |\mathbf{v}|_{1,\Omega}^2 + \mu \|q\|^2 - \mu \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w}_q d\Omega$.

Finally, the last term can be controlled by the first two terms thanks to $|\boldsymbol{w}_q|_{1,\Omega} \leq C_{\mathrm{div}} \, \|q\|$, using Young's inequality. Eg., choose $(\lambda, \mu) = ((C_{\text{div}})^2, \nu^{-1})$: T $((v, q)) = ((C_{\text{div}})^2 v - \nu^{-1} w_q, -(C_{\text{div}})^2 q)$. The operator T is bijective (one easily builds its inverse).

Ω

Recall
$$
a((\mathbf{v}, q), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} d\Omega - \int_{\Omega} q \operatorname{div} \mathbf{w} d\Omega - \int_{\Omega} r \operatorname{div} \mathbf{v} d\Omega
$$
.
\n**9** $a((\mathbf{v}, 0), (\mathbf{w}, r)) = \nu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} d\Omega - \int_{\Omega} r \operatorname{div} \mathbf{v} d\Omega$: choose $(\mathbf{w}^*, r^*) = (\mathbf{v}, 0)$.
\n**9** $a((0, q), (\mathbf{w}, r)) = -\int_{\Omega} q \operatorname{div} \mathbf{w} d\Omega$: choose $(\mathbf{w}^*, r^*) = (-\mathbf{w}_q, 0)$.
\n**9** General case: $\mathbf{w}^* = \lambda \mathbf{v} - \mu \mathbf{w}_q, \lambda, \mu > 0$. Next, $r^* = -\lambda q$ leads to $a((\mathbf{v}, q), (\mathbf{w}^*, r^*)) = \lambda \nu |\mathbf{v}|_{1,\Omega}^2 + \mu \|q\|^2 - \mu \nu \int \nabla \mathbf{v} : \nabla \mathbf{w}_q d\Omega$.

Finally, the last term can be controlled by the first two terms thanks to $|\boldsymbol{w}_q|_{1,\Omega} \leq C_{\mathrm{div}} \, \|q\|$, using Young's inequality. Eg., choose $(\lambda, \mu) = ((C_{\text{div}})^2, \nu^{-1})$: T $((v, q)) = ((C_{\text{div}})^2 v - \nu^{-1} w_q, -(C_{\text{div}})^2 q)$. NB. Playing with Young's inequality, one finds that there is an "admissible" family of coefficients (λ,μ) that yield T-coercivity: eg. for $\mu=\nu^{-1}$, one needs that $\lambda>\frac14(C_{\rm div})^2$.

Ω

- The result of Girault-Raviart'86 appears as a requirement to derive the T-coercivity!
- **2** The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to ν .
- **3** The approach is easily transposed to the approximation, see next!

- **1** The result of Girault-Raviart'86 appears as a requirement to derive the T-coercivity!
- **2** The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to ν .
- **3** The approach is easily transposed to the approximation, see next!

Discrete T-coercivity: prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ} -coercivity.

- **1** The result of Girault-Raviart'86 appears as a requirement to derive the T-coercivity!
- **2** The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to ν .
- **3** The approach is easily transposed to the approximation, see next!

Discrete T-coercivity: prove the uniform discrete inf-sup condition, with the help of the uniform ${\tt T}_\delta$ -coercivity. How to choose finite dimensional subspaces $(\boldsymbol{V}_{\!\delta})_\delta$ of $\boldsymbol{H}^1_0(\Omega)$, resp. $(Q_\delta)_\delta$ of $L^2_{zmv}(\Omega)$ to build an approximation of the Stokes model?

- **1** The result of Girault-Raviart'86 appears as a requirement to derive the T-coercivity!
- **2** The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to ν .
- **3** The approach is easily transposed to the approximation, see next!

Discrete T-coercivity: prove the uniform discrete inf-sup condition, with the help of the uniform ${\tt T}_\delta$ -coercivity. How to choose finite dimensional subspaces $(\boldsymbol{V}_{\!\delta})_\delta$ of $\boldsymbol{H}^1_0(\Omega)$, resp. $(Q_\delta)_\delta$ of $L^2_{zmv}(\Omega)$ to build an approximation of the Stokes model?

Mimic the previous proof to guarantee uniform T_{δ} -coercivity! [1st Key Idea]

The discrete variational formulation writes

$$
(\mathsf{VF\text{-}Stokes})_{\delta} \left\{\begin{array}{l}\mathsf{Find}\ (u_{\delta},p_{\delta}) \in \mathbf{V}_{\delta} \times Q_{\delta} \ \mathsf{such} \ \mathsf{that} \\ \forall (v_{\delta},q_{\delta}) \in \mathbf{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \mathbf{\nabla} u_{\delta}: \mathbf{\nabla} v_{\delta} \ d\Omega - \int_{\Omega} p_{\delta} \ \mathsf{div} \ v_{\delta} \ d\Omega - \int_{\Omega} q_{\delta} \ \mathsf{div} \ u_{\delta} \ d\Omega = \langle f, (v_{\delta},q_{\delta}) \rangle_{\mathbb{V}}.\end{array}\right.
$$

The discrete variational formulation writes

$$
(\mathsf{VF\text{-}Stokes})_{\delta} \left\{\begin{array}{l}\mathsf{Find}\ (u_{\delta},p_{\delta}) \in \mathbf{V}_{\delta} \times Q_{\delta} \ \mathsf{such that} \\ \forall (v_{\delta},q_{\delta}) \in V_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \mathbf{\nabla} u_{\delta}: \mathbf{\nabla} v_{\delta} \, d\Omega - \int_{\Omega} p_{\delta} \, \text{div} \, v_{\delta} \, d\Omega - \int_{\Omega} q_{\delta} \, \text{div} \, u_{\delta} \, d\Omega = \langle f, (v_{\delta},q_{\delta}) \rangle_{\mathbb{V}}.\end{array}\right.
$$

Given $(\bm v_\delta,q_\delta)\in \bm V_\delta\times Q_\delta$, we look for $(\bm w_\delta^\star,r_\delta^\star)\in \bm V_\delta\times Q_\delta$ with linear dependence such that

 $|a((\boldsymbol{v}_\delta,q_\delta),(\boldsymbol{w}_\delta^\star,r_\delta^\star))|\geq \underline{\alpha}_\dagger\, \|(\boldsymbol{v}_\delta,q_\delta)\|_{\mathbb{V}}^2,$

with $\underline{\alpha}_\dagger > 0$ independent of δ and of $(\boldsymbol{v}_\delta, q_\delta)$.

The discrete variational formulation writes

$$
(\mathsf{VF\text{-}Stokes})_{\delta} \left\{\begin{array}{l}\mathsf{Find}\ (u_{\delta},p_{\delta}) \in \mathbf{V}_{\delta} \times Q_{\delta} \text{ such that } \\ \forall (v_{\delta},q_{\delta}) \in \mathbf{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \mathbf{\nabla} u_{\delta}: \mathbf{\nabla} v_{\delta} d\Omega - \int_{\Omega} p_{\delta} \operatorname{div} \boldsymbol{v}_{\delta} d\Omega - \int_{\Omega} q_{\delta} \operatorname{div} \boldsymbol{u}_{\delta} d\Omega = \langle f, (\boldsymbol{v}_{\delta},q_{\delta}) \rangle_{\mathbb{V}}.\end{array}\right.
$$

Given $(\bm v_\delta,q_\delta)\in \bm V_\delta\times Q_\delta$, we look for $(\bm w_\delta^\star,r_\delta^\star)\in \bm V_\delta\times Q_\delta$ with linear dependence such that

$$
|a((\boldsymbol{v}_{\delta},q_{\delta}),(\boldsymbol{w}_{\delta}^{\star},r_{\delta}^{\star}))|\geq \underline{\alpha}_{\dagger} \, \|(\boldsymbol{v}_{\delta},q_{\delta})\|_{\mathbb{V}}^2,
$$

with $\underline{\alpha}_\dagger > 0$ independent of δ and of $(\boldsymbol{v}_\delta, q_\delta)$. Mimicking the T-coercivity approach, one chooses

$$
\boldsymbol{w}^{\star} = (C_{\mathrm{div}})^2 \boldsymbol{v}_{\delta} - \nu^{-1} \boldsymbol{w}_{q_{\delta}} \text{ and } r^{\star} = -(C_{\mathrm{div}})^2 q_{\delta},
$$

with $\bm{w}_{q_\delta}\in \bm{H}^1_0(\Omega)$ such that $\mathrm{div}\,\bm{w}_{q_\delta}=q_\delta$, and $|\bm{w}_{q_\delta}|_{1,\Omega}\leq C_{\mathrm{div}}\ \|q_\delta\|.$

The discrete variational formulation writes

$$
(\mathsf{VF\text{-}Stokes})_{\delta} \left\{\begin{array}{l}\mathsf{Find}\ (u_{\delta},p_{\delta}) \in \mathbf{V}_{\delta} \times Q_{\delta} \ \mathsf{such that} \\ \forall (v_{\delta},q_{\delta}) \in V_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \mathbf{\nabla} u_{\delta}: \mathbf{\nabla} v_{\delta} \, d\Omega - \int_{\Omega} p_{\delta} \, \text{div} \, v_{\delta} \, d\Omega - \int_{\Omega} q_{\delta} \, \text{div} \, u_{\delta} \, d\Omega = \langle f, (v_{\delta},q_{\delta}) \rangle_{\mathbb{V}}.\end{array}\right.
$$

Given $(\bm v_\delta,q_\delta)\in \bm V_\delta\times Q_\delta$, we look for $(\bm w_\delta^\star,r_\delta^\star)\in \bm V_\delta\times Q_\delta$ with linear dependence such that

$$
|a((\boldsymbol{v}_{\delta},q_{\delta}),(\boldsymbol{w}_{\delta}^{\star},r_{\delta}^{\star}))|\geq \underline{\alpha}_{\dagger} \, \|(\boldsymbol{v}_{\delta},q_{\delta})\|_{\mathbb{V}}^2,
$$

with $\underline{\alpha}_t > 0$ independent of δ and of $(\boldsymbol{v}_{\delta}, q_{\delta})$. Mimicking the T-coercivity approach, one chooses

$$
\boldsymbol{w}^{\star} = (C_{\mathrm{div}})^2 \boldsymbol{v}_{\delta} - \nu^{-1} \boldsymbol{w}_{q_{\delta}} \text{ and } r^{\star} = -(C_{\mathrm{div}})^2 q_{\delta},
$$

with $\bm{w}_{q_\delta}\in \bm{H}^1_0(\Omega)$ such that $\mathrm{div}\,\bm{w}_{q_\delta}=q_\delta$, and $|\bm{w}_{q_\delta}|_{1,\Omega}\leq C_{\mathrm{div}}\ \|q_\delta\|.$ Difficulty: $w_{q_\delta} \notin V_\delta$ in general, whereas $v_\delta \in V_\delta$ and $r^\star \in Q_\delta.$

 $\sqrt{1/x}$

How to overcome this difficulty to be able to conclude the proof?

Find $\bm{w}^+_{\delta}\in \bm{V}_{\delta}$ such that " $\mathrm{div}\,\bm{w}^+_{\delta}=q_{\delta}$ weakly", and $|\bm{w}^+_{\delta}$ $\int_{\delta}^{+}|_{1,\Omega} \leq C^{+} \|q_{\delta}\|$ with $C^{+} > 0$ independent of δ , q_{δ} .

How to overcome this difficulty to be able to conclude the proof?

Find $\bm{w}^+_{\delta}\in \bm{V}_{\delta}$ such that " $\mathrm{div}\,\bm{w}^+_{\delta}=q_{\delta}$ weakly", and $|\bm{w}^+_{\delta}$ $\int_{\delta}^{+}|_{1,\Omega} \leq C^{+} \|q_{\delta}\|$ with $C^{+} > 0$ independent of δ , $q_\delta.$

As a matter of fact, choosing $\bm{w}_{\delta}^{\star}=(C^{+})^{2}\bm{v}_{\delta}-\nu^{-1}\bm{w}_{\delta}^{+}$ δ^+_δ and $r^\star_\delta = -(C^+)^2 q_\delta$ immediately yields the uniform discrete inf-sup condition!

How to overcome this difficulty to be able to conclude the proof?

Find $\bm{w}^+_{\delta}\in \bm{V}_{\delta}$ such that " $\mathrm{div}\,\bm{w}^+_{\delta}=q_{\delta}$ weakly", and $|\bm{w}^+_{\delta}$ $\int_{\delta}^{+}|_{1,\Omega} \leq C^{+} \|q_{\delta}\|$ with $C^{+} > 0$ independent of δ , $q_\delta.$

As a matter of fact, choosing $\bm{w}_{\delta}^{\star}=(C^{+})^{2}\bm{v}_{\delta}-\nu^{-1}\bm{w}_{\delta}^{+}$ δ^+_δ and $r^\star_\delta = -(C^+)^2 q_\delta$ immediately yields the uniform discrete inf-sup condition! How so? Just add δs to the previous computations!

 $\sqrt{17}$

How to overcome this difficulty to be able to conclude the proof?

Find
$$
w_{\delta}^+ \in V_{\delta}
$$
 such that "div $w_{\delta}^+ = q_{\delta}$ weakly", and $|w_{\delta}^+|_{1,\Omega} \leq C^+ \|q_{\delta}\|$ with $C^+ > 0$ independent of δ , q_{δ} .

To finish the computations as before, we look for pairs of discrete spaces $(V_\delta, Q_\delta)_{\delta}$ such that

$$
\exists C^+ > 0, \ \forall \delta, \qquad \forall q_\delta \in Q_\delta, \ \exists \mathbf{w}_\delta^+ \in V_\delta \text{ with the properties}
$$

$$
\forall q'_\delta \in Q_\delta, \quad \int_{\Omega} q'_\delta \operatorname{div} \mathbf{w}_\delta^+ d\Omega = \int_{\Omega} q'_\delta q_\delta d\Omega ;
$$

$$
|\mathbf{w}_\delta^+|_{1,\Omega} \le C^+ \, ||q_\delta||.
$$

How to overcome this difficulty to be able to conclude the proof?

Find $\bm{w}^+_{\delta}\in \bm{V}_{\delta}$ such that " $\mathrm{div}\,\bm{w}^+_{\delta}=q_{\delta}$ weakly", and $|\bm{w}^+_{\delta}$ $\int_{\delta}^{+}|_{1,\Omega} \leq C^{+} \|q_{\delta}\|$ with $C^{+} > 0$ independent of δ , $q_\delta.$

In other words, one is looking for pairs of discrete spaces $(V_{\delta}, Q_{\delta})_{\delta}$ such that

 $\exists C_{\pi}>0, \; \forall \delta, \; \exists \pi_{\delta} \in \mathcal{L}(\bm{H}^{1}_{0}(\Omega),\bm{V}_{\delta})$ with the properties

$$
\forall \boldsymbol{v} \in \boldsymbol{H}^1_0(\Omega), \ \forall q'_\delta \in Q_\delta, \quad \int_{\Omega} q'_\delta \operatorname{div}\left(\pi_\delta \boldsymbol{v}\right) d\Omega = \int_{\Omega} q'_\delta \operatorname{div} \boldsymbol{v} \, d\Omega \, ; \\ \forall \boldsymbol{v} \in \boldsymbol{H}^1_0(\Omega), \quad |\pi_\delta \boldsymbol{v}|_{1,\Omega} \leq C_\pi |\boldsymbol{v}|_{1,\Omega}.
$$

Then one chooses $\big| \bm{w}^+_{\delta}=\pi_{\delta}\bm{w}_{q_{\delta}} \big|$ to get the desired properties with $C^+=C_{\pi}C_{\mathrm{div}}$.

Regarding the proof of **discrete T-coercivity**, we observe that:

- **1** The so-called Fortin lemma appears "naturally" in the proof.
- **2** One needs to have some knowledge of finite element spaces.
- **3** The proof is "simple"!

Regarding the proof of **discrete T-coercivity**, we observe that:

- **1** The so-called Fortin lemma appears "naturally" in the proof.
- **2** One needs to have some knowledge of finite element spaces.
- **3** The proof is "simple"!

Browsing Boffi-Brezzi-Fortin'13, one finds that discrete T-coercivity is achieved with:

- the MINI FE, or the Taylor-Hood FE $\mathbf{P}^{k+1}-P^{k}$, of order $k\geq 1$;
- the nonconforming Crouzeix-Raviart ${\bf P}^1_{nc}-P^0$ is also possible...

Convergence and error estimates follow.

Regarding the proof of **discrete T-coercivity**, we observe that:

- **1** The so-called Fortin lemma appears "naturally" in the proof.
- **2** One needs to have some knowledge of finite element spaces.
- **3** The proof is "simple"!

Browsing Boffi-Brezzi-Fortin'13, one finds that discrete T-coercivity is achieved with:

- the MINI FE, or the Taylor-Hood FE $\mathbf{P}^{k+1}-P^{k}$, of order $k\geq 1$;
- the nonconforming Crouzeix-Raviart ${\bf P}^1_{nc}-P^0$ is also possible...

Convergence and error estimates follow.

T-coercivity and uniform T_{δ} -coercivity are indeed strongly correlated! [1st Key Idea]

Let Ω be a domain of \mathbb{R}^d , $d=2,3.$ We consider the "classical" Stokes equations

$$
\begin{cases}\n-\nu \Delta u + \nabla p = f \text{ in } \Omega \\
\text{div } u = 0 \text{ in } \Omega \\
u = 0 \text{ on } \partial\Omega,\n\end{cases}
$$

for some small $\nu > 0$ (viscosity).

[2nd Key Idea] The operator $\mathtt{T}((\boldsymbol{w},r)) = (\lambda \boldsymbol{w} - \nu^{-1} \boldsymbol{w}_r, -\lambda r)$ is bijective for all $\lambda > 0.$ Consider the bilinear form on $V \times V$

$$
a((\boldsymbol{v}, q), \mathbf{T}(\boldsymbol{w}, r)) = \nu \lambda \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} d\Omega - \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w}_r d\Omega - \lambda \int_{\Omega} q \operatorname{div} \boldsymbol{w} d\Omega + \nu^{-1} \int_{\Omega} q r d\Omega + \lambda \int_{\Omega} r \operatorname{div} \boldsymbol{v} d\Omega,
$$

and the linear form on V

$$
\langle f, \mathbf{T}(\boldsymbol{w},r) \rangle_{\mathbb{V}} = \lambda \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{\boldsymbol{H}_0^1(\Omega)} - \nu^{-1} \langle \boldsymbol{f}, \boldsymbol{w}_r \rangle_{\boldsymbol{H}_0^1(\Omega)}.
$$

[2nd Key Idea] The operator $\mathtt{T}((\boldsymbol{w},r))=(\lambda \boldsymbol{w}-\nu^{-1} \boldsymbol{w}_r,-\lambda r)$ is bijective for all $\lambda>0.$ Consider the bilinear form on $V \times V$

$$
a((\boldsymbol{v}, q), \mathbf{T}(\boldsymbol{w}, r)) = \nu \lambda \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} d\Omega - \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w}_r d\Omega - \lambda \int_{\Omega} q \operatorname{div} \boldsymbol{w} d\Omega + \nu^{-1} \int_{\Omega} q r d\Omega + \lambda \int_{\Omega} r \operatorname{div} \boldsymbol{v} d\Omega,
$$

and the linear form on V

$$
\langle f, \mathbf{T}(\boldsymbol{w},r) \rangle_{\mathbb{V}} = \lambda \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{\boldsymbol{H}_0^1(\Omega)} - \nu^{-1} \langle \boldsymbol{f}, \boldsymbol{w}_r \rangle_{\boldsymbol{H}_0^1(\Omega)}.
$$

Two difficulties in practice:

- $\textbf{\textup{I}}$ Explicit expression of the terms involving $\boldsymbol{w}_r \in (V_0)^\perp?$
- **2** Choice of λ ?

Given $\boldsymbol{f} \in (\boldsymbol{H}^1_0(\Omega))'$, solving the "classical" Stokes model with $\nu=1$, $\exists ! (\mathbf{w_{f}}, z_{f}) \in V_0 \times L^2_{zmv}(\Omega)$ such that $\boldsymbol{f} = -\Delta \mathbf{w_{f}} + \nabla z_{f}.$

For all $r\in L^2_{zmv}(\Omega)$, one has $\langle{\bm f},{\bm w}_r\rangle_{{\bm H}_0^1(\Omega)}=-\int_0^1$ Ω $z_{\boldsymbol{f}} r \, d\Omega$. The linear form on V is equal to

$$
\underline{f}_{\lambda}: (\mathbf{w}, r) \mapsto \lambda \langle \mathbf{f}, \mathbf{w} \rangle_{\mathbf{H}_0^1(\Omega)} + \nu^{-1} \int_{\Omega} z_{\mathbf{f}} r \, d\Omega.
$$

For the "classical" Stokes equations, the solution u belongs to V_0 . For all $r\in L^2_{zmv}(\Omega)$, one has $\displaystyle\int_\Omega$ $\nabla u : \nabla w_r \, d\Omega = 0$ by orthogonality. One may consider the simplified bilinear form

$$
\underline{a}_{\lambda}: ((\mathbf{v}, q), (\mathbf{w}, r)) \mapsto \nu \lambda \int_{\Omega} \nabla v : \nabla w \, d\Omega - \lambda \int_{\Omega} q \, \text{div} \, \mathbf{w} \, d\Omega
$$

$$
\lambda \int_{\Omega} r \, \text{div} \, \mathbf{v} \, d\Omega + \nu^{-1} \int_{\Omega} q \, r \, d\Omega.
$$

 $\bullet\,$ Explicit T-coercivity: the variational formulation with forms \underline{a}_λ and \underline{f}_λ is

$$
\langle \mathsf{VF} \rangle_{\lambda} \left\{ \begin{array}{l} \mathsf{Find} \; (\boldsymbol{u},p) \in \boldsymbol{H}^{1}_{0}(\Omega) \times L^{2}_{zmv}(\Omega) \; \text{such that} \\ \forall \boldsymbol{v} \in \boldsymbol{H}^{1}_{0}(\Omega), \quad \nu \lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega - \lambda \int_{\Omega} p \, \text{div} \, \boldsymbol{v} \, d\Omega = \lambda \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}^{1}_{0}(\Omega)} \\ \forall q \in L^{2}_{zmv}(\Omega), \quad \lambda \int_{\Omega} q \, \text{div} \, \boldsymbol{u} \, d\Omega \quad + \nu^{-1} \int_{\Omega} p \, q \, d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\boldsymbol{f}} \, q \, d\Omega. \end{array} \right.
$$

 $\bullet\,$ Explicit T-coercivity: the variational formulation with forms \underline{a}_λ and \underline{f}_λ is

$$
\langle \mathsf{VF} \rangle_{\lambda} \left\{ \begin{array}{l} \mathsf{Find} \; (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \; \text{such that} \\ \forall \boldsymbol{v} \in \boldsymbol{H}_0^1(\Omega), \quad \nu \lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega - \lambda \int_{\Omega} p \, \text{div} \, \boldsymbol{v} \, d\Omega = \lambda \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_0^1(\Omega)} \\ \forall q \in L^2_{zmv}(\Omega), \quad \lambda \int_{\Omega} q \, \text{div} \, \boldsymbol{u} \, d\Omega \quad + \nu^{-1} \int_{\Omega} p \, q \, d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\boldsymbol{f}} \, q \, d\Omega. \end{array} \right.
$$

Theorem (Well-posedness)

For all $\lambda > 0$, the variational formulation $(VF)_{\lambda}$ is equivalent to the "classical" Stokes equations, and it is well-posed.

NB. The form \underline{a}_{λ} is coercive on $\mathbb{V}\times\mathbb{V}$ for all $\lambda>0$.

 $\bullet\,$ Explicit T-coercivity: the variational formulation with forms \underline{a}_λ and \underline{f}_λ is

$$
\langle \mathsf{VF} \rangle_{\lambda} \left\{ \begin{array}{l} \mathsf{Find} \ (u,p) \in \mathbf{H}_{0}^{1}(\Omega) \times L_{zmv}^{2}(\Omega) \ \mathsf{such} \ \mathsf{that} \\ \forall v \in \mathbf{H}_{0}^{1}(\Omega), \quad \nu \lambda \int_{\Omega} \nabla u : \nabla v \ d\Omega - \lambda \int_{\Omega} p \ \mathsf{div} \ v \ d\Omega = \lambda \langle \mathbf{f}, v \rangle_{\mathbf{H}_{0}^{1}(\Omega)} \\ \forall q \in L_{zmv}^{2}(\Omega), \quad \lambda \int_{\Omega} q \ \mathsf{div} \ u \ d\Omega \quad + \nu^{-1} \int_{\Omega} p \ q \ d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\mathbf{f}} \ q \ d\Omega. \end{array} \right.
$$

2 For the approximation:

- One must have some knowledge of z_f to compute the solution.
- One can choose any FE pair, eg. ${\bf P}^1-P^0$, to discretize $\overline{({\sf VF})}_\lambda!$

 $\bullet\,$ Explicit T-coercivity: the variational formulation with forms \underline{a}_λ and \underline{f}_λ is

$$
\langle \mathsf{VF} \rangle_{\lambda} \left\{ \begin{array}{l} \mathsf{Find} \ (u,p) \in \mathbf{H}_{0}^{1}(\Omega) \times L_{zmv}^{2}(\Omega) \ \mathsf{such} \ \mathsf{that} \\ \forall v \in \mathbf{H}_{0}^{1}(\Omega), \quad \nu \lambda \int_{\Omega} \nabla u : \nabla v \ d\Omega - \lambda \int_{\Omega} p \ \mathsf{div} \ v \ d\Omega = \lambda \langle \mathbf{f}, v \rangle_{\mathbf{H}_{0}^{1}(\Omega)} \\ \forall q \in L_{zmv}^{2}(\Omega), \quad \lambda \int_{\Omega} q \ \mathsf{div} \ u \ d\Omega \quad + \nu^{-1} \int_{\Omega} p \ q \ d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\mathbf{f}} \ q \ d\Omega.
$$

2 For the approximation:

- One must have some knowledge of z_f to compute the solution.
- One can choose any FE pair, eg. ${\bf P}^1-P^0$, to discretize $\overline{({\sf VF})}_\lambda!$

Proposed strategy:

 $\nu = 1$ Compute first some approximation $z_{f,\delta}$ of z_f .

 $\nu > 0$ Post-process by solving the discrete VF $(\sf{VF})_{\lambda}$ with rhs $z_{\bm{f},\delta}.$

 $\bullet\,$ Explicit T-coercivity: the variational formulation with forms \underline{a}_λ and \underline{f}_λ is

$$
\langle \mathsf{VF} \rangle_{\lambda} \left\{ \begin{array}{l} \mathsf{Find} \; (\boldsymbol{u},p) \in \boldsymbol{H}^{1}_{0}(\Omega) \times L^{2}_{zmv}(\Omega) \; \text{such that} \\ \forall \boldsymbol{v} \in \boldsymbol{H}^{1}_{0}(\Omega), \quad \nu \lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega - \lambda \int_{\Omega} p \, \text{div} \, \boldsymbol{v} \, d\Omega = \lambda \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}^{1}_{0}(\Omega)} \\ \forall q \in L^{2}_{zmv}(\Omega), \quad \lambda \int_{\Omega} q \, \text{div} \, \boldsymbol{u} \, d\Omega \quad + \nu^{-1} \int_{\Omega} p \, q \, d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\boldsymbol{f}} \, q \, d\Omega. \end{array} \right.
$$

2 For the approximation:

- One must have some knowledge of z_f to compute the solution.
- One can choose any FE pair, eg. ${\bf P}^1-P^0$, to discretize $\overline{({\sf VF})}_\lambda!$

Proposed strategy:

 $\nu=1$ Compute first some approximation $z_{\bm{f},\delta}$ of $z_{\bm{f}}$: we use the Crouzeix-Raviart $\mathbf{P}_{nc}^{1}-P^0$ FE $|.$ $\nu>0$ Post-process by solving the discrete VF $\overline{\rm{(VF)}}_{\lambda}$ with rhs $z_{\bm{f},\delta}$: we use the $\boxed{{\bf P}^1-P^0$ FE .

For the numerical experiments: $\Omega=(0,1)^2$, and $\nu=10^{-6}.$ Manufactured test cases:

- **O** With a smooth solution.
- $\bullet\hspace{0.15cm}$ With a singular solution: $\bm{u}\in \bm{H}^1(\Omega)\setminus \bm{H}^2(\Omega).$

For the numerical experiments: $\Omega=(0,1)^2$, and $\nu=10^{-6}.$ Manufactured test cases:

- **1** With a smooth solution.
- $\bullet\hspace{0.15cm}$ With a singular solution: $\bm{u}\in \bm{H}^1(\Omega)\setminus \bm{H}^2(\Omega).$

Triangular meshes, with meshsize $h,\,h^{-1}\in (10,160)$:

- Smooth solution: $10^3-272.10^3$ dof for the ${\bf P}^1_{nc}-P^0$ FE (50% less for the ${\bf P}^1-P^0$ FE).
- ⊇ Singular solution: $2.10^3-464.10^3$ dof for the ${\bf P}^1_{nc}-P^0$ FE (50% less for the ${\bf P}^1-P^0$ FE).

For the numerical experiments: $\Omega=(0,1)^2$, and $\nu=10^{-6}.$ Manufactured test cases:

- **1** With a smooth solution.
- $\bullet\hspace{0.15cm}$ With a singular solution: $\bm{u}\in \bm{H}^1(\Omega)\setminus \bm{H}^2(\Omega).$

Triangular meshes, with meshsize $h,\,h^{-1}\in (10,160)$:

- Smooth solution: $10^3-272.10^3$ dof for the ${\bf P}^1_{nc}-P^0$ FE (50% less for the ${\bf P}^1-P^0$ FE).
- ⊇ Singular solution: $2.10^3-464.10^3$ dof for the ${\bf P}^1_{nc}-P^0$ FE (50% less for the ${\bf P}^1-P^0$ FE).

Error indicators:

- Velocity: $\varepsilon_0^\nu(\boldsymbol u_h) = \|\boldsymbol u \boldsymbol u_h\|/\|(\boldsymbol u, p)\|_{\mathbb{V},\nu}.$
- Pressure: $\varepsilon_0^{\nu}(p_h) = \nu^{-1} ||p p_h|| / ||(\boldsymbol{u},p)||_{\mathbb{V},\nu}$. Results with the ${\bf P}^1-P^0$ FE for solving $\overline{({\sf VF})}_{\lambda=1}$ with $z_{\bm f}$ are proposed as a reference.

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). For the post-processing steps, one solves $\overline{({\sf VF})}_{\lambda=1}.$

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). For the post-processing steps, one solves $\overline{({\sf VF})}_{\lambda=1}.$

Figure: [Smooth solution] Plots of $\varepsilon_0^{\nu}(\boldsymbol{u}_h)$ and $\varepsilon_0^{\nu}(p_h)$ against h .

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). For the post-processing steps, one solves $\overline{({\sf VF})}_{\lambda=1}.$

Figure: [Singular solution] Plots of $\varepsilon_0^{\nu}(\boldsymbol{u}_h)$ and $\varepsilon_0^{\nu}(p_h)$ against $h.$

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). [Octave code] overhead cost (CPU time) due to post-processing goes from 125% to 13%.

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). [Octave code] overhead cost (CPU time) due to post-processing goes from 125% to 13%.

Figure: [Smooth solution] Plots of $\varepsilon_0^{\nu}(\bm u_h)$ and $\varepsilon_0^{\nu}(p_h)$ against CPU time.

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). [Octave code] overhead cost (CPU time) due to post-processing goes from 125% to 13%.

Figure: [Singular solution] Plots of $\varepsilon_0^\nu(\bm u_h)$ and $\varepsilon_0^\nu(p_h)$ against CPU time.

Other uses of T-coercivity:

- Mixed variational formulations:
	- Stokes model: non-conforming discretisation; DG discretisation; poromechanics model.
	- Neutron diffusion model: with Domain Decomposition; SPN multigroup model.
	- Static models in electromagnetism.
- Coercive plus compact formulations.
- Formulations with sign-changing coefficients.

From the mathematical side:

...

- Weak T-coercivity: the form $a(\cdot, T)$ is coercive + compact on $V \times V$, see PhD thesis by Chesnel (2012), BonnetBenDhia-Carvalho-PC'18, Halla'21...
- In Banach spaces, T-coercivity implies Hilbert structure, see Ern-Guermont'21-Vol.II.

Thank you for your attention!