T-coercivity for the Stokes problem with small viscosity

<u>Patrick Ciarlet¹</u> and Erell Jamelot²

¹ POEMS, ENSTA Paris, Institut Polytechnique de Paris, France

² STMF, CEA, Université Paris-Saclay, France

ECCOMAS, June 2024

Outline

1 What is T-coercivity?

2 Stokes model

- The model
- Basic T-coercivity
- Discrete T-coercivity
- Explicit T-coercivity

3 Further remarks

Abstract framework: Find $u \in V$ s.t. $\forall w \in W$, $a(u, w) = \langle f, w \rangle_W$. Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}$, $a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_W$.

- First, analyse the variational formulation theoretically:
 - prove well-posedness;
 - existence, uniqueness and continuous dependence of the solution with respect to the data.
- **2** Second, solve the variational formulation numerically:
 - find suitable approximations;
 - prove convergence.

Within the framework of T-coercivity, steps 1 and 2 are very strongly correlated!

- V, W be Hilbert spaces over $\mathbb C$;
- $a(\cdot, \cdot)$ be a bounded sesquilinear form on $V \times W$;
- f be an element of W', the dual space of W.

Solve

(VF) Find
$$u \in V$$
 s.t. $\forall w \in W, a(u, w) = \langle f, w \rangle_W$.

[Banach-Nečas-Babuška] The inf-sup condition writes

(isc)
$$\exists \alpha > 0, \ \forall v \in V, \ \sup_{w \in W \setminus \{0\}} \frac{|a(v,w)|}{\|w\|_W} \ge \alpha \|v\|_V.$$

If in addition $\{w \in W | \forall v \in V, a(v, w) = 0\} = \{0\}$, then the variational formulation (VF) is well-posed.

- V, W be Hilbert spaces over \mathbb{C} ;
- $\bullet \ a(\cdot, \cdot)$ be a bounded sesquilinear form on $V \times W$;
- f be an element of W', the dual space of W.

Solve

(VF) Find
$$u \in V$$
 s.t. $\forall w \in W, a(u, w) = \langle f, w \rangle_W$.

Definition (T-coercivity)

The form $a(\cdot, \cdot)$ is T-coercive if

 $\exists \mathbf{T} \in \mathcal{L}(V, W)$ bijective, $\exists \underline{\alpha} > 0, \forall v \in V, |a(v, \mathbf{T}v)| \ge \underline{\alpha} ||v||_V^2$.

NB. In other words, the form $a(\cdot, \mathbf{T} \cdot)$ is coercive on $V \times V$.

- V, W be Hilbert spaces over \mathbb{C} ;
- $a(\cdot, \cdot)$ be a bounded sesquilinear form on $V \times W$;
- f be an element of W', the dual space of W.

Solve

```
(VF) Find u \in V s.t. \forall w \in W, a(u, w) = \langle f, w \rangle_W.
```

Theorem (Well-posedness)

The three assertions below are equivalent:

- (i) the variational formulation (VF) is well-posed;
- (ii) the form $a(\cdot, \cdot)$ satisfies (isc) and $\{w \in W \mid \forall v \in V, a(v, w) = 0\} = \{0\}$;
- (iii) the form $a(\cdot, \cdot)$ is T-coercive.

The operator T realises the inf-sup condition (isc) explicitly: w = Tu works!

- V, W be Hilbert spaces over $\mathbb C$;
- $a(\cdot, \cdot)$ be a bounded sesquilinear form on $V \times W$;
- f be an element of W', the dual space of W.

Solve

(VF) Find
$$u \in V$$
 s.t. $\forall w \in W, a(u, w) = \langle f, w \rangle_W$.

Theorem

For any bijective operator $T \in \mathcal{L}(V, W)$, the variational formulation (VF) is equivalent to

$$(VF)_{ extsf{T}}$$
 Find $u \in V$ s.t. $\forall v \in V, \ a(u, extsf{T}v) = \langle f, extsf{T}v
angle_W$

- $(V_{\delta})_{\delta}$ be a family of finite dimensional subspaces of V ;
- $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_{\delta}) = \dim(W_{\delta})$ for all $\delta > 0$. Solve

 $(\mathsf{VF})_{\delta}$ Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}$, $a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}$.

- $(V_{\delta})_{\delta}$ be a family of finite dimensional subspaces of V ;
- $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_{\delta}) = \dim(W_{\delta})$ for all $\delta > 0$. Solve

$$(\mathsf{VF})_{\delta}$$
 Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}$.

[Banach-Nečas-Babuška] The uniform discrete inf-sup condition writes

$$(\mathsf{udisc}) \quad \exists \alpha_{\dagger} > 0, \ \forall \delta > 0, \ \forall v_{\delta} \in V_{\delta}, \ \sup_{w_{\delta} \in W_{\delta} \setminus \{0\}} \frac{|a(v_{\delta}, w_{\delta})|}{\|w_{\delta}\|_{W}} \ge \alpha_{\dagger} \|v_{\delta}\|_{V}.$$

NB. When (udisc) is fulfilled, $(VF)_{\delta}$ is well-posed for all $\delta > 0$.

- $(V_{\delta})_{\delta}$ be a family of finite dimensional subspaces of V ;
- $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_{\delta}) = \dim(W_{\delta})$ for all $\delta > 0$. Solve

$$(\mathsf{VF})_{\delta}$$
 Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W^{\delta}}$

Definition (uniform T_{δ} -coercivity)

The form a is uniformly T_{δ} -coercive if

 $\exists \underline{\alpha}_{\dagger}, \underline{\beta}_{\dagger} > 0, \ \forall \delta > 0, \ \exists \mathsf{T}_{\delta} \in \mathcal{L}(V_{\delta}, W_{\delta}), \ \||\mathsf{T}_{\delta}\|| \leq \underline{\beta}_{\dagger} \text{ and } \forall v_{\delta} \in V_{\delta}, \ |a(v_{\delta}, \mathsf{T}_{\delta}v_{\delta})| \geq \underline{\alpha}_{\dagger} \|v_{\delta}\|_{V}^{2}.$

NB. When a is uniformly T_{δ} -coercive, $(VF)_{\delta}$ is well-posed for all $\delta > 0$.

- $(V_{\delta})_{\delta}$ be a family of finite dimensional subspaces of V ;
- $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_{\delta}) = \dim(W_{\delta})$ for all $\delta > 0$. Solve

$$(\mathsf{VF})_{\delta}$$
 Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}$.

Theorem (Céa's lemma)

Assume that

- (i) either, the form $a(\cdot, \cdot)$ satisfies (udisc);
- (ii) or, the form $a(\cdot, \cdot)$ is uniformly T_{δ} -coercive.

In addition, assume that the family $(V_{\delta})_{\delta}$ fulfills the basic approximability property in V. Then, $\lim_{\delta \to 0} ||u - u_{\delta}||_{V} = 0$.

- $(V_{\delta})_{\delta}$ be a family of finite dimensional subspaces of V ;
- $(W_{\delta})_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\dim(V_{\delta}) = \dim(W_{\delta})$ for all $\delta > 0$. Solve

 $(\mathsf{VF})_{\delta}$ Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a(u_{\delta}, w_{\delta}) = \langle f, w_{\delta} \rangle_{W}$.

Theorem (Céa's lemma)

Assume that

- (i) either, the form $a(\cdot, \cdot)$ satisfies (udisc);
- (ii) or, the form $a(\cdot, \cdot)$ is uniformly T_{δ} -coercive.

In addition, assume that the family $(V_{\delta})_{\delta}$ fulfills the basic approximability property in V. Then, $\lim_{\delta \to 0} ||u - u_{\delta}||_{V} = 0$. And error estimates whenever possible...

[1st Key Idea] Use the knowledge on operator T to derive the discrete operators $(T_{\delta})_{\delta}!$

[2nd Key Idea] Discretize the variational formulation with (bijective) operator T:

 $(VF)_{T}$ Find $u \in V$ s.t. $\forall v \in V, a(u, Tv) = \langle f, Tv \rangle_{W}$!

Given $\delta > 0$, let $N = \dim(V_{\delta})$. $(VF)_{\delta}$ is equivalent to Solve

Find
$$U \in \mathbb{C}^N$$
 s.t. $\forall W \in \mathbb{C}^N$, $(\mathbb{A}U|W) = (F|W)$.
Or, find $U \in \mathbb{C}^N$ s.t. $\mathbb{A}U = F$.

[Discrete T-coercivity] Using $\mathbb T$ associated with $T_{\delta},$ $(\mathsf{VF})_{\delta}$ is equivalent to Solve

Find
$$U \in \mathbb{C}^N$$
 s.t. $\forall V \in \mathbb{C}^N$, $(\mathbb{A}U|\mathbb{T}V) = (F|\mathbb{T}V)$.
Or, find $U \in \mathbb{C}^N$ s.t. $\mathbb{T}^*\mathbb{A}U = \mathbb{T}^*F$.

According to the uniform T_{δ} -coercivity assumption

$$\forall V \in \mathbb{C}^N, \ |(\mathbb{T}^* \mathbb{A} V | V)| \ge \underline{\alpha}_{\dagger}(\mathbb{M} V | V).$$

[Explicit T-coercivity] Use $\mathbb T$ associated with T for the approximation of ${\rm (VF)}_T.$ Same results...

Outline

1 What is T-coercivity?

2 Stokes model

- The model
- Basic T-coercivity
- Discrete T-coercivity
- Explicit T-coercivity

3 Further remarks

() Let Ω be a domain of \mathbb{R}^d , d = 2, 3. The "simplest" Stokes equations write

$$\begin{cases} -\nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \text{ in } \Omega \\ \operatorname{div} \boldsymbol{u} = g \text{ in } \Omega \\ \boldsymbol{u} = 0 \text{ on } \partial \Omega, \end{cases}$$

for some $\nu > 0$ (viscosity). For "classical" Stokes, g = 0.

• Assuming that $f \in (H_0^1(\Omega))'$ and $g \in L^2_{zmv}(\Omega)$, one analyses mathematically the model

$$\begin{array}{l} \mbox{(Stokes)} \qquad \left\{ \begin{array}{l} \mbox{Find } (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \mbox{ such that} \\ -\nu \, \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \mbox{ in } \Omega \\ \mbox{div } \boldsymbol{u} = g \mbox{ in } \Omega. \end{array} \right. \end{array}$$

() Assuming that $f \in (H_0^1(\Omega))'$ and $g \in L^2_{zmv}(\Omega)$, one analyses mathematically the model

(Stokes)
$$\begin{cases} \mathsf{Find} \ (\boldsymbol{u}, p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\ -\nu \, \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \text{ in } \Omega \\ \operatorname{div} \boldsymbol{u} = g \text{ in } \Omega. \end{cases}$$

Interpretation of the equivalent variational formulation writes

$$(\mathsf{VF}\text{-}\mathsf{Stokes}) \begin{cases} \mathsf{Find} \ (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\ \forall (\boldsymbol{v},q) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega), \quad \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega \\ -\int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega = \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_0^1(\Omega)} - \int_{\Omega} gq \, d\Omega. \end{cases}$$

• Assuming that $f \in (H_0^1(\Omega))'$ and $g \in L^2_{zmv}(\Omega)$, one analyses mathematically the model

(Stokes)
$$\begin{cases} \mathsf{Find} \ (\boldsymbol{u}, p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\ -\nu \, \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \text{ in } \Omega \\ \operatorname{div} \boldsymbol{u} = g \text{ in } \Omega. \end{cases}$$

Interpretation of the equivalent variational formulation writes

$$(\mathsf{VF}\operatorname{-Stokes}) \left\{ \begin{array}{l} \mathsf{Find} \ (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\ \forall (\boldsymbol{v},q) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega), \quad \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega \\ - \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega = \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_0^1(\Omega)} - \int_{\Omega} gq \, d\Omega. \end{array} \right.$$

Question: how to prove well-posedness "easily"?

Stokes model

• Assuming that $f \in (H_0^1(\Omega))'$ and $g \in L^2_{zmv}(\Omega)$, one analyses mathematically the model (Stokes) $\begin{cases} \operatorname{Find} (u, p) \in H_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\ -\nu \Delta u + \nabla p = f \text{ in } \Omega \\ \operatorname{div} u = g \text{ in } \Omega. \end{cases}$

Interpretation of the equivalent variational formulation writes

$$(\mathsf{VF}\text{-}\mathsf{Stokes}) \left\{ \begin{array}{l} \mathsf{Find} \ (\boldsymbol{u},p) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega) \text{ such that} \\ \forall (\boldsymbol{v},q) \in \boldsymbol{H}_0^1(\Omega) \times L^2_{zmv}(\Omega), \quad \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega \\ - \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega = \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_0^1(\Omega)} - \int_{\Omega} gq \, d\Omega. \end{array} \right.$$

Question: how to prove well-posedness "easily"?

Prove T-coercivity for the Stokes model!

Let

•
$$\mathbb{V} = H_0^1(\Omega) \times L_{zmv}^2(\Omega)$$
, endowed with $||(\boldsymbol{v}, q)||_{\mathbb{V}, \boldsymbol{\nu}} = (|\boldsymbol{v}|_{1,\Omega}^2 + \boldsymbol{\nu}^{-2} ||q||^2)^{1/2}$;
• $a((\boldsymbol{v}, q), (\boldsymbol{w}, r)) = \boldsymbol{\nu} \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega$;
• $\langle f, (\boldsymbol{w}, r) \rangle_{\mathbb{V}} = \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{\boldsymbol{H}_0^1(\Omega)} - \int_{\Omega} r \, g \, d\Omega$.

Let

•
$$\mathbb{V} = H_0^1(\Omega) \times L_{zmv}^2(\Omega)$$
, endowed with $||(\boldsymbol{v},q)||_{\mathbb{V},\boldsymbol{\nu}} = (|\boldsymbol{v}|_{1,\Omega}^2 + \boldsymbol{\nu}^{-2}||q||^2)^{1/2}$;
• $a((\boldsymbol{v},q),(\boldsymbol{w},r)) = \boldsymbol{\nu} \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega$;
• $\langle f, (\boldsymbol{w},r) \rangle_{\mathbb{V}} = \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{H_0^1(\Omega)} - \int_{\Omega} r \, g \, d\Omega$.

Basic T-coercivity: prove well-posedness with T-coercivity. NB. The form a is not coercive, because a((0,q), (0,q)) = 0 for $q \in L^2_{zmv}(\Omega)$.

Let

•
$$\mathbb{V} = H_0^1(\Omega) \times L_{zmv}^2(\Omega)$$
, endowed with $||(\boldsymbol{v}, q)||_{\mathbb{V}, \boldsymbol{\nu}} = (|\boldsymbol{v}|_{1,\Omega}^2 + \boldsymbol{\nu}^{-2} ||q||^2)^{1/2}$;
• $a((\boldsymbol{v}, q), (\boldsymbol{w}, r)) = \boldsymbol{\nu} \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega$;
• $\langle f, (\boldsymbol{w}, r) \rangle_{\mathbb{V}} = \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{H_0^1(\Omega)} - \int_{\Omega} r \, g \, d\Omega$.

Basic T-coercivity: prove well-posedness with T-coercivity. Given $(v,q) \in \mathbb{V}$, we look for $(w^*,r^*) \in \mathbb{V}$ with linear dependence such that

 $|a((\boldsymbol{v},q),(\boldsymbol{w}^{\star},r^{\star}))| \geq \underline{\alpha} \, \|(\boldsymbol{v},q)\|_{\mathbb{V},\boldsymbol{\nu}}^{2},$

with $\underline{\alpha} > 0$ independent of (\boldsymbol{v}, q) . In other words, T is defined by $T((\boldsymbol{v}, q)) = (\boldsymbol{w}^{\star}, r^{\star})$.

Let

•
$$\mathbb{V} = H_0^1(\Omega) \times L_{zmv}^2(\Omega)$$
, endowed with $\|(\boldsymbol{v}, q)\|_{\mathbb{V}, \boldsymbol{\nu}} = (|\boldsymbol{v}|_{1,\Omega}^2 + \boldsymbol{\nu}^{-2} \|q\|^2)^{1/2}$;
• $a((\boldsymbol{v}, q), (\boldsymbol{w}, r)) = \boldsymbol{\nu} \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega$;
• $\langle f, (\boldsymbol{w}, r) \rangle_{\mathbb{V}} = \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{H_0^1(\Omega)} - \int_{\Omega} r \, g \, d\Omega$.

Basic T-coercivity: prove well-posedness with T-coercivity. Given $(v,q) \in \mathbb{V}$, we look for $(w^*,r^*) \in \mathbb{V}$ with linear dependence such that

 $|a((\boldsymbol{v},q),(\boldsymbol{w}^{\star},r^{\star}))| \geq \underline{\alpha} \, \|(\boldsymbol{v},q)\|_{\mathbb{V},\boldsymbol{\nu}}^{2},$

with $\underline{\alpha} > 0$ independent of (\boldsymbol{v}, q) . Three steps:

1 q = 0;

- **2** v = 0;
- General case.

$$\begin{aligned} \text{Recall } a((\boldsymbol{v},q),(\boldsymbol{w},r)) &= \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega. \\ & \bullet \ a((\boldsymbol{v},0),(\boldsymbol{w},r)) = \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega: \text{ so choosing } (\boldsymbol{w}^{\star},r^{\star}) = (\boldsymbol{v},0) \\ & \text{ yields} \\ & |a((\boldsymbol{v},0),(\boldsymbol{w}^{\star},r^{\star}))| = \nu \int_{\Omega} |\boldsymbol{\nabla} \boldsymbol{v}|^2 \, d\Omega = \nu \, \|(\boldsymbol{v},0)\|_{\mathbb{V},\nu}^2. \end{aligned}$$

Recall
$$a((\boldsymbol{v},q),(\boldsymbol{w},r)) = \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega.$$

a $a((\boldsymbol{v},0),(\boldsymbol{w},r)) = \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega:$ choose $(\boldsymbol{w}^{\star}, r^{\star}) = (\boldsymbol{v}, 0).$
a $a((0,q),(\boldsymbol{w},r)) = -\int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega:$ according to eg. Girault-Raviart'86,
 $\exists C_{\operatorname{div}} > 0, \, \forall q \in L^{2}_{zmv}(\Omega), \, \exists \boldsymbol{w}_{q} \in \boldsymbol{H}^{1}_{0}(\Omega)$ such that $\operatorname{div} \boldsymbol{w}_{q} = q$, with $|\boldsymbol{w}_{q}|_{1,\Omega} \leq C_{\operatorname{div}} ||q||.$
So choosing $(\boldsymbol{w}^{\star}, r^{\star}) = (-\boldsymbol{w}_{q}, 0)$ yields

$$|a((0,q),(\boldsymbol{w}^{\star},r^{\star}))| = \int_{\Omega} q^2 \, d\Omega = \nu^2 ||(0,q)||_{\mathbb{V},\nu}^2.$$

NB. From now on, we take w_q in the orthogonal of $V_0 = \{ w \in H_0^1(\Omega) | \operatorname{div} w = 0 \}$.

Recall
$$a((\boldsymbol{v},q),(\boldsymbol{w},r)) = \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega.$$

a $a((\boldsymbol{v},0),(\boldsymbol{w},r)) = \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega:$ choose $(\boldsymbol{w}^{\star},r^{\star}) = (\boldsymbol{v},0).$
a $a((0,q),(\boldsymbol{w},r)) = -\int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega:$ choose $(\boldsymbol{w}^{\star},r^{\star}) = (-\boldsymbol{w}_{q},0).$
General case: beginning with the linear combination $\boldsymbol{w}^{\star} = \lambda \boldsymbol{v} - \mu \boldsymbol{w}_{q}, \, \lambda, \mu > 0$, one finds

$$a((\boldsymbol{v},q),(\boldsymbol{w}^{\star},r)) = \lambda \nu \, |\boldsymbol{v}|_{1,\Omega}^2 - \mu \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w}_q \, d\Omega - \int_{\Omega} (\lambda q + r) \operatorname{div} \boldsymbol{v} \, d\Omega + \mu \|q\|^2.$$

$$\begin{aligned} \operatorname{Recall} \ a((\boldsymbol{v},q),(\boldsymbol{w},r)) &= \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega. \\ & \bullet \ a((\boldsymbol{v},0),(\boldsymbol{w},r)) &= \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega: \quad \operatorname{choose} \ (\boldsymbol{w}^{\star},r^{\star}) &= (\boldsymbol{v},0). \\ & \bullet \ a((0,q),(\boldsymbol{w},r)) &= -\int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega: \quad \operatorname{choose} \ (\boldsymbol{w}^{\star},r^{\star}) &= (-\boldsymbol{w}_{q},0). \\ & \bullet \ \operatorname{General} \ \operatorname{case:} \ \ \boldsymbol{w}^{\star} &= \lambda \boldsymbol{v} - \mu \boldsymbol{w}_{q}, \ \lambda, \mu > 0. \ \operatorname{Next}, \ r^{\star} &= -\lambda q \ \operatorname{leads} \ \operatorname{to} \ a((\boldsymbol{v},q),(\boldsymbol{w}^{\star},r^{\star})) &= \lambda \nu \, |\boldsymbol{v}|_{1,\Omega}^{2} + \mu \|q\|^{2} - \mu \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w}_{q} \, d\Omega. \end{aligned}$$

$$\begin{aligned} \operatorname{Recall} \ a((\boldsymbol{v},q),(\boldsymbol{w},r)) &= \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega. \\ & \bullet \ a((\boldsymbol{v},0),(\boldsymbol{w},r)) &= \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega: \quad \operatorname{choose} \ (\boldsymbol{w}^{\star},r^{\star}) &= (\boldsymbol{v},0). \\ & \bullet \ a((0,q),(\boldsymbol{w},r)) &= -\int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega: \quad \operatorname{choose} \ (\boldsymbol{w}^{\star},r^{\star}) &= (-\boldsymbol{w}_{q},0). \\ & \bullet \ \operatorname{General} \ \operatorname{case:} \ \ \boldsymbol{w}^{\star} &= \lambda \boldsymbol{v} - \mu \boldsymbol{w}_{q}, \ \lambda, \mu > 0. \ \operatorname{Next}, \ r^{\star} &= -\lambda q \ \operatorname{leads} \ \operatorname{to} \ a((\boldsymbol{v},q),(\boldsymbol{w}^{\star},r^{\star})) &= \lambda \nu \, |\boldsymbol{v}|_{1,\Omega}^{2} + \mu \|q\|^{2} - \mu \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w}_{q} \, d\Omega. \end{aligned}$$

Finally, the last term can be controlled by the first two terms thanks to $|w_q|_{1,\Omega} \leq C_{\text{div}} ||q||$, using Young's inequality.

Recall
$$a((\boldsymbol{v},q),(\boldsymbol{w},r)) = \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega.$$

a $((\boldsymbol{v},0),(\boldsymbol{w},r)) = \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega:$ choose $(\boldsymbol{w}^{\star},r^{\star}) = (\boldsymbol{v},0).$
a $((0,q),(\boldsymbol{w},r)) = -\int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega:$ choose $(\boldsymbol{w}^{\star},r^{\star}) = (-\boldsymbol{w}_{q},0).$
a $((\boldsymbol{v},q),(\boldsymbol{w}^{\star},r^{\star})) = \lambda \boldsymbol{v} \, |\boldsymbol{v}|_{1,\Omega}^{2} + \mu ||q||^{2} - \mu \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w}_{q} \, d\Omega.$

Finally, the last term can be controlled by the first two terms thanks to $|w_q|_{1,\Omega} \leq C_{\text{div}} ||q||$, using Young's inequality. Eg., choose $(\lambda, \mu) = ((C_{\text{div}})^2, \nu^{-1})$: $T((v, q)) = ((C_{\text{div}})^2 v - \nu^{-1} w_q, -(C_{\text{div}})^2 q)$. The operator T is bijective (one easily builds its inverse).

Recall
$$a((\boldsymbol{v},q),(\boldsymbol{w},r)) = \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega.$$

a $a((\boldsymbol{v},0),(\boldsymbol{w},r)) = \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w} \, d\Omega - \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega: \text{ choose } (\boldsymbol{w}^{\star},r^{\star}) = (\boldsymbol{v},0).$
a $a((0,q),(\boldsymbol{w},r)) = -\int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega: \text{ choose } (\boldsymbol{w}^{\star},r^{\star}) = (-\boldsymbol{w}_{q},0).$
General case: $\boldsymbol{w}^{\star} = \lambda \boldsymbol{v} - \mu \boldsymbol{w}_{q}, \lambda, \mu > 0.$ Next, $r^{\star} = -\lambda q$ leads to
 $a((\boldsymbol{v},q),(\boldsymbol{w}^{\star},r^{\star})) = \lambda \nu \, |\boldsymbol{v}|_{1,\Omega}^{2} + \mu ||q||^{2} - \mu \nu \int_{\Omega} \nabla \boldsymbol{v} : \nabla \boldsymbol{w}_{q} \, d\Omega.$

Finally, the last term can be controlled by the first two terms thanks to $|w_q|_{1,\Omega} \leq C_{\text{div}} ||q||$, using Young's inequality. Eg., choose $(\lambda, \mu) = ((C_{\text{div}})^2, \nu^{-1})$: $T((v, q)) = ((C_{\text{div}})^2 v - \nu^{-1} w_q, -(C_{\text{div}})^2 q)$. NB. Playing with Young's inequality, one finds that there is an "admissible" family of coefficients (λ, μ) that yield T-coercivity: eg. for $\mu = \nu^{-1}$, one needs that $\lambda > \frac{1}{4} (C_{\text{div}})^2$.

- The result of Girault-Raviart'86 appears as a requirement to derive the T-coercivity!
- The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to v.
- The approach is easily transposed to the approximation, see next!

- The result of Girault-Raviart'86 appears as a requirement to derive the T-coercivity!
- The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to v.
- The approach is easily transposed to the approximation, see next!

Discrete T-coercivity: prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ} -coercivity.

- The result of Girault-Raviart'86 appears as a requirement to derive the T-coercivity!
- The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to v.
- The approach is easily transposed to the approximation, see next!

Discrete T-coercivity: prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ} -coercivity. How to choose finite dimensional subspaces $(V_{\delta})_{\delta}$ of $H_0^1(\Omega)$, resp. $(Q_{\delta})_{\delta}$ of $L_{zmv}^2(\Omega)$ to build an approximation of the Stokes model?

- The result of Girault-Raviart'86 appears as a requirement to derive the T-coercivity!
- The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to v.
- The approach is easily transposed to the approximation, see next!

Discrete T-coercivity: prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ} -coercivity. How to choose finite dimensional subspaces $(V_{\delta})_{\delta}$ of $H_0^1(\Omega)$, resp. $(Q_{\delta})_{\delta}$ of $L_{zmv}^2(\Omega)$ to build an approximation of the Stokes model?

Mimic the previous proof to guarantee uniform T_{δ} -coercivity! [1st Key Idea]

The discrete variational formulation writes

$$(\mathsf{VF}\text{-}\mathsf{Stokes})_{\delta} \begin{cases} \mathsf{Find} \ (\boldsymbol{u}_{\delta}, p_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text{ such that} \\ \forall (\boldsymbol{v}_{\delta}, q_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}_{\delta} : \boldsymbol{\nabla} \boldsymbol{v}_{\delta} \, d\Omega - \int_{\Omega} p_{\delta} \operatorname{div} \boldsymbol{v}_{\delta} \, d\Omega - \int_{\Omega} q_{\delta} \operatorname{div} \boldsymbol{u}_{\delta} \, d\Omega = \langle f, (\boldsymbol{v}_{\delta}, q_{\delta}) \rangle_{\mathbb{V}}. \end{cases}$$

The discrete variational formulation writes

$$(\mathsf{VF}\mathsf{-Stokes})_{\delta} \begin{cases} \mathsf{Find} \ (\boldsymbol{u}_{\delta}, p_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text{ such that} \\ \forall (\boldsymbol{v}_{\delta}, q_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}_{\delta} : \boldsymbol{\nabla} \boldsymbol{v}_{\delta} \, d\Omega - \int_{\Omega} p_{\delta} \operatorname{div} \boldsymbol{v}_{\delta} \, d\Omega - \int_{\Omega} q_{\delta} \operatorname{div} \boldsymbol{u}_{\delta} \, d\Omega = \langle f, (\boldsymbol{v}_{\delta}, q_{\delta}) \rangle_{\mathbb{V}}. \end{cases}$$

Given $(\boldsymbol{v}_{\delta}, q_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$, we look for $(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$ with linear dependence such that

 $|a((\boldsymbol{v}_{\delta}, q_{\delta}), (\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}))| \geq \underline{\alpha}_{\dagger} \, \|(\boldsymbol{v}_{\delta}, q_{\delta})\|_{\mathbb{V}}^{2},$

with $\underline{\alpha}_{\dagger} > 0$ independent of δ and of $(\boldsymbol{v}_{\delta}, q_{\delta})$.

The discrete variational formulation writes

$$(\mathsf{VF}\mathsf{-Stokes})_{\delta} \begin{cases} \mathsf{Find} \ (\boldsymbol{u}_{\delta}, p_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text{ such that} \\ \forall (\boldsymbol{v}_{\delta}, q_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}_{\delta} : \boldsymbol{\nabla} \boldsymbol{v}_{\delta} \, d\Omega - \int_{\Omega} p_{\delta} \operatorname{div} \boldsymbol{v}_{\delta} \, d\Omega - \int_{\Omega} q_{\delta} \operatorname{div} \boldsymbol{u}_{\delta} \, d\Omega = \langle f, (\boldsymbol{v}_{\delta}, q_{\delta}) \rangle_{\mathbb{V}}. \end{cases}$$

Given $(\boldsymbol{v}_{\delta}, q_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$, we look for $(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$ with linear dependence such that

$$|a((\boldsymbol{v}_{\delta}, q_{\delta}), (\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}))| \geq \underline{\alpha}_{\dagger} \, \|(\boldsymbol{v}_{\delta}, q_{\delta})\|_{\mathbb{V}}^{2},$$

with $\underline{\alpha}_{\dagger} > 0$ independent of δ and of (v_{δ}, q_{δ}) . Mimicking the T-coercivity approach, one chooses

$$\boldsymbol{w}^{\star} = (C_{\mathrm{div}})^2 \boldsymbol{v}_{\delta} - \nu^{-1} \boldsymbol{w}_{q_{\delta}} \text{ and } r^{\star} = -(C_{\mathrm{div}})^2 q_{\delta},$$

with $w_{q_{\delta}} \in H_0^1(\Omega)$ such that $\operatorname{div} w_{q_{\delta}} = q_{\delta}$, and $|w_{q_{\delta}}|_{1,\Omega} \leq C_{\operatorname{div}} ||q_{\delta}||$.

The discrete variational formulation writes

$$(\mathsf{VF}\mathsf{-Stokes})_{\delta} \begin{cases} \mathsf{Find} \ (\boldsymbol{u}_{\delta}, p_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text{ such that} \\ \forall (\boldsymbol{v}_{\delta}, q_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}_{\delta} : \boldsymbol{\nabla} \boldsymbol{v}_{\delta} \, d\Omega - \int_{\Omega} p_{\delta} \operatorname{div} \boldsymbol{v}_{\delta} \, d\Omega - \int_{\Omega} q_{\delta} \operatorname{div} \boldsymbol{u}_{\delta} \, d\Omega = \langle f, (\boldsymbol{v}_{\delta}, q_{\delta}) \rangle_{\mathbb{V}}. \end{cases}$$

Given $(\boldsymbol{v}_{\delta}, q_{\delta}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$, we look for $(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$ with linear dependence such that

$$|a((\boldsymbol{v}_{\delta}, q_{\delta}), (\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}))| \geq \underline{\alpha}_{\dagger} ||(\boldsymbol{v}_{\delta}, q_{\delta})||_{\mathbb{V}}^{2},$$

with $\underline{\alpha}_{\dagger} > 0$ independent of δ and of (v_{δ}, q_{δ}) . Mimicking the T-coercivity approach, one chooses

$$\boldsymbol{w}^{\star} = (C_{\mathrm{div}})^2 \boldsymbol{v}_{\delta} - \nu^{-1} \boldsymbol{w}_{q_{\delta}} \text{ and } r^{\star} = -(C_{\mathrm{div}})^2 q_{\delta},$$

with $\boldsymbol{w}_{q_{\delta}} \in \boldsymbol{H}_{0}^{1}(\Omega)$ such that $\operatorname{div} \boldsymbol{w}_{q_{\delta}} = q_{\delta}$, and $|\boldsymbol{w}_{q_{\delta}}|_{1,\Omega} \leq C_{\operatorname{div}} ||q_{\delta}||$. Difficulty: $\boldsymbol{w}_{q_{\delta}} \notin \boldsymbol{V}_{\delta}$ in general, whereas $\boldsymbol{v}_{\delta} \in \boldsymbol{V}_{\delta}$ and $r^{\star} \in Q_{\delta}$.

117

How to overcome this difficulty to be able to conclude the proof?

Find $\boldsymbol{w}_{\delta}^+ \in \boldsymbol{V}_{\delta}$ such that "div $\boldsymbol{w}_{\delta}^+ = q_{\delta}$ weakly", and $|\boldsymbol{w}_{\delta}^+|_{1,\Omega} \leq C^+ ||q_{\delta}||$ with $C^+ > 0$ independent of δ , q_{δ} .

How to overcome this difficulty to be able to conclude the proof?

Find $w_{\delta}^+ \in V_{\delta}$ such that "div $w_{\delta}^+ = q_{\delta}$ weakly", and $|w_{\delta}^+|_{1,\Omega} \leq C^+ ||q_{\delta}||$ with $C^+ > 0$ independent of δ , q_{δ} .

As a matter of fact, choosing $\boldsymbol{w}_{\delta}^{\star} = (C^+)^2 \boldsymbol{v}_{\delta} - \nu^{-1} \boldsymbol{w}_{\delta}^+$ and $r_{\delta}^{\star} = -(C^+)^2 q_{\delta}$ immediately yields the uniform discrete inf-sup condition!

How to overcome this difficulty to be able to conclude the proof?

Find $\boldsymbol{w}_{\delta}^+ \in \boldsymbol{V}_{\delta}$ such that "div $\boldsymbol{w}_{\delta}^+ = q_{\delta}$ weakly", and $|\boldsymbol{w}_{\delta}^+|_{1,\Omega} \leq C^+ ||q_{\delta}||$ with $C^+ > 0$ independent of δ , q_{δ} .

As a matter of fact, choosing $\boldsymbol{w}_{\delta}^{\star} = (C^+)^2 \boldsymbol{v}_{\delta} - \nu^{-1} \boldsymbol{w}_{\delta}^+$ and $r_{\delta}^{\star} = -(C^+)^2 q_{\delta}$ immediately yields the uniform discrete inf-sup condition! How so? Just add $_{\delta}$ s to the previous computations!

 $\langle - - \rangle$

How to overcome this difficulty to be able to conclude the proof?

Find $w_{\delta}^+ \in V_{\delta}$ such that "div $w_{\delta}^+ = q_{\delta}$ weakly", and $|w_{\delta}^+|_{1,\Omega} \leq C^+ ||q_{\delta}||$ with $C^+ > 0$ independent of δ , q_{δ} .

To finish the computations as before, we look for pairs of discrete spaces $(V_{\delta}, Q_{\delta})_{\delta}$ such that

$$\exists C^+ > 0, \ \forall \delta, \qquad \forall q_{\delta} \in Q_{\delta}, \ \exists \boldsymbol{w}_{\delta}^+ \in \boldsymbol{V}_{\delta} \text{ with the properties} \\ \forall q'_{\delta} \in Q_{\delta}, \quad \int_{\Omega} q'_{\delta} \operatorname{div} \boldsymbol{w}_{\delta}^+ d\Omega = \int_{\Omega} q'_{\delta} q_{\delta} d\Omega; \\ |\boldsymbol{w}_{\delta}^+|_{1,\Omega} \leq C^+ \|q_{\delta}\|.$$

How to overcome this difficulty to be able to conclude the proof?

Find $\boldsymbol{w}_{\delta}^+ \in \boldsymbol{V}_{\delta}$ such that "div $\boldsymbol{w}_{\delta}^+ = q_{\delta}$ weakly", and $|\boldsymbol{w}_{\delta}^+|_{1,\Omega} \leq C^+ ||q_{\delta}||$ with $C^+ > 0$ independent of δ , q_{δ} .

In other words, one is looking for pairs of discrete spaces $(V_{\delta}, Q_{\delta})_{\delta}$ such that

 $\exists C_{\pi} > 0, \ \forall \delta, \ \exists \pi_{\delta} \in \mathcal{L}(H_0^1(\Omega), V_{\delta}) \text{ with the properties}$

$$egin{aligned} & \forall oldsymbol{v} \in oldsymbol{H}_0^1(\Omega), \; orall q_\delta' \in oldsymbol{Q}_\delta, \quad \int_\Omega q_\delta' \operatorname{div}(\pi_\delta oldsymbol{v}) \, d\Omega = \int_\Omega q_\delta' \operatorname{div} oldsymbol{v} \, d\Omega \, ; \ & \forall oldsymbol{v} \in oldsymbol{H}_0^1(\Omega), \quad |\pi_\delta oldsymbol{v}|_{1,\Omega} \leq C_\pi |oldsymbol{v}|_{1,\Omega}. \end{aligned}$$

Then one chooses $|w_{\delta}^+ = \pi_{\delta} w_{q_{\delta}}|$ to get the desired properties with $C^+ = C_{\pi} C_{\text{div}}$.

Regarding the proof of discrete T-coercivity, we observe that:

- **1** The so-called Fortin lemma appears "naturally" in the proof.
- One needs to have some knowledge of finite element spaces.
- **3** The proof is "simple"!

Regarding the proof of **discrete T**-**coercivity**, we observe that:

- The so-called Fortin lemma appears "naturally" in the proof.
- One needs to have some knowledge of finite element spaces.
- **3** The proof is "simple"!

Browsing Boffi-Brezzi-Fortin'13, one finds that **discrete** T-coercivity is achieved with:

- the MINI FE, or the Taylor-Hood FE $\mathbf{P}^{k+1} P^k$, of order $k \ge 1$;
- the nonconforming Crouzeix-Raviart $\mathbf{P}_{nc}^1 P^0$ is also possible...

Convergence and error estimates follow.

Regarding the proof of **discrete T**-**coercivity**, we observe that:

- The so-called Fortin lemma appears "naturally" in the proof.
- One needs to have some knowledge of finite element spaces.
- The proof is "simple"!

Browsing Boffi-Brezzi-Fortin'13, one finds that **discrete** T-coercivity is achieved with:

- the MINI FE, or the Taylor-Hood FE $\mathbf{P}^{k+1} P^k$, of order $k \ge 1$;
- the nonconforming Crouzeix-Raviart $\mathbf{P}_{nc}^1 P^0$ is also possible...

Convergence and error estimates follow.

T-coercivity and uniform T_{δ} -coercivity are indeed strongly correlated! [1st Key Idea]

Stokes model with small viscosity $\ensuremath{\mathsf{Explicit}}\xspace$ T-coercivity - 1

Let Ω be a domain of \mathbb{R}^d , d = 2, 3. We consider the "classical" Stokes equations

$$\begin{cases} -\nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \text{ in } \Omega \\ \operatorname{div} \boldsymbol{u} = 0 \text{ in } \Omega \\ \boldsymbol{u} = 0 \text{ on } \partial \Omega, \end{cases}$$

for some small $\nu > 0$ (viscosity).

[2nd Key Idea] The operator $T((\boldsymbol{w}, r)) = (\lambda \boldsymbol{w} - \nu^{-1} \boldsymbol{w}_r, -\lambda r)$ is bijective for all $\lambda > 0$. Consider the bilinear form on $\mathbb{V} \times \mathbb{V}$

$$\begin{aligned} a((\boldsymbol{v},q),\mathtt{T}(\boldsymbol{w},r)) &= \nu\lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w} \, d\Omega - \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w}_r \, d\Omega \\ &-\lambda \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega + \nu^{-1} \int_{\Omega} q \, r \, d\Omega + \lambda \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega, \end{aligned}$$

and the linear form on $\ensuremath{\mathbb{V}}$

$$\langle f, \mathsf{T}(\boldsymbol{w}, r) \rangle_{\mathbb{V}} = \lambda \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} - \nu^{-1} \langle \boldsymbol{f}, \boldsymbol{w}_{r} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}.$$

Stokes model with small viscosity $\ensuremath{\mbox{Explicit T-coercivity - 1}}$

[2nd Key Idea] The operator $T((\boldsymbol{w}, r)) = (\lambda \boldsymbol{w} - \nu^{-1} \boldsymbol{w}_r, -\lambda r)$ is bijective for all $\lambda > 0$. Consider the bilinear form on $\mathbb{V} \times \mathbb{V}$

$$\begin{aligned} a((\boldsymbol{v},q),\mathtt{T}(\boldsymbol{w},r)) &= \nu\lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w} \, d\Omega - \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w}_r \, d\Omega \\ &-\lambda \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega + \nu^{-1} \int_{\Omega} q \, r \, d\Omega + \lambda \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega, \end{aligned}$$

and the linear form on $\ensuremath{\mathbb{V}}$

$$\langle f, \mathsf{T}(\boldsymbol{w}, r) \rangle_{\mathbb{V}} = \lambda \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} - \nu^{-1} \langle \boldsymbol{f}, \boldsymbol{w}_{r} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}.$$

Two difficulties in practice:

- Explicit expression of the terms involving $\boldsymbol{w}_r \in (\boldsymbol{V}_0)^{\perp}$?
- **2** Choice of λ ?

Given $f \in (H_0^1(\Omega))'$, solving the "classical" Stokes model with $\nu = 1$, $\exists ! (\mathbf{w}_f, z_f) \in \mathbf{V}_0 \times L^2_{zmv}(\Omega)$ such that $f = -\Delta \mathbf{w}_f + \nabla z_f$. For all $r \in L^2_{zmv}(\Omega)$, one has $\langle f, w_r \rangle_{H_0^1(\Omega)} = -\int_{\Omega} z_f r \, d\Omega$. The linear form on \mathbb{V} is equal to

$$\underline{f}_{\lambda}: \ (\boldsymbol{w},r) \mapsto \lambda \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} + \nu^{-1} \int_{\Omega} z_{\boldsymbol{f}} r \, d\Omega$$

For the "classical" Stokes equations, the solution \boldsymbol{u} belongs to V_0 . For all $r \in L^2_{zmv}(\Omega)$, one has $\int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{w}_r \, d\Omega = 0$ by orthogonality. One may consider the simplified bilinear form

$$\underline{a}_{\lambda}: ((\boldsymbol{v}, q), (\boldsymbol{w}, r)) \mapsto \nu \lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\nabla} \boldsymbol{w} \, d\Omega - \lambda \int_{\Omega} q \operatorname{div} \boldsymbol{w} \, d\Omega$$
$$\lambda \int_{\Omega} r \operatorname{div} \boldsymbol{v} \, d\Omega \quad + \nu^{-1} \int_{\Omega} q \, r \, d\Omega.$$

Q Explicit T-coercivity: the variational formulation with forms \underline{a}_{λ} and \underline{f}_{λ} is

$$\underbrace{(\mathsf{VF})}_{\lambda} \begin{cases} \mathsf{Find} \ (\boldsymbol{u}, p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L^{2}_{zmv}(\Omega) \text{ such that} \\ \forall \boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega), \quad \nu\lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega - \lambda \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega = \lambda \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} \\ \forall q \in L^{2}_{zmv}(\Omega), \quad \lambda \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega \quad + \nu^{-1} \int_{\Omega} p \, q \, d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\boldsymbol{f}} \, q \, d\Omega. \end{cases}$$

O Explicit T-coercivity: the variational formulation with forms \underline{a}_{λ} and \underline{f}_{λ} is

$$\underbrace{\mathsf{VF}}_{\lambda} \left\{ \begin{array}{l} \mathsf{Find} \ (\boldsymbol{u},p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L^{2}_{zmv}(\Omega) \text{ such that} \\ \forall \boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega), \quad \nu\lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega - \lambda \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega = \lambda \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} \\ \forall q \in L^{2}_{zmv}(\Omega), \quad \lambda \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega \quad + \nu^{-1} \int_{\Omega} p \, q \, d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\boldsymbol{f}} \, q \, d\Omega. \end{array} \right.$$

Theorem (Well-posedness)

For all $\lambda > 0$, the variational formulation $(VF)_{\lambda}$ is equivalent to the "classical" Stokes equations, and it is well-posed.

NB. The form \underline{a}_{λ} is coercive on $\mathbb{V} \times \mathbb{V}$ for all $\lambda > 0$.

O Explicit T-coercivity: the variational formulation with forms \underline{a}_{λ} and \underline{f}_{λ} is

$$\underbrace{\mathsf{VF}}_{\lambda} \left\{ \begin{array}{l} \mathsf{Find} \ (\boldsymbol{u},p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L^{2}_{zmv}(\Omega) \text{ such that} \\ \forall \boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega), \quad \nu\lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega - \lambda \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega = \lambda \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} \\ \forall q \in L^{2}_{zmv}(\Omega), \quad \lambda \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega \quad + \nu^{-1} \int_{\Omega} p \, q \, d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\boldsymbol{f}} \, q \, d\Omega. \end{array} \right.$$

Por the approximation:

- One must have some knowledge of z_f to compute the solution.
- One can choose any FE pair, eg. $\mathbf{P}^1 P^0$, to discretize $(VF)_{\lambda}!$

O Explicit T-coercivity: the variational formulation with forms \underline{a}_{λ} and \underline{f}_{λ} is

$$\underbrace{\mathsf{VF}}_{\lambda} \left\{ \begin{array}{l} \mathsf{Find} \ (\boldsymbol{u},p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L^{2}_{zmv}(\Omega) \text{ such that} \\ \forall \boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega), \quad \nu\lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega - \lambda \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega = \lambda \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} \\ \forall q \in L^{2}_{zmv}(\Omega), \quad \lambda \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega \quad + \nu^{-1} \int_{\Omega} p \, q \, d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\boldsymbol{f}} \, q \, d\Omega. \end{array} \right.$$

Por the approximation:

- One must have some knowledge of z_f to compute the solution.
- One can choose any FE pair, eg. $\mathbf{P}^1 P^0$, to discretize $(VF)_{\lambda}!$

Proposed strategy:

 $\nu = 1$ Compute first some approximation $z_{f,\delta}$ of z_f .

 $\nu > 0$ Post-process by solving the discrete VF (VF)_{λ} with rhs $z_{f,\delta}$.

O Explicit T-coercivity: the variational formulation with forms \underline{a}_{λ} and \underline{f}_{λ} is

$$\underbrace{\mathsf{VF}}_{\lambda} \begin{cases} \mathsf{Find} \ (\boldsymbol{u}, p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{zmv}^{2}(\Omega) \text{ such that} \\ \forall \boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega), \quad \nu\lambda \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, d\Omega - \lambda \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\Omega = \lambda \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} \\ \forall q \in L_{zmv}^{2}(\Omega), \quad \lambda \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\Omega \quad + \nu^{-1} \int_{\Omega} p \, q \, d\Omega \quad = \nu^{-1} \int_{\Omega} z_{\boldsymbol{f}} \, q \, d\Omega. \end{cases}$$

Por the approximation:

- One must have some knowledge of z_f to compute the solution.
- One can choose any FE pair, eg. $\mathbf{P}^1 P^0$, to discretize $(VF)_{\lambda}!$

Proposed strategy:

 $\begin{array}{|c|c|c|c|c|} \hline \nu = 1 & \text{Compute first some approximation } z_{f,\delta} \text{ of } z_f: \text{ we use the } \hline \text{Crouzeix-Raviart } \mathbf{P}_{nc}^1 - P^0 \text{ FE} \\ \hline \nu > 0 & \text{Post-process by solving the discrete VF } (\text{VF})_{\lambda} \text{ with rhs } z_{f,\delta}: \text{ we use the } \hline \mathbf{P}^1 - P^0 \text{ FE} \\ \hline \end{array} .$

For the numerical experiments: $\Omega = (0,1)^2$, and $\nu = 10^{-6}$. Manufactured test cases:

- With a smooth solution.
- **2** With a singular solution: $\boldsymbol{u} \in \boldsymbol{H}^1(\Omega) \setminus \boldsymbol{H}^2(\Omega)$.

For the numerical experiments: $\Omega = (0,1)^2$, and $\nu = 10^{-6}$. Manufactured test cases:

- With a smooth solution.
- **2** With a singular solution: $\boldsymbol{u} \in \boldsymbol{H}^1(\Omega) \setminus \boldsymbol{H}^2(\Omega)$.

Triangular meshes, with meshsize $h, h^{-1} \in (10, 160)$:

- Smooth solution: $10^3 272.10^3$ dof for the $\mathbf{P}_{nc}^1 P^0$ FE (50% less for the $\mathbf{P}^1 P^0$ FE).
- **2** Singular solution: $2.10^3 464.10^3$ dof for the $\mathbf{P}_{nc}^{11} P^0$ FE (50% less for the $\mathbf{P}^1 P^0$ FE).

For the numerical experiments: $\Omega = (0,1)^2$, and $\nu = 10^{-6}$. Manufactured test cases:

- With a smooth solution.
- **2** With a singular solution: $\boldsymbol{u} \in \boldsymbol{H}^1(\Omega) \setminus \boldsymbol{H}^2(\Omega)$.

Triangular meshes, with meshsize $h, h^{-1} \in (10, 160)$:

- Smooth solution: $10^3 272.10^3$ dof for the $\mathbf{P}_{nc}^1 P^0$ FE (50% less for the $\mathbf{P}^1 P^0$ FE).
- **2** Singular solution: $2.10^3 464.10^3$ dof for the $\mathbf{P}_{nc}^1 P^0$ FE (50% less for the $\mathbf{P}^1 P^0$ FE).

Error indicators:

- Velocity: $\varepsilon_0^{\nu}(\boldsymbol{u}_h) = \|\boldsymbol{u} \boldsymbol{u}_h\| / \|(\boldsymbol{u}, p)\|_{\mathbb{V}, \nu}.$
- Pressure: $\varepsilon_0^{\nu}(p_h) = \nu^{-1} ||p p_h|| / ||(u, p)||_{\mathbb{V}, \nu}$. Results with the $\mathbf{P}^1 - P^0$ FE for solving $(VF)_{\lambda-1}$ with z_f are proposed as a reference.

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). For the post-processing steps, one solves $(VF)_{\lambda=1}$. Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). For the post-processing steps, one solves $(VF)_{\lambda=1}$.

Figure: [Smooth solution] Plots of $\varepsilon_0^{\nu}(\boldsymbol{u}_h)$ and $\varepsilon_0^{\nu}(p_h)$ against h.

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). For the post-processing steps, one solves $(VF)_{\lambda=1}$.

Figure: [Singular solution] Plots of $\varepsilon_0^{\nu}(\boldsymbol{u}_h)$ and $\varepsilon_0^{\nu}(p_h)$ against h.

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). [Octave code] overhead cost (CPU time) due to post-processing goes from 125% to 13%.

Stokes model with small viscosity $\ensuremath{\texttt{Explicit}}\xspace$ T-coercivity - 5

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). [Octave code] overhead cost (CPU time) due to post-processing goes from 125% to 13%.

Figure: [Smooth solution] Plots of $\varepsilon_0^{\nu}(\boldsymbol{u}_h)$ and $\varepsilon_0^{\nu}(p_h)$ against CPU time.

Stokes model with small viscosity $\ensuremath{\texttt{Explicit}}\xspace$ T-coercivity - 5

Post-processing is carried out iteratively (initialization with rhs $z_{f,\delta}$; 1 or 8 iterations). [Octave code] overhead cost (CPU time) due to post-processing goes from 125% to 13%.

Figure: [Singular solution] Plots of $\varepsilon_0^{\nu}(\boldsymbol{u}_h)$ and $\varepsilon_0^{\nu}(p_h)$ against CPU time.

Other uses of T-coercivity:

- Mixed variational formulations:
 - Stokes model: non-conforming discretisation; DG discretisation; poromechanics model.
 - Neutron diffusion model: with Domain Decomposition; SPN multigroup model.
 - Static models in electromagnetism.
- Coercive plus compact formulations.
- Formulations with sign-changing coefficients.

From the mathematical side:

. . .

- Weak T-coercivity: the form $a(\cdot, T \cdot)$ is coercive + compact on $V \times V$, see PhD thesis by Chesnel (2012), BonnetBenDhia-Carvalho-PC'18, Halla'21...
- In Banach spaces, T-coercivity implies Hilbert structure, see Ern-Guermont'21-Vol.II.

Thank you for your attention!