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From the physics

Modelling in electromagnetism: negative materials, for which ε(ω) < 0 and/or

µ(ω) < 0 in some frequency ranges.

Two families of negative materials: metals, and metamaterials.

Source: NASA Glenn Research.
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From the physics

Modelling in electromagnetism: negative materials, for which ε(ω) < 0 and/or

µ(ω) < 0 in some frequency ranges.

Two families of negative materials: metals, and metamaterials.

In the presence of negative materials:

“Extra-ordinary” applications in physics: NIMs (ε(ω) < 0 and µ(ω) < 0)

Source: shutterstock.com.
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From the physics

Modelling in electromagnetism: negative materials, for which ε(ω) < 0 and/or

µ(ω) < 0 in some frequency ranges.

Two families of negative materials: metals, and metamaterials.

In the presence of negative materials:

“Extra-ordinary” applications in physics...

But mathematical and numerical difficulties!
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Sign-changing coefficients

A model scalar transmission problem, set in a bounded domain Ω of Rd, d = 1, 2, 3.















Find u ∈ H1(Ω) such that

−div (σgradu)− ω2ηu = f in Ω

+ b.c. on ∂Ω.

interface

dielectric

Σ
ΩΩ

ε,µ>0

1
2

n

metal, metamaterial

orε     µ<0

The case of an inclusion with

Σ ∩ ∂Ω = ∅ is also possible.
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Sign-changing coefficients

A model scalar transmission problem, set in a bounded domain Ω of Rd, d = 1, 2, 3.















Find u ∈ H1(Ω) such that

−div (σgradu)− ω2ηu = f in Ω

+ b.c. on ∂Ω.

σ ∈ L∞(Ω) is a sign-changing coefficient:







σ > 0 in Ω1, with meas(Ω1) > 0 ;

σ < 0 in Ω2, with meas(Ω2) > 0.

σ−1 ∈ L∞(Ω).

The parameter σ is discontinuous across the interface Σ.
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Sign-changing coefficients

A model scalar transmission problem, set in a bounded domain Ω of Rd, d = 1, 2, 3.















Find u ∈ H1(Ω) such that

−div (σgradu)− ω2ηu = f in Ω

+ b.c. on ∂Ω.

σ ∈ L∞(Ω) is a sign-changing coefficient ; σ−1 ∈ L∞(Ω).

ω ≥ 0, η ∈ L∞(Ω).

One can consider a Dirichlet or a Neumann b.c., cf. [BonnetBenDhia-Chesnel-PC’12]:

we choose a homogeneous Dirichlet b.c..

The term − ω2ηu is a compact perturbation, cf. [BonnetBenDhia-PC-Zwölf’10],

[BonnetBenDhia-Carvalho-PC’18]: for the ease of exposition we set ω = 0 in this talk.

Again for the ease of exposition, we assume that σ|Ω1
and σ|Ω2

are constants.

Other (related) models studied by Després et al (PhD of L.-M. Imbert-Gérard (2013),

A. Nicolopoulos (2019)) and Labrunie et al (PhD of T. Hattori (2014)).
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Sign-changing coefficients

A model scalar transmission problem, set in a bounded domain Ω of Rd, d = 1, 2, 3.







Find u ∈ H1
0 (Ω) such that

−div (σgradu) = f in Ω.

σ is a piecewise constant, sign-changing, coefficient: σ1 = σ|Ω1
> 0, σ2 = σ|Ω2

< 0.

We study the equivalent Variational Formulation

Find u ∈ H1
0 (Ω) such that ∀w ∈ H1

0 (Ω),

∫

Ω
σ gradu · gradw dΩ =

∫

Ω
fw dΩ.

The main difficulty is that (v, w) 7→

∫

Ω
σ grad v · gradw dΩ is not coercive in H1

0 (Ω).

When is this problem well-posed? =⇒ Address this issue with T-coercivity!
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Abstract setting

Let

V be a Hilbert space ;

a(·, ·) be a continuous sesquilinear form on V × V ;

f be an element of V ′, the dual space of V .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ V, a(u,w) = 〈f, w〉.

[Ladyzhenskaya-Babuska-Brezzi] Recall the inf-sup condition

(isc) ∃α′ > 0, ∀v ∈ V, sup
w∈V \{0}

|a(v, w)|

‖w‖V
≥ α′ ‖v‖V .

The form a(·, ·) is T-coercive if

∃T ∈ L(V ) bijective, ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2V .
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Abstract setting

Let

V be a Hilbert space ;

a(·, ·) be a continuous sesquilinear form on V × V ;

f be an element of V ′, the dual space of V .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ V, a(u,w) = 〈f, w〉.

Theorem (Well-posedness)

Assume that a(·, ·) is hermitian. The three assertions below are equivalent:

(i) the Problem (V F ) is well-posed ;

(ii) the form a(·, ·) satisfies an inf-sup condition ;

(iii) the form a(·, ·) is T-coercive.

The operator T realizes the inf-sup condition (isc) explicitly.
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Abstract setting

Let

V be a Hilbert space ;

a(·, ·) be a continuous sesquilinear form on V × V ;

f be an element of V ′, the dual space of V .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ V, a(u,w) = 〈f, w〉.

Introduce the weak inf-sup condition

(wisc) ∃C ∈ K(V ), α′, β′ > 0, ∀v ∈ V, sup
w∈V \{0}

|a(v, w)|

‖w‖V
≥ α′ ‖v‖V −β′ ‖Cv‖V .

The form a(·, ·) is weakly T-coercive if

∃C ∈ K(V ), T ∈ L(V ) bijective, ∃α, β > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2V −β ‖Cv‖2V .
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Abstract setting

Let

V be a Hilbert space ;

a(·, ·) be a continuous sesquilinear form on V × V ;

f be an element of V ′, the dual space of V .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ V, a(u,w) = 〈f, w〉.

Theorem (Well-posedness in Fredholm sense)

Assume that a(·, ·) is hermitian. The three assertions below are equivalent:

(i) the Problem (V F ) is well-posed in the Fredholm sense ;

(ii) the form a(·, ·) satisfies a weak inf-sup condition ;

(iii) the form a(·, ·) is weakly T-coercive.

When ω 6= 0 in the model problem, the compact perturbation − ω2ηu can be

absorbed in C.
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Practical T-coercivity

In the case of the scalar transmission problem:

Ω, Ω1 and Ω2 are domains of Rd, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;

V := H1
0 (Ω) ; the form is a(v, w) :=

∫

Ω
σ grad v · gradw dΩ.

Introduce Vk := {vk ∈ H1(Ωk) | vk|Γk
= 0}, k = 1, 2:

V = {v | vk := v|Ωk
∈ Vk, k = 1, 2, MatchingΣ(v1, v2) = 0} ,

with MatchingΣ(v1, v2) := v1|Σ − v2|Σ.

By construction:

a(v, w) :=

∫

Ω1

σ1 grad v1 · gradw1 dΩ−

∫

Ω2

|σ2|grad v2 · gradw2 dΩ.
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Practical T-coercivity-2

a(v, Tv) :=

∫

Ω1

σ1 grad v1 · grad (Tv)1 dΩ−

∫

Ω2

|σ2|grad v2 · grad (Tv)2 dΩ.

Following ideas of [BonnetBenDhia-PC-Zwölf’10], [Nicaise-Venel’11]...

First attempt: let R1→2 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1→2v1) = 0.

∀v ∈ V, T1 v :=







v1 in Ω1

−v2+2R1→2 v1 in Ω2

.

To obtain T-coercivity with T1 (one uses Young’s inequality):

it is sufficient that σ1/|σ2| > |||R1→2|||2, with |||R1→2||| := ‖R1→2‖L(V1,V2).
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Practical T-coercivity-2

a(v, Tv) :=

∫

Ω1

σ1 grad v1 · grad (Tv)1 dΩ−

∫

Ω2

|σ2|grad v2 · grad (Tv)2 dΩ.

Following ideas of [BonnetBenDhia-PC-Zwölf’10], [Nicaise-Venel’11]...

First attempt: let R1→2 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1→2v1) = 0.

∀v ∈ V, T1 v :=







v1 in Ω1

−v2+2R1→2 v1 in Ω2

.

Second attempt: let R2→1 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2→1v2, v2) = 0.

∀v ∈ V, T2 v :=







v1−2R2→1 v2 in Ω1

−v2 in Ω2

.

To obtain T-coercivity with T2, it is sufficient that:

|σ2|/σ1 > |||R2→1|||2, with |||R2→1||| := ‖R2→1‖L(V2,V1).
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Practical T-coercivity-2

a(v, Tv) :=

∫

Ω1

σ1 grad v1 · grad (Tv)1 dΩ−

∫

Ω2

|σ2|grad v2 · grad (Tv)2 dΩ.

To achieve T-coercivity with T1 or T2 , it is sufficient that

σ1

|σ2|
>

(

inf
R1→2

|||R1→2|||

)2

or
|σ2|

σ1
>

(

inf
R2→1

|||R2→1|||

)2

.

How to choose the operators R1→2, R2→1?

using traces on Σ, liftings, cf. [BonnetBenDhia-PC-Zwölf’10], [Nicaise-Venel’11] ;

using geometrical transforms, cf. [Nicaise-Venel’11],

[BonnetBenDhia-Chesnel-PC’12], [BonnetBenDhia-Carvalho-PC’18].
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Optimality of T-coercivity

How to find the set of coefficients (σ1, σ2) that lead to a well-posed problem?

−→ The relevant parameter is the contrast σ2/σ1 ∈]−∞, 0[ .

−→ Find the “best” operators T (or R1→2, R2→1...).
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Optimality of T-coercivity-2

Study of an elementary setting (PhD of L. Chesnel (2012)):

Case σ1 6= −σ2, in a symmetric geometry.

Let SΣ be the symmetry (geometrical) transform with respect to Σ.

Let R1→2 ∈ L(V1, V2) s.t. for all v1 ∈ V1, R1→2v1 = v1 ◦ SΣ, a.e. in Ω2.

One finds |||R1→2||| = 1.

If −1 < σ2/σ1, one achieves T-coercivity.

Let R2→1 ∈ L(V2, V1) s.t. for all v2 ∈ V2, R2→1v2 = v2 ◦ SΣ, a.e. in Ω1.

One finds |||R2→1||| = 1.

If σ2/σ1 < −1, one achieves T-coercivity.
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Optimality of T-coercivity-2

Study of an elementary setting (PhD of L. Chesnel (2012)):

Case σ1 6= −σ2, in a symmetric geometry.

The scalar transmission problem is well-posed since σ2/σ1 6= −1.

Case σ1 = −σ2, in a symmetric geometry.

The scalar transmission problem is ill-posed when σ2/σ1 = −1 (Critical case.)

In a symmetric geometry, the scalar transmission problem is well-posed iff σ2/σ1 6= −1 .
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Optimality of T-coercivity-3

Study of elementary geometries:

1. Symmetric geometry (2D/3D)

2. Interface with an interior corner

Operators R1→2, R2→1 combine rotation +

angle dilation geometrical transforms:

(R1→2 v1)(ρ, θ) = v1(ρ,
α

2π−α
(2π − θ));

(R2→1 v2)(ρ, θ) = v2(ρ, 2π − 2π−α
α

θ).

(cf. [BonnetBenDhia-Chesnel-PC’12]).

|||R1→2|||2 = max( 2π−α
α

, α
2π−α

) ;

|||R2→1|||2 = max( 2π−α
α

, α
2π−α

).
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Optimality of T-coercivity-3

Study of elementary geometries:

1. Symmetric geometry (2D/3D)

2. Interface with an interior corner

Operators R1→2, R2→1 combine rotation +

symmetry geometrical transforms:

(cf. [BonnetBenDhia-Carvalho-PC’18]).
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Optimality of T-coercivity-3

Study of elementary geometries:

1. Symmetric geometry (2D/3D)

2. Interface with an interior corner

Admissible operators R1→2:
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Optimality of T-coercivity-3

Study of elementary geometries:

1. Symmetric geometry (2D/3D)

2. Interface with an interior corner

Admissible operators R2→1:
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Optimality of T-coercivity-3

Study of elementary geometries:

1. Symmetric geometry (2D/3D)

2. Interface with an interior corner

Operators R1→2, R2→1 combine rotation +

symmetry geometrical transforms:

(cf. [BonnetBenDhia-Carvalho-PC’18]).

After "averaging" the operators:

|||Ropt1→2|||
2 = max( 2π−α

α
, α
2π−α

) ;

|||Ropt2→1|||
2 = max( 2π−α

α
, α
2π−α

).
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Optimality of T-coercivity-3

Study of elementary geometries:

1. Symmetric geometry (2D/3D)

2. Interface with an interior corner

3. Interface with a boundary corner

4. Curved interface (2D/3D)

Can handle all configurations in 2D geometries [BonnetBenDhia-Carvalho-PC’18].
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Optimality of T-coercivity-4

Handle general geometries by localization.

Case of an inclusion: interface Σ with N corners and edges.
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Optimality of T-coercivity-4

Handle general geometries by localization.

Use geometrical transforms near each corner to define R
p
1→2 locally, p = 1, N .
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Optimality of T-coercivity-4

Handle general geometries by localization.

Use geometrical transforms near each edge to define R
p
1→2 locally, p = N + 1, 2N .
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Optimality of T-coercivity-4

Handle general geometries by localization.

Let P = 2N . Introduce T1 ∈ L(V ) bijective, where (χp)1≤p≤P are cut-off functions:

∀v ∈ V, T1 v :=







v1 in Ω1

−v2+2
∑

p=1,P χpR
p
1→2 v1 in Ω2

.
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Optimality of T-coercivity-5

Cf. [BonnetBenDhia-Chesnel-PC’12], [BonnetBenDhia-Carvalho-PC’18]:

there exists a critical interval IΣ ⊂]−∞, 0[ such that

if σ2/σ1 ∈ IΣ: the scalar transmission problem is not well-posed ;

if σ2/σ1 6∈ IΣ: one has a Gärding inequality

∃ασ, βσ
> 0, ∀v ∈ V, |a(v, Tv)| ≥ ασ |v|2

H1(Ω)
− β

σ
‖v‖2

L2(Ω)
,

i.e. the scalar transmission problem is well-posed (in the Fredholm sense).

The bounds of IΣ depend on the value of the angles at the corners of the interface ;

e.g. a square-shaped metamaterial (within a dielectric): IΣ = [−3,−1/3].

The critical interval IΣ always contains −1 (for a piecewise smooth interface).

If the interface is C2 without endpoints, IΣ = {−1} (cf. [Costabel-Stephan’85]).

The model problem with ω 6= 0 can be solved similarly.
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Comments

General case, cf. [BonnetBenDhia-Chesnel-PC’12]:

σ, σ−1 ∈ L∞(Ω), σ sign-changing coefficient.

Let σ+
1 = supΩ1

σ1, σ−
1 = infΩ1

σ1; |σ+
2 | = supΩ2

|σ2|, |σ
−
2 | = infΩ2

|σ2|:

one finds the sufficient condition:

σ−
1

|σ+
2 |

>

(

inf
R1→2

|||R1→2|||

)2

or
|σ−

2 |

σ+
1

>

(

inf
R2→1

|||R2→1|||

)2

;

moreover, only the knowledge of the coefficients at the interface is needed ;

there are (simple) cases not covered by the theory.

β ∈ (−1, 0). λ < 0.
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Comments

General case, cf. [BonnetBenDhia-Chesnel-PC’12]:

σ, σ−1 ∈ L∞(Ω), σ sign-changing coefficient.

Let σ+
1 = supΩ1

σ1, σ−
1 = infΩ1

σ1; |σ+
2 | = supΩ2

|σ2|, |σ
−
2 | = infΩ2

|σ2|:

one finds the sufficient condition:

σ−
1

|σ+
2 |

>

(

inf
R1→2

|||R1→2|||

)2

or
|σ−

2 |

σ+
1

>

(

inf
R2→1

|||R2→1|||

)2

;

moreover, only the knowledge of the coefficients at the interface is needed ;

there are (simple) cases not covered by the theory.

T-coercivity using geometrical transforms is sub-optimal in some 3D domains.

For instance, a cube-shaped metamaterial (within a dielectric):

this T-coercivity predicts IΣ ⊆ [−7,−1/7] ;

but using [Helsing-Perfekt’13], one may shrink IΣ to [−5.5359...,−1/3]!?

LMA, Marseille, October 2019 – p. 15/22



Numerics: no corners

Model scalar problem, symmetric domain: Ω1 =]− 1, 0[×]0, 1[, Ω2 =]0, 1[×]0, 1[.

An exact piecewise smooth solution is available, for a contrast σ2/σ1 = −1.001.

Discretization using P1 Lagrange finite elements.

What is the influence of the meshes? (relative errors in L2-norm ; O(h2) is expected).

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
−6

−5

−4

−3

−2

−1

0

1

 Contrast =−1.001

log(1/h)

R
e

la
ti
v
e

 e
rr

o
rs

 

 

 a =−1.2433

 a =−1.2539

 a =−1.9993

Non symmetric mesh
Locally symmetric mesh
Symmetric mesh

Meshes must/should be carefully designed: T-conform meshes!
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Numerics: with corners

Model scalar problem.

No exact solution is available.

Contrast: σ2/σ1 = −5.2 (critical interval IΣ = [−5,−1/5]).

Discretization using Pk Lagrange finite elements (k = 1, 2, 3).

standard mesh T-conform mesh
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Numerics: with corners

Model scalar problem.

No exact solution is available.

Discretization using Pk Lagrange finite elements, for k = 1, 2, 3.

What is the influence of the meshes? (relative errors in L2-norm).
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Numerics: with corners

Model scalar problem.

No exact solution is available.

Discretization using P3 Lagrange finite elements.

Comparison of the computed solutions (≈ 105 dof).

standard mesh T-conform mesh

Meshes must/should be carefully designed: T-conform meshes!
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Numerical analysis

Definition [Chesnel-PC’13], [BonnetBenDhia-Carvalho-PC’18]

For i = 1, 2 and p = 1, P , let

T p
h,i

:= {τ ∈ Th : τ ∩ int(supp(χp)) ∩ Ωi 6= ∅}.

The meshes (Th)h are locally T-conform if, for all h . 1, for all p = 1, P , for all

τ ∈ T p

h,1, the image of τ by the geometrical transforms underlying Rp belongs to T p

h,2.

In other words, it is required that the structure of the discrete spaces Vh is preserved

locally with the help of the geometrical transforms.

Proposition [BonnetBenDhia-Carvalho-PC’18]

Assume that σ2/σ1 6∈ IΣ, and that the exact problem is well-posed.

If the meshes (Th)h are locally T-conform, then, for h small enough, the discrete

problem is well-posed in Vh. Moreover, the discrete solution uh is such that

‖u− uh‖1 ≤ C inf
vh∈Vh

‖u− vh‖1

with C > 0 independent of h.
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Concluding remarks

Scalar problems with sign-shifting coefficients:

introduction of T-coercivity during WAVES’07 ;

theoretical study of well-posedness (cf. [BonnetBenDhia-Chesnel-PC’12]) ;

numerical analysis when (weak) T-coercivity applies (cf.

[BonnetBenDhia-PC-Zwölf’10], [Nicaise-Venel’11], [Chesnel-PC’13],

[BonnetBenDhia-Carvalho-PC’18], etc.) ;

optimization-based numerical method (cf. [Abdulle-Huber-Lemaire’17]) ;

Boundary Integral Equations-based numerical method (cf. [Helsing-Karlsson’18]) ;

a posteriori error control (cf. [PC-Vohralik’18]).
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Concluding remarks

Scalar problems with sign-shifting coefficients:

Scalar eigenproblems with sign-shifting coefficients:

localization of eigenfunctions, spectral correctness if the meshes are locally

T-conform [Carvalho-Chesnel-PC’17]. On a square minus square geometry:
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Concluding remarks

Scalar problems with sign-shifting coefficients:

Scalar eigenproblems with sign-shifting coefficients:

Maxwell problem(s) with sign-shifting coefficients:

(weak) T-coercivity (cf. [BonnetBenDhia-Chesnel-PC’14a,b]) ;

Q numerical analysis? In progress...
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Concluding remarks

Scalar problems with sign-shifting coefficients:

Scalar eigenproblems with sign-shifting coefficients:

Maxwell problem(s) with sign-shifting coefficients:

Theoretical study of critical cases (cf. [BonnetBenDhia-Chesnel-Claeys’13]).
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Extension: the SCM

Inside the critical interval: σ2/σ1 ∈ IΣ \ {−1}.

In a simple geometry:
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Extension: the SCM

Inside the critical interval: σ2/σ1 ∈ IΣ \ {−1}.

Cf. [BonnetBenDhia-Chesnel-Claeys’13]:

the scalar transmission problem is well-posed in H1
0 (Ω)⊕ C(ζs), where s is an

hyper-oscillating singularity of the form s(r, θ) = rıλΦ(θ), λ ∈ R, and ζ is a smooth

cutoff function.
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Extension: the SCM

Inside the critical interval: σ2/σ1 ∈ IΣ \ {−1}.

Cf. [BonnetBenDhia-Chesnel-Claeys’13]:

the scalar transmission problem is well-posed in H1
0 (Ω)⊕ C(ζs), where s is an

hyper-oscillating singularity of the form s(r, θ) = rıλΦ(θ), λ ∈ R, and ζ is a smooth

cutoff function.

Given f ∈ L2(Ω), let u = ũ+ b(ζs) be the solution:

the regular part ũ has some "extra" smoothness ;

s ∈
⋂

t∈[0,1[ H
t(Ω) (s 6∈ H1(Ω)) ; −div (σgrad s) = 0 in Ω ;

the scalar transmission problem is also well-posed in H1
0 (Ω)⊕ C(ζs).

The Singular Complement Method, work in progress with C. Carvalho:

there exists a dual singularity z such that b =

∫

Ω
f z dΩ ;

the regular part ũ is governed by a Variational Formulation ;

b and ũ can be recovered numerically.
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Extension: PML at corners

Inside the critical interval: σ2/σ1 ∈ IΣ \ {−1}.

Scattering problem:































Find u = uinc + usca such that

div
(

ε−1∇u
)

+ k20 µu = 0 in R
2

lim
ξ→+∞

∫

|x|=ξ

∣

∣

∣

∂usca

∂r
− ikusca

∣

∣

∣

2
dσ = 0.

The radiation condition is replaced by a boundary condition on ∂DR, using a DtN map.
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Extension: PML at corners

Inside the critical interval: σ2/σ1 ∈ IΣ \ {−1}.

Scattering problem, using [BonnetBenDhia-Chesnel-Claeys’13] at the corners.

Choice of the hyper-oscillating singularity sc or sc:

via energy balance Eq. (no energy should be brought into the system) ;

via the limiting absorption principle ;

both methods select the same singularity!
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Extension: PML at corners

Inside the critical interval: σ2/σ1 ∈ IΣ \ {−1}.

Scattering problem.

Analogy with a semi-infinite waveguide:

In the waveguide, s̆c1 or s̆c1 are propagative modes.

Use a Perfectly Matched Layer to bound artificially the waveguide.
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Extension: PML at corners

Inside the critical interval: σ2/σ1 ∈ IΣ \ {−1}.

Scattering problem, cf. [BonnetBenDhia-Carvalho-Chesnel-PC’16]:

Choice of the hyper-oscillating singularities (sck )k or (sck )k ;

Use a Perfectly Matched Layer near each corner.

Discretization using P2 Lagrange FE (three meshsizes), without PML at the corners:

The numerical solution varies with the meshsize (especially near, or on, the interface).
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Extension: PML at corners

Inside the critical interval: σ2/σ1 ∈ IΣ \ {−1}.

Scattering problem, cf. [BonnetBenDhia-Carvalho-Chesnel-PC’16]:

Choice of the hyper-oscillating singularities (sck )k or (sck )k ;

Use a Perfectly Matched Layer near each corner.

Discretization using P2 Lagrange FE (three meshsizes), with PML at the corners:

The numerical solution is independent of the meshsize.
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Extension: PML at corners

Inside the critical interval: σ2/σ1 ∈ IΣ \ {−1}.

Scattering problem, cf. [BonnetBenDhia-Carvalho-Chesnel-PC’16]:

Choice of the hyper-oscillating singularities (sck )k or (sck )k ;

Use a Perfectly Matched Layer near each corner.

Discretization using P2 Lagrange FE, with PML at the corners. Close-up:
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More concluding remarks

Inside the critical interval:

Extensions with hyper-oscillating singularity work theoretically and numerically, cf.

[BonnetBenDhia-Chesnel-Claeys’13], [BonnetBenDhia-Carvalho-Chesnel-PC’16].

Work in progress with C. Carvalho.
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More concluding remarks

Inside the critical interval:

Extensions with hyper-oscillating singularity work theoretically and numerically, cf.

[BonnetBenDhia-Chesnel-Claeys’13], [BonnetBenDhia-Carvalho-Chesnel-PC’16].

Work in progress with C. Carvalho.

Go back to the model before homogenization, with rapidly oscillating coefficients.

Study:

the numerical homogenization, or the Heterogeneous Multiscale Method, for

those models [Verfürth’17], [Ohlberger-Verfürth’18], [Verfürth’19].

how the effective model is influenced by interfaces, cf. PhD of C. Bénéteau on

“enriched homogenization in presence of an interface” (supervision X. Claeys

and S. Fliss).
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More concluding remarks

Inside the critical interval:

Extensions with hyper-oscillating singularity work theoretically and numerically, cf.

[BonnetBenDhia-Chesnel-Claeys’13], [BonnetBenDhia-Carvalho-Chesnel-PC’16].

Work in progress with C. Carvalho.

Go back to the model before homogenization, with rapidly oscillating coefficients.

Study:

the numerical homogenization, or the Heterogeneous Multiscale Method, for

those models [Verfürth’17], [Ohlberger-Verfürth’18], [Verfürth’19].

how the effective model is influenced by interfaces, cf. PhD of C. Bénéteau on

“enriched homogenization in presence of an interface” (supervision X. Claeys

and S. Fliss).

The use of a nonlocal model is promising numerically, cf. [Borthagaray-PC’17].

“Localization” of the nonlocality (near the interface) seems possible.

Work in progress with J.P. Borthagaray, cf. [Borthagaray-PC’19].
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