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Sign-changing coefficients

- N

® Consider a scalar transmission problem, set in a bounded domain  of R%, d = 1, 2, 3.

Find w € Hj () such that
—div (ocgradu) = fin €.

dielectric

metamaterial

Motivation (EM-ics): Q;

oc:=c loroc:= ,u_l.

Q,

€,u<0

- N

ENSTA Rennes, August 2013 — p.2/15
ParisTech




Sign-changing coefficients

- N

® Consider a scalar transmission problem, set in a bounded domain  of R%, d = 1, 2, 3.

Find w € Hj () such that
—div (ocgradu) = fin €.

: : : . > 01in Q1, with meas(©21) > 0;
$ o € L°°(Q) is a sign-changing coefficient: ’ _ ! _ (1)
o < 0in Qq, with meas(Q22) > 0.

® o lelL>09N).

The parameter o is discontinuous across ..
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Sign-changing coefficients

- N

® Consider a scalar transmission problem, set in a bounded domain  of R%, d = 1, 2, 3.

Find w € Hj () such that
—div (ocgradu) = fin €.

® o0 € L>°(Q),Iis asign-changing coefficient.
® o 1lc L ().
NB. The “generalized” Helmholtz equation —div (cgrad u) — w?nu = f with

n € L*°(Q) can be analyzed similarly, cf.
One can also consider a Neumann b.c., cf.
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Sign-changing coefficients

-

Consider a scalar transmission problem, set in a bounded domain 2 of R%, d = 1, 2, 3.

Find w € Hj () such that
—div (ocgradu) = fin €.

® o0 € L>°(Q),Iis asign-changing coefficient.
® o 1lc L ().
NB. The “generalized” Helmholtz equation —div (cgrad u) — w?nu = f with

n € L*°(Q) can be analyzed similarly, cf.
One can also consider a Neumann b.c., cf.

The main difficulty is that (v, w) — / o grad v - grad w dS2 is not coercive in H}(Q).
Q
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Sign-changing coefficients

-

Consider a scalar transmission problem, set in a bounded domain 2 of R%, d = 1, 2, 3.

Find w € Hj () such that
—div (ocgradu) = fin €.

® o0 € L>°(Q),Iis asign-changing coefficient.
® o 1lc L ().
NB. The “generalized” Helmholtz equation —div (cgrad u) — w?nu = f with

n € L*°(Q) can be analyzed similarly, cf.
One can also consider a Neumann b.c., cf.

The main difficulty is that (v, w) — / o grad v - grad w dS2 is not coercive in H}(Q).
Q

— Solve the problem with T-coercivity!

|
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Abstract setting
f D |et —‘

® V and W be two Hilbert spaces;
® af-,-) be acontinuous sesquilinear form over V- x W;
#® f be an element of W', the dual space of .

Aim: solve the Variational Formulation

(VF) FindueV st VweW, a(u,w) = (f,w).
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Abstract setting
f D |et —‘

® V and W be two Hilbert spaces;
® af-,-) be acontinuous sesquilinear form over V- x W;
#® f be an element of W', the dual space of .

Aim: solve the Variational Formulation
(VF) FindueV st VweW, a(u,w) = (f,w).

9 Introduce the two conditions

(BNBy) doa’ >0, Vv eV, sup la(v, w)| > o |||y .
wew\{0} [lwllw

(BN B2) Vw e W : {Vv eV, a(v,w) =0} = {w = 0}.

NB. Condition (BN Bj) is called an inf-sup condition, or a stability condition.

- N

ENSTA Rennes, August 2013 — p.3/15
ParisTech



Abstract setting
f D |et —‘

® V and W be two Hilbert spaces;
® af-,-) be acontinuous sesquilinear form over V- x W;
#® f be an element of W', the dual space of .

Aim: solve the Variational Formulation
(VF) FindueV st VweW, a(u,w) = (f,w).
® The forma(-,-) is T-coercive if

3T € £(V, W), bijective, 3a > 0, Yo € V, |a(v, Tv)| > a||v||F.
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Abstract setting

Let

® V and W be two Hilbert spaces;

® af-,-) be acontinuous sesquilinear form over V- x W;
#® f be an element of W', the dual space of .

Aim: solve the Variational Formulation
(VF) FindueV st VweW, a(u,w) = (f,w).
® The forma(-,-) is T-coercive if
3T € £(V, W), bijective, 3a > 0, Yo € V, |a(v, Tv)| > a||v||F.

® Theorem (Wl | - posedness) The three assertions below are equivalent:
(i) the Problem (V F) is well-posed;
(i) the form a(-,-) satisfies conditions (BN B1) and (BN Ba).
(i) the form a(-,-) is T-coercive.
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Abstract setting

Let

® V and W be two Hilbert spaces;

® af-,-) be acontinuous sesquilinear form over V- x W;
#® f be an element of W', the dual space of .

Aim: solve the Variational Formulation
(VF) FindueV st VweW, a(u,w) = (f,w).
® The forma(-,-) is T-coercive if
3T € £(V, W), bijective, 3a > 0, Yo € V, |a(v, Tv)| > a||v||F.

® Theorem (Wl | - posedness) The three assertions below are equivalent:
(i) the Problem (V F) is well-posed;
(i) the form a(-,-) satisfies conditions (BN B1) and (BN Ba).
(i) the form a(-,-) is T-coercive.

The operator T realizes conditions (BN B1) and (BN Bz) explicitly.
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Abstract setting-2

V = W, case of a hermitian form a

The previous definition and theorem can be simplified...
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Abstract setting-2
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V = W, case of a hermitian form a

The previous definition and theorem can be simplified...

® The hermitian form a(-, -) is T-coercive if

3T € L(V), Ja >0, Yv €V, |a(v, Tv)| > a|v]|3.
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Abstract setting-2
- -

V = W, case of a hermitian form a

The previous definition and theorem can be simplified...

® The hermitian form a(-, -) is T-coercive if
3T € L(V), Ja >0, Yv €V, |a(v, Tv)| > a|v]|3.

® Theorem (Wl | - posedness) The three assertions below are equivalent:
(i) the Problem (V' F') with hermitian form is well-posed;
(i) the hermitian form a(-, -) satisfies condition (BN B1).
(i) the hermitian form a(-, -) is T-coercive.
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Practical T-coercivity

- N

® In the case of the scalar transmission problem:
® 0,0 and Qs aredomainsof R, d>1: Q01NN =0,0=Q, UQ, ;
® theinterfaceis ¥ := Q1 N Qs ; the boundariesare T'y, := 00 NN, k= 1,2;
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Practical T-coercivity

- N

® In the case of the scalar transmission problem:
® 0,0 and Qs aredomainsof R, d>1: Q01NN =0,0=Q, UQ, ;
the interface is ¥ := Q1 N Q5 ; the boundaries are T'y, := 00 NN, k = 1,2;

9o

® V:=Hj(Q);theformis a(v,w) := / o grad v - grad w df2.
Q

»

0<01_§0§0;r<ooin91 : 0<02_§—a§a§r<ooin92.
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Practical T-coercivity

- N

® In the case of the scalar transmission problem:
® 0,0 and Qs aredomainsof R, d>1: Q01NN =0,0=Q, UQ, ;
the interface is ¥ := Q1 N Q5 ; the boundaries are T'y, := 00 NN, k = 1,2;

9o

® V:=Hj(Q);theformis a(v,w) := / o grad v - grad w df2.
Q

»

0<o; §a§ai<ooin91 : 0<02_§—a§a§r<ooin92.

® Introduce Vi := {vx, € H'(Q%) |vgr, =0}, k=1,2:
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Practical T-coercivity

- N

® In the case of the scalar transmission problem:
® 0,0 and Qs aredomainsof R, d>1: Q01NN =0,0=Q, UQ, ;
the interface is ¥ := Q1 N Q5 ; the boundaries are T'y, := 00 NN, k = 1,2;

9o

® V:=Hj(Q);theformis a(v,w) := / o grad v - grad w df2.
Q

»

0<o; §a§ai<ooin91 : 0<a2_§—a§a§r<ooin92.

® Introduce Vi := {vx, € H'(Q%) |vgr, =0}, k=1,2:

V ={v|vq, € Vi, k=1,2, Matchingy(v|q,,v|n,) = 0}

with Matchingz (1}1,1)2) =1y — U2|%-
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® Firsttry:

Yo € H} (),

T_v:

U1

Practical T-coercivity-2

in 1

ian -



Practical T-coercivity-2

-

® Firsttry:

v in
Yo € Hy(Q), T_wv:= ' R
—V2 INn Q9

(+) Obviously, (T_)? = 1.
(-) ButT_ & L(Hj()), because the matching condition is not enforced.
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Practical T-coercivity-2

- N

® Firsttry:

1 in 1

Yo € HY(Q), T_wv:= |
—V2 INn Q9

(+) Obviously, (T_)? = 1.
(-) ButT_ & L(Hj()), because the matching condition is not enforced.

® Secondtry: let Ry € £(V4, V2) s.t. forall vy € Vi, Matchings- (v1, R1v1) = 0.

1 in 1

Yo € Hi(Q), Tiv:i= |
—v9+2R1 v In Q9
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(+)
(+)

Practical T-coercivity-2

First try:

v in
Yoe HYQ), T_v:=¢ = 77
—V2 INn Q9

Obviously, (T_)? = I.

But T_ ¢ L(H}(Q)), because the matching condition is not enforced.

Second try: let Ry € L(V1, V2) s.t. for all v; € Vi, Matchingy, (v1, Riv1) = 0.

v in 2
Yo € H3(Q), Tiv:= ' . :
—v9+2R1 v In Q9

T, € L(HL(Q)).
One checks easily that (T1)? = I!
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Practical T-coercivity-2
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® Firsttry:

1 in 1

Yo € HY(Q), T_wv:= |
—V2 INn Q9

(+) Obviously, (T_)? = 1.
(-) ButT_ & L(Hj()), because the matching condition is not enforced.

® Secondtry: let Ry € £(V4, V2) s.t. forall vy € Vi, Matchings- (v1, R1v1) = 0.

1 in 1

Yv € H&(Q), Tiv:= _
—v9+2R1 v In Q9

Can one achieve T-coercivity with T;?

ENSTA Rennes, August 2013 — p.6/15
ParisTech




ENSTA

ParisTech

Practical T-coercivity-2

First try:

v in
Yoe HYQ), T_v:=¢ = 77
—V2 INn Q9

Obviously, (T_)? = I.

But T_ ¢ L(H}(Q)), because the matching condition is not enforced.

Second try: let Ry € L(V1, V2) s.t. for all v; € Vi, Matchingy, (v1, Riv1) = 0.

v in 2
Yo € H3(Q), Tiv:= ' . :
—v9+2R1 v In Q9

. o o
To obtain T-coercivity with T;, one needs —1+ > |||R1]]]%.
02

|
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Practical T-coercivity-3

-

v1—2Ro v in 2
Yo e HY(Q), Tov:=4 = 77272 T
—V2 In Qo
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® Third try: let Ry € L(V2, V1) s.t. for all v2 € Vi, Matchingy, ( Rava, v2) = 0.

|
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Practical T-coercivity-3
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® Third try: let Ry € L(V2, V1) s.t. for all v2 € Vi, Matchingy, ( Rava, v2) = 0.

v1—2Ro v in 2
Yo e HY(Q), Tov:={ = 7272 774
—V2 In Qo

. o o
To obtain T-coercivity with T2, one needs —2 > ||| Rz|||.
91
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Practical T-coercivity-3

® Third try: let Ry € L(V2, V1) s.t. for all v2 € Vi, Matchingy, ( Rava, v2) = 0.

® Conclusion:

Vv € H&(Q), Tov =

to achieve T-coercivity with Ty or T2

oy 2
— inf ||| R or
T (11]:?1 i 1”')

09 1

’01—2R2 V2 in Ql

in Qo

. one needs

oy 2
—= > | inf |||R )
O__|_ (R2||| 2|||>

-

|
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Practical T-coercivity-3

® Third try: let Ry € L(V2, V1) s.t. for all v2 € Vi, Matchingy, ( Rava, v2) = 0.

Vv € H&(Q), Tov =

® Conclusion: | to achieve T-coercivity with T1 or T

91

2
> | inf ||| R1 ) or
%> (gt 1
® How to choose the operators R, R2?
#® using traces on %, liftings, cf.

® using geometrical transformations, cf.

’01—2R2 V2 in Ql

in Qo

. one needs

2— 2
T <R2||| 2|||>
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Optimality of T-coercivity
-

® Study of an elementary setting:
® piecewise constant coefficient o ;
in this case, 0] = o] =o1,and o, = o) = |o2|;

define the contrast ko 1= —= €] — 00, 0.
o1
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Optimality of T-coercivity

® Study of an elementary setting:
® piecewise constant coefficient o ;

in this case, 0] = o] =o1,and o, = o) = |o2|;

=
define the contrast K, := 2.

01

® 5, £ —0o, in asymmetric geometry.

Sample symmetric geometry:

O

|
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Optimality of T-coercivity

Study of an elementary setting:
® piecewise constant coefficient o ;

in this case, 0] = o] =o1,and o, = o) = |o2|;
. o2
define the contrast kK, := —.
o1

o1 # —o2, in a symmetric geometry.
Let Ry € L(V1, Vo) s.t. forall vy € Vi, Rivi(z,y) = vi(x, —y), a.e. in Qa.
One finds ||| R1 ||| = 1.

. .. o
To achieve T-coercivity, one needs ﬁ > 1.
02

|
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Optimality of T-coercivity

Study of an elementary setting:
® piecewise constant coefficient o ;
in this case, 0] = o] =o1,and o, = o) = |o2|;

define the contrast K, := 2.

o1
o1 # —o2, in a symmetric geometry.
Let R1 € E(Vl, V2) s.t. forallv; € Vi, Riv1 (CIZ, y) = v (:C, —y), a.e. in Qs.
One finds ||| R1 ||| = 1.

. .. o
To achieve T-coercivity, one needs ﬁ > 1.
02

Let Ry € ﬁ(VQ, Vl) s.t. forall vy € Vo, Rovo (CC, y) = V9 (33, —y), a.e. in 7.
One finds ||| Ro||| = 1.

. .. g2
To achieve T-coercivity, one needs u > 1.
o1

|
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Optimality of T-coercivity

® Study of an elementary setting:
® piecewise constant coefficient o ;

in this case, 0] = o] =o1,and o, = o) = |o2|;
. o2
define the contrast kK, := —.
o1

® 5, £ —0o, in asymmetric geometry.

The scalar transmission problem is well-posed when x, # —1.
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Optimality of T-coercivity

Study of an elementary setting:
® piecewise constant coefficient o ;

in this case, 0] = o] =o1,and o, = o) = |o2|;
. o2
define the contrast kK, := —.
o1

o1 # —o2, in a symmetric geometry.

The scalar transmission problem is well-posed when x, # —1.

o1 = —o2, in a symmetric geometry.

The scalar transmission problem is ill-posed when x, = —1 (Critical case.)
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Optimality of T-coercivity

Study of an elementary setting:
® piecewise constant coefficient o ;
in this case, 0] = o] =o1,and o, = o) = |o2|;
op)

define the contrast kK, := —.
o1

o1 # —o2, in a symmetric geometry.

The scalar transmission problem is well-posed when x, # —1.

o1 = —o2, in a symmetric geometry.
The scalar transmission problem is ill-posed when x, = —1 (Critical case.)
Conclusion: | The scalar transmission problem is well-posed iff ko # —1 |.
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Optimality of T-coercivity-2
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® Study of simple geometries (on a piecewise straight interface X):

1. Symmetric geometry
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Optimality of T-coercivity-2

® Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry

2. Interface with an interior corner

Operators R1, Ro combine rotation + angle

dilation:
(R1v1)(p,0) = vi(p, 50— (27 — 0));

2T —«

(R2 Ug)(p, 9) — UQ(pa 21 — 2T—0 )

(8
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Optimality of T-coercivity-2
- -

® Study of simple geometries (on a piecewise straight interface X):

1. Symmetric geometry

2. Interface with an interior corner

Operators R1, Ro combine rotation + angle
dilation:

(R1v1)(p,0) = v1(p, 5o (27 — 0));

2T —«

(R2 Ug)(p, 9) — UQ(pa 21 — 2T—0 )

(8

£=1,2: |\|Rg|\|2§max(2”a_0‘ <)

) 2m— o

- N
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Optimality of T-coercivity-2
- -

® Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry
2. Interface with an interior corner

3. Interface with a boundary corner

Operators R1, R2: similar to 2. (+ continu-
ation by 0)
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Optimality of T-coercivity-2
-

Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

® Handle general geometries by localization: use the T-coercivity results locally.
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Optimality of T-coercivity-2
-

Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

® Handle general geometries by localization: use the T-coercivity results locally.
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Optimality of T-coercivity-2
-

Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

® Handle general geometries by localization: use the T-coercivity results locally.
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Optimality of T-coercivity-2
-

Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

® Handle general geometries by localization: use the T-coercivity results locally.
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Optimality of T-coercivity-2
-

Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

® Handle general geometries by localization: use the T-coercivity results locally.
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Optimality of T-coercivity-2
-

Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

® Handle general geometries by localization: use the T-coercivity results locally.
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Optimality of T-coercivity-2
. -

Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner
® Handle general geometries by localization: use the T-coercivity results locally.

There exists an interval Is; C| — 00, 0[ s.t. if ks & Iy, one has a Garding inequality

30,6, Cl, > 0, Yo € H (), la(v, Tv)| > Co [v]2 = CJv]13.
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Optimality of T-coercivity-2
- -

® Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

® Handle general geometries by localization: use the T-coercivity results locally.

If ko & Is;, then the scalar transmission problem is well-posed in the Fredholm sense |.

#® Inthis case, the associated operator is Fredholm of index 0.

#® The interval Is; is optimal in the sense that if Kk, € Is;, then the scalar
transmission problem is not well-posed in the Fredholm sense.

® The bounds of Is. depend on the value of the angles at the corners.
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Optimality of T-coercivity-2
. -

Study of simple geometries (on a piecewise straight interface X):
1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

® Handle general geometries by localization: use the T-coercivity results locally.

If ko & Is;, then the scalar transmission problem is well-posed in the Fredholm sense |.

°

In this case, the associated operator is Fredholm of index O.

The interval Iy; is optimal in the sense that if kK, € Is;, then the scalar
transmission problem is not well-posed in the Fredholm sense.

The bounds of Is. depend on the value of the angles at the corners.

°

The interval Is; always contains —1.

If the interface is C! without endpoints, Is, = {—1} (cf. ).

‘ The “generalized” Helmholtz equation can be solved similarly.
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Numerical experiments: no corners

- N

In a symmetric domain, made up of ; =] — 1,0[x]0, 1[, Q22 =]0, 1[x]0, 1[.
An exact piecewise smooth solution is available.

Contrast: ko = —1.001.

o0 0

Conforming discretization using P; Lagrange finite elements:
® (7n)n aregular family of meshes;

® (V3,)y (discrete) subspaces of H} (2);

® Freef emt+ software.

ENSTA Rennes, August 2013 — p.10/15
ParisTech



Numerical experiments: no corners

- N

In a symmetric domain, made up of ; =] — 1,0[x]0, 1[, Q22 =]0, 1[x]0, 1[.
An exact piecewise smooth solution is available.

Conforming discretization using P; Lagrange finite elements.

o0 0

We study below the influence of the meshes (errors in L2-norm; O(h?) is expected).

|
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Numerical experiments: no corners

- N

In a symmetric domain, made up of ; =] — 1,0[x]0, 1[, Q22 =]0, 1[x]0, 1[.
An exact piecewise smooth solution is available.

Conforming discretization using P; Lagrange finite elements.

o0 0

We study below the influence of the meshes (errors in L2-norm; O(h?) is expected).

Contrast ==1.001

* Non symmetric mesh
R e Locally symmetric mesh
o- Symmetric mesh
o °
° ° ° °
-1+ L] o . ..
2 e e
e o ¢ ® e ° a=-1.2433
@) Tl o S °
(<5} °
=
B 5
(O]
@
L a=-1.2539
_5,
a=-1.9993
-6 | | | | | | | | | |
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
log(1/h)
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Numerical analysis
f Let (T} ); denote approximations of T. —‘

The meshes (7)), are locally T;-conform if
there exists hg > 0 s.t. for all h < hg, Tj, is locally invariant by the geometrical

transformations defining Ty, in a fixed neighborhood of the interface X..
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Numerical analysis

Let (T} ); denote approximations of T.

The meshes (7)), are locally T;-conform if
there exists hg > 0 s.t. for all h < hg, Tj, is locally invariant by the geometrical
transformations defining Ty, in a fixed neighborhood of the interface X..

Proposition (Error estinate, ) Assume that k, & Is.
If the meshes (7});, are locally Tj,-conform, then, for A small enough, the discrete
problem is well-posed in V},. Moreover, the discrete solution wuy, is such that

U — U < (C inf |lu—wv
u—wnlly < C _infflu= iy

with C' > 0 independent of A.

|
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Numerical analysis

Let (T} ); denote approximations of T.

The meshes (7)), are locally T;-conform if
there exists hg > 0 s.t. for all h < hg, Tj, is locally invariant by the geometrical
transformations defining Ty, in a fixed neighborhood of the interface X..

Proposition (Error estinate, ) Assume that k, & Is.
If the meshes (7});, are locally Tj,-conform, then, for A small enough, the discrete
problem is well-posed in V},. Moreover, the discrete solution wuy, is such that

U — U < (C inf |lu—wv
u—wnlly < C _infflu= iy

with C' > 0 independent of A.

Hence, it is required that the discrete spaces V}, are locally invariant at the interface.

|
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Numerical experiments: no corners-2

- N

® In a non-symmetric domain: 1 =] — 2,0[x]0, 1[, Q2 =]0, 1[x]0, 1].
® Contrast: kK, = —1.001.
® A posteriori hp-adaptivity using 2Dhp software ( ).
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Numerical experiments: no corners-2

| .

In a non-symmetric domain: Q1 =| — 2,0[x]0, 1[, Q2 =]0, 1[x]0, 1].
Contrast: kK, = —1.001.

A posteriori hp-adaptivity using 2Dhp software (Demkowicz).

L3 I

Computed solution after 10 iterations:

e DN
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Numerical experiments: no corners-2

| .

In a non-symmetric domain: Q1 =| — 2,0[x]0, 1[, Q2 =]0, 1[x]0, 1].
Contrast: kK, = —1.001.

A posteriori hp-adaptivity using 2Dhp software (Demkowicz).

L 20 I I

Initial mesh (with degrees of approximation):
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Numerical experiments: no corners-2

- N

In a non-symmetric domain: 1 =] — 2,0[x]0, 1[, 22 =]0, 1[x]0, 1[.
Contrast: kK, = —1.001.

A posteriori hp-adaptivity using 2Dhp software (Demkowicz).

L3 I

Final mesh (with degrees of approximation):

.

|
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Numerical experiments: no corners-2

- N

In a non-symmetric domain: 2; =| — 2,0[x]0, 1], 22 =]0, 1[x]0, 1].
Contrast: ko = —1.001.

A posteriori hp-adaptivity using 2Dhp software (Demkowicz).

L3 I

Final mesh (with degrees of approximation):

.

Using adaptivity yields locally symmetric meshes, with locally symmetric degree of the
‘ approximation: the final discrete spaces are locally invariant at the interface.
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Numerical experiments: with corners

- N

® When the interface X has corners, one needs to redefine the operators R1, Rs.
(at the corners, the operators rely on rotation + angle dilation).

- N

ENSTA Rennes, August 2013 — p.13/15
ParisTech



Numerical experiments: with corners

- N

® When the interface X has corners, one needs to redefine the operators R1, Rs.
(at the corners, the operators rely on rotation + angle dilation).

® |dea: finite elements are compatible with affine mappings, so one can use them!
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Numerical experiments: with corners
|

<

When the interface X has corners, one needs to redefine the operators R, Ra.
(at the corners, the operators rely on rotation + angle dilation).

|dea: finite elements are compatible with affine mappings, so one can use them!

Affine-based geometric operator . use of tilings.
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Numerical experiments: with corners

- N

® When the interface X has corners, one needs to redefine the operators R1, Rs.
(at the corners, the operators rely on rotation + angle dilation).

® |dea: finite elements are compatible with affine mappings, so one can use them!

Affine-based geometric operator . use of tilings.

Example with o = 7/3:
going from €22 to €21. v
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Numerical experiments: with corners

-,

® |dea: finite elements are compatible with affine mappings, so one can use them!

When the interface X has corners, one needs to redefine the operators R, Ra.
(at the corners, the operators rely on rotation + angle dilation).

Affine-based geometric operator . use of tilings.

® Provided the meshes are locally T;,-conform, convergence follows for A small enough.
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Numerical experiments: with corners

L, N

® |dea: finite elements are compatible with affine mappings, so one can use them!

When the interface X has corners, one needs to redefine the operators R, Ra.
(at the corners, the operators rely on rotation + angle dilation).

Affine-based geometric operator . use of tilings.

Provided the meshes are locally T;,-conform, convergence follows for A~ small enough.

L I

What is the impact on the condition on the contrast . (discrete case)?

- N
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Numerical experiments: with corners

L, N

When the interface X has corners, one needs to redefine the operators R, Ra.
(at the corners, the operators rely on rotation + angle dilation).

® |dea: finite elements are compatible with affine mappings, so one can use them!
Affine-based geometric operator . use of tilings.

Provided the meshes are locally T;,-conform, convergence follows for A~ small enough.

L I

What is the impact on the condition on the contrast . (discrete case)?

10

Critical interval upperbound with tiling
or — — — Critical interval upperbound

n(alpha=2*pi/n)

| ) i
.
7
b
1 - 1 1 1 1 1 1 1
D 2 3 4 5 6 7 8 9 10
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Numerical experiments: with corners-2

- N

® Consider finally an eigenproblem.

Find uw € H}(Q) \ {0}, A € C such that
—div (ocgrad u) = Anu in 2.

(n€ L>(R),0<n_ <ninQ).

- N
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Numerical experiments: with corners-2

- N

® Consider finally an eigenproblem.

Find uw € H}(Q) \ {0}, A € C such that
—div (ocgrad u) = Anu in 2.

(me L>*(Q),0<n- <nin ).
® One can use the classical theory (cf. ) to carry out the numerical analysis:
® all eigenvalues are real,
® there are two sequences of eigenvalues with limits —oo, +o0;
® convergence theory follows from the error estimate for the direct problem.
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Numerical experiments: with corners-2

- N

® Consider finally an eigenproblem.

Find uw € H}(Q) \ {0}, A € C such that
—div (ocgrad u) = Anu in 2.

(n€ L>(2),0<n_ <ninQ).
® One can use the classical theory (cf. ) to carry out the numerical analysis.
® Droplet-shape domain Q2 (« = 7/6); contrast K, = —13, 7 = 1.

® Discretization using P> Lagrange finite elements; Mat | ab software.
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Numerical experiments: with corners-2

- N

® Consider finally an eigenproblem.

Find uw € H}(Q) \ {0}, A € C such that
—div (ocgrad u) = Anu in 2.

(n€ L>(R),0<n_ <ninQ).
One can use the classical theory (cf. ) to carry out the numerical analysis.

Droplet-shape domain 2 (o« = 7 /6); contrast Kk, = —13, n = 1.

L I I

Discretization using P> Lagrange finite elements; Mat | ab software.

Eigenvalue lambda = -4.0758 Eigenvalue lambda = 1.4805
0.8

0.5- 05}

L ol
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- 0.2
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. . . . .
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Conclusion/Perspectives

- N

® T-coercivity is versatile!

® BEM for the classical Maxwell problem (cf. );
FEM for the classical scalar or Maxwell problems (cf. );
Vol. Int. Egq. Methods for scattering from gratings (cf. );

L I

study of Interior Transmission Eigenvalue Problems:
& scalar case (cf. );
£ Maxwell problem (cf. );

°

etc.

- N
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Conclusion/Perspectives

- N

® T-coercivity is versatile!

® Scalar problems with sign-shifting coefficients:
#® introduction of T-coercivity during WAVES'07 ;

® numerical analysis when T-coercivity applies (cf. :
: , DG-approach , etc.);

® theoretical study of well-posedness (cf. );
® theoretical study of the critical cases (cf. );
T discretization and numerical analysis of the critical cases.

® Maxwell problem(s) with sign-shifting coefficients:
® T-coercivity + side results during NELIA'11 (cf. );
T numerical analysis when T-coercivity applies.

® In the critical cases: are models derived from physics still relevant?
T re-visit models (homogenization, multi-scale numerics, etc.).
1 define ad hoc numerical methods.
(A.N.R. METAMATH Project; coordinator ).
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