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Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of Rd, d = 1, 2, 3.







Find u ∈ H1
0 (Ω) such that

−div (σgradu) = f in Ω.

Motivation (EM-ics):
σ := ε−1 or σ := µ−1.
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Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of Rd, d = 1, 2, 3.







Find u ∈ H1
0 (Ω) such that

−div (σgradu) = f in Ω.

σ ∈ L∞(Ω) is a sign-changing coefficient:







σ > 0 in Ω1, with meas(Ω1) > 0 ;

σ < 0 in Ω2, with meas(Ω2) > 0.

σ−1 ∈ L∞(Ω).

The parameter σ is discontinuous across Σ.
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Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of Rd, d = 1, 2, 3.







Find u ∈ H1
0 (Ω) such that

−div (σgradu) = f in Ω.

σ ∈ L∞(Ω), is a sign-changing coefficient.

σ−1 ∈ L∞(Ω).

NB. The “generalized” Helmholtz equation −div (σgradu)− ω2ηu = f with
η ∈ L∞(Ω) can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf’10].

One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr’12].

Rennes, August 2013 – p.2/15



Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of Rd, d = 1, 2, 3.







Find u ∈ H1
0 (Ω) such that

−div (σgradu) = f in Ω.

σ ∈ L∞(Ω), is a sign-changing coefficient.

σ−1 ∈ L∞(Ω).

NB. The “generalized” Helmholtz equation −div (σgradu)− ω2ηu = f with
η ∈ L∞(Ω) can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf’10].

One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr’12].

The main difficulty is that (v, w) 7→

∫

Ω

σ grad v · gradw dΩ is not coercive in H1
0 (Ω).
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Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of Rd, d = 1, 2, 3.







Find u ∈ H1
0 (Ω) such that

−div (σgradu) = f in Ω.

σ ∈ L∞(Ω), is a sign-changing coefficient.

σ−1 ∈ L∞(Ω).

NB. The “generalized” Helmholtz equation −div (σgradu)− ω2ηu = f with
η ∈ L∞(Ω) can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf’10].

One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr’12].

The main difficulty is that (v, w) 7→

∫

Ω

σ grad v · gradw dΩ is not coercive in H1
0 (Ω).

=⇒ Solve the problem with T-coercivity!
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Abstract setting

Let

V and W be two Hilbert spaces ;

a(·, ·) be a continuous sesquilinear form over V ×W ;

f be an element of W ′, the dual space of W .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ W, a(u,w) = 〈f, w〉.
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Abstract setting

Let

V and W be two Hilbert spaces ;

a(·, ·) be a continuous sesquilinear form over V ×W ;

f be an element of W ′, the dual space of W .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ W, a(u,w) = 〈f, w〉.

[Banach-Necas-Babuska] Introduce the two conditions

(BNB1) ∃α′ > 0, ∀v ∈ V, sup
w∈W\{0}

|a(v, w)|

‖w‖W
≥ α′ ‖v‖V .

(BNB2) ∀w ∈ W : {∀v ∈ V, a(v, w) = 0} =⇒ {w = 0}.

NB. Condition (BNB1) is called an inf-sup condition, or a stability condition.
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Abstract setting

Let

V and W be two Hilbert spaces ;

a(·, ·) be a continuous sesquilinear form over V ×W ;

f be an element of W ′, the dual space of W .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ W, a(u,w) = 〈f, w〉.

The form a(·, ·) is T-coercive if

∃T ∈ L(V,W ), bijective, ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V
.
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Abstract setting

Let

V and W be two Hilbert spaces ;

a(·, ·) be a continuous sesquilinear form over V ×W ;

f be an element of W ′, the dual space of W .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ W, a(u,w) = 〈f, w〉.

The form a(·, ·) is T-coercive if

∃T ∈ L(V,W ), bijective, ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V
.

Theorem (Well-posedness) The three assertions below are equivalent:

(i) the Problem (V F ) is well-posed ;

(ii) the form a(·, ·) satisfies conditions (BNB1) and (BNB2).

(iii) the form a(·, ·) is T-coercive.
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Abstract setting

Let

V and W be two Hilbert spaces ;

a(·, ·) be a continuous sesquilinear form over V ×W ;

f be an element of W ′, the dual space of W .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ W, a(u,w) = 〈f, w〉.

The form a(·, ·) is T-coercive if

∃T ∈ L(V,W ), bijective, ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V
.

Theorem (Well-posedness) The three assertions below are equivalent:

(i) the Problem (V F ) is well-posed ;

(ii) the form a(·, ·) satisfies conditions (BNB1) and (BNB2).

(iii) the form a(·, ·) is T-coercive.

The operator T realizes conditions (BNB1) and (BNB2) explicitly.
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Abstract setting-2

V = W , case of a hermitian form a

The previous definition and theorem can be simplified...
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Abstract setting-2

V = W , case of a hermitian form a

The previous definition and theorem can be simplified...

The hermitian form a(·, ·) is T-coercive if

∃T ∈ L(V ), ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V
.
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Abstract setting-2

V = W , case of a hermitian form a

The previous definition and theorem can be simplified...

The hermitian form a(·, ·) is T-coercive if

∃T ∈ L(V ), ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V
.

Theorem (Well-posedness) The three assertions below are equivalent:

(i) the Problem (V F ) with hermitian form is well-posed ;

(ii) the hermitian form a(·, ·) satisfies condition (BNB1).

(iii) the hermitian form a(·, ·) is T-coercive.

Rennes, August 2013 – p.4/15



Practical T-coercivity

In the case of the scalar transmission problem:

Ω, Ω1 and Ω2 are domains of Rd, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;
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Practical T-coercivity

In the case of the scalar transmission problem:

Ω, Ω1 and Ω2 are domains of Rd, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;

V := H1
0 (Ω) ; the form is a(v, w) :=

∫

Ω

σ grad v · gradw dΩ.

0 < σ−
1

≤ σ ≤ σ+
1

< ∞ in Ω1 ; 0 < σ−
2

≤ −σ ≤ σ+
2

< ∞ in Ω2.
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Practical T-coercivity

In the case of the scalar transmission problem:

Ω, Ω1 and Ω2 are domains of Rd, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;

V := H1
0 (Ω) ; the form is a(v, w) :=

∫

Ω

σ grad v · gradw dΩ.

0 < σ−
1

≤ σ ≤ σ+
1

< ∞ in Ω1 ; 0 < σ−
2

≤ −σ ≤ σ+
2

< ∞ in Ω2.

Introduce Vk := {vk ∈ H1(Ωk) | vk|Γk
= 0}, k = 1, 2:
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Practical T-coercivity

In the case of the scalar transmission problem:

Ω, Ω1 and Ω2 are domains of Rd, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;

V := H1
0 (Ω) ; the form is a(v, w) :=

∫

Ω

σ grad v · gradw dΩ.

0 < σ−
1

≤ σ ≤ σ+
1

< ∞ in Ω1 ; 0 < σ−
2

≤ −σ ≤ σ+
2

< ∞ in Ω2.

Introduce Vk := {vk ∈ H1(Ωk) | vk|Γk
= 0}, k = 1, 2:

V = {v | v|Ωk
∈ Vk, k = 1, 2, MatchingΣ(v|Ω1

, v|Ω2
) = 0} ,

with MatchingΣ(v1, v2) := v1|Σ − v2|Σ.
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=







v1 in Ω1

−v2 in Ω2

.
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=







v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=







v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T1 v :=







v1 in Ω1

−v2+2R1 v1 in Ω2

.
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=







v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T1 v :=







v1 in Ω1

−v2+2R1 v1 in Ω2

.

(+) T1 ∈ L(H1
0 (Ω)).

(+) One checks easily that (T1)2 = I!
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=







v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T1 v :=







v1 in Ω1

−v2+2R1 v1 in Ω2

.

Can one achieve T-coercivity with T1?
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=







v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T1 v :=







v1 in Ω1

−v2+2R1 v1 in Ω2

.

To obtain T-coercivity with T1, one needs
σ−
1

σ+
2

> |||R1|||
2.
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Practical T-coercivity-3

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T2 v :=







v1−2R2 v2 in Ω1

−v2 in Ω2

.
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Practical T-coercivity-3

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T2 v :=







v1−2R2 v2 in Ω1

−v2 in Ω2

.

To obtain T-coercivity with T2, one needs
σ−
2

σ+
1

> |||R2|||
2.
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Practical T-coercivity-3

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T2 v :=







v1−2R2 v2 in Ω1

−v2 in Ω2

.

Conclusion: to achieve T-coercivity with T1 or T2 , one needs

σ−
1

σ+
2

>

(

inf
R1

|||R1|||

)2

or
σ−
2

σ+
1

>

(

inf
R2

|||R2|||

)2

.
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Practical T-coercivity-3

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T2 v :=







v1−2R2 v2 in Ω1

−v2 in Ω2

.

Conclusion: to achieve T-coercivity with T1 or T2 , one needs

σ−
1

σ+
2

>

(

inf
R1

|||R1|||

)2

or
σ−
2

σ+
1

>

(

inf
R2

|||R2|||

)2

.

How to choose the operators R1, R2?

using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf’10], [Nicaise-Venel’11] ;

using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr’12],
[BonnetBenDhia-Carvalho-Jr].
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1

= σ+
1

= σ1, and σ−
2

= σ+
2

= |σ2| ;

define the contrast κσ :=
σ2

σ1

∈]−∞, 0[.
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1

= σ+
1

= σ1, and σ−
2

= σ+
2

= |σ2| ;

define the contrast κσ :=
σ2

σ1

.

σ1 6= −σ2, in a symmetric geometry.

Sample symmetric geometry:
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1

= σ+
1

= σ1, and σ−
2

= σ+
2

= |σ2| ;

define the contrast κσ :=
σ2

σ1

.

σ1 6= −σ2, in a symmetric geometry.

Let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, R1v1(x, y) = v1(x,−y), a.e. in Ω2.

One finds |||R1||| = 1.

To achieve T-coercivity, one needs
σ1

|σ2|
> 1.
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1

= σ+
1

= σ1, and σ−
2

= σ+
2

= |σ2| ;

define the contrast κσ :=
σ2

σ1

.

σ1 6= −σ2, in a symmetric geometry.

Let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, R1v1(x, y) = v1(x,−y), a.e. in Ω2.

One finds |||R1||| = 1.

To achieve T-coercivity, one needs
σ1

|σ2|
> 1.

Let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, R2v2(x, y) = v2(x,−y), a.e. in Ω1.

One finds |||R2||| = 1.

To achieve T-coercivity, one needs
|σ2|

σ1

> 1.
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1

= σ+
1

= σ1, and σ−
2

= σ+
2

= |σ2| ;

define the contrast κσ :=
σ2

σ1

.

σ1 6= −σ2, in a symmetric geometry.

The scalar transmission problem is well-posed when κσ 6= −1.
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1

= σ+
1

= σ1, and σ−
2

= σ+
2

= |σ2| ;

define the contrast κσ :=
σ2

σ1

.

σ1 6= −σ2, in a symmetric geometry.

The scalar transmission problem is well-posed when κσ 6= −1.

σ1 = −σ2, in a symmetric geometry.

The scalar transmission problem is ill-posed when κσ = −1 (Critical case.)
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1

= σ+
1

= σ1, and σ−
2

= σ+
2

= |σ2| ;

define the contrast κσ :=
σ2

σ1

.

σ1 6= −σ2, in a symmetric geometry.

The scalar transmission problem is well-posed when κσ 6= −1.

σ1 = −σ2, in a symmetric geometry.

The scalar transmission problem is ill-posed when κσ = −1 (Critical case.)

Conclusion: The scalar transmission problem is well-posed iff κσ 6= −1 .

Rennes, August 2013 – p.8/15



Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

Operators R1, R2 combine rotation + angle
dilation:
(R1 v1)(ρ, θ) = v1(ρ,

α

2π−α
(2π − θ));

(R2 v2)(ρ, θ) = v2(ρ, 2π − 2π−α

α
θ).
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

Operators R1, R2 combine rotation + angle
dilation:
(R1 v1)(ρ, θ) = v1(ρ,

α

2π−α
(2π − θ));

(R2 v2)(ρ, θ) = v2(ρ, 2π − 2π−α

α
θ).

ℓ = 1, 2: |||Rℓ|||
2 ≤ max( 2π−α

α
, α

2π−α
)
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

Operators R1, R2: similar to 2. (+ continu-
ation by 0)
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

Handle general geometries by localization: use the T-coercivity results locally.
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Study of simple geometries (on a piecewise straight interface Σ):
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2. Interface with an interior corner

3. Interface with a boundary corner

Handle general geometries by localization: use the T-coercivity results locally.
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3. Interface with a boundary corner
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

Handle general geometries by localization: use the T-coercivity results locally.
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

Handle general geometries by localization: use the T-coercivity results locally.
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

Handle general geometries by localization: use the T-coercivity results locally.
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

Handle general geometries by localization: use the T-coercivity results locally.

There exists an interval IΣ ⊂]−∞, 0[ s.t. if κσ 6∈ IΣ, one has a Garding inequality

∃Cσ , C
′
σ > 0, ∀v ∈ H1

0 (Ω), |a(v, Tv)| ≥ Cσ |v|21 − C′
σ‖v‖

2
0.
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

Handle general geometries by localization: use the T-coercivity results locally.

If κσ 6∈ IΣ, then the scalar transmission problem is well-posed in the Fredholm sense .

In this case, the associated operator is Fredholm of index 0.

The interval IΣ is optimal in the sense that if κσ ∈ IΣ, then the scalar
transmission problem is not well-posed in the Fredholm sense.

The bounds of IΣ depend on the value of the angles at the corners.
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Optimality of T-coercivity-2

Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

2. Interface with an interior corner

3. Interface with a boundary corner

Handle general geometries by localization: use the T-coercivity results locally.

If κσ 6∈ IΣ, then the scalar transmission problem is well-posed in the Fredholm sense .

In this case, the associated operator is Fredholm of index 0.

The interval IΣ is optimal in the sense that if κσ ∈ IΣ, then the scalar
transmission problem is not well-posed in the Fredholm sense.

The bounds of IΣ depend on the value of the angles at the corners.

The interval IΣ always contains −1.

If the interface is C1 without endpoints, IΣ = {−1} (cf. [Costabel-Stephan’85]).

The “generalized” Helmholtz equation can be solved similarly.
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Numerical experiments: no corners

In a symmetric domain, made up of Ω1 =]− 1, 0[×]0, 1[, Ω2 =]0, 1[×]0, 1[.

An exact piecewise smooth solution is available.

Contrast: κσ = −1.001.

Conforming discretization using P1 Lagrange finite elements:

(Th)h a regular family of meshes;

(Vh)h (discrete) subspaces of H1
0 (Ω);

Freefem++ software.
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An exact piecewise smooth solution is available.

Conforming discretization using P1 Lagrange finite elements.

We study below the influence of the meshes (errors in L2-norm ; O(h2) is expected).
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Numerical experiments: no corners
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An exact piecewise smooth solution is available.

Conforming discretization using P1 Lagrange finite elements.

We study below the influence of the meshes (errors in L2-norm ; O(h2) is expected).
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Numerical analysis

Let (Th)h denote approximations of T.

The meshes (Th)h are locally Th-conform if
there exists h0 > 0 s.t. for all h < h0, Th is locally invariant by the geometrical
transformations defining Th, in a fixed neighborhood of the interface Σ.
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Numerical analysis

Let (Th)h denote approximations of T.

The meshes (Th)h are locally Th-conform if
there exists h0 > 0 s.t. for all h < h0, Th is locally invariant by the geometrical
transformations defining Th, in a fixed neighborhood of the interface Σ.

Proposition (Error estimate, [Chesnel-Jr’13]) Assume that κσ 6∈ IΣ.
If the meshes (Th)h are locally Th-conform, then, for h small enough, the discrete
problem is well-posed in Vh. Moreover, the discrete solution uh is such that

‖u− uh‖1 ≤ C inf
vh∈Vh

‖u− vh‖1

with C > 0 independent of h.
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Numerical analysis

Let (Th)h denote approximations of T.

The meshes (Th)h are locally Th-conform if
there exists h0 > 0 s.t. for all h < h0, Th is locally invariant by the geometrical
transformations defining Th, in a fixed neighborhood of the interface Σ.

Proposition (Error estimate, [Chesnel-Jr’13]) Assume that κσ 6∈ IΣ.
If the meshes (Th)h are locally Th-conform, then, for h small enough, the discrete
problem is well-posed in Vh. Moreover, the discrete solution uh is such that

‖u− uh‖1 ≤ C inf
vh∈Vh

‖u− vh‖1

with C > 0 independent of h.

Hence, it is required that the discrete spaces Vh are locally invariant at the interface.
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Numerical experiments: no corners-2

In a non-symmetric domain: Ω1 =]− 2, 0[×]0, 1[, Ω2 =]0, 1[×]0, 1[.

Contrast: κσ = −1.001.

A posteriori hp-adaptivity using 2Dhp software (Demkowicz).
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Numerical experiments: no corners-2

In a non-symmetric domain: Ω1 =]− 2, 0[×]0, 1[, Ω2 =]0, 1[×]0, 1[.

Contrast: κσ = −1.001.

A posteriori hp-adaptivity using 2Dhp software (Demkowicz).

Computed solution after 10 iterations:
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Numerical experiments: no corners-2

In a non-symmetric domain: Ω1 =]− 2, 0[×]0, 1[, Ω2 =]0, 1[×]0, 1[.

Contrast: κσ = −1.001.

A posteriori hp-adaptivity using 2Dhp software (Demkowicz).

Initial mesh (with degrees of approximation):
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Numerical experiments: no corners-2

In a non-symmetric domain: Ω1 =]− 2, 0[×]0, 1[, Ω2 =]0, 1[×]0, 1[.

Contrast: κσ = −1.001.

A posteriori hp-adaptivity using 2Dhp software (Demkowicz).

Final mesh (with degrees of approximation):
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Numerical experiments: no corners-2

In a non-symmetric domain: Ω1 =]− 2, 0[×]0, 1[, Ω2 =]0, 1[×]0, 1[.

Contrast: κσ = −1.001.

A posteriori hp-adaptivity using 2Dhp software (Demkowicz).

Final mesh (with degrees of approximation):


x


y


z


Using adaptivity yields locally symmetric meshes, with locally symmetric degree of the
approximation: the final discrete spaces are locally invariant at the interface.
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Numerical experiments: with corners

When the interface Σ has corners, one needs to redefine the operators R1, R2.
(at the corners, the operators rely on rotation + angle dilation).
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Idea: finite elements are compatible with affine mappings, so one can use them!

Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.
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Numerical experiments: with corners

When the interface Σ has corners, one needs to redefine the operators R1, R2.
(at the corners, the operators rely on rotation + angle dilation).

Idea: finite elements are compatible with affine mappings, so one can use them!

Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.

Example with α = π/3:
going from Ω2 to Ω1.
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Numerical experiments: with corners

When the interface Σ has corners, one needs to redefine the operators R1, R2.
(at the corners, the operators rely on rotation + angle dilation).

Idea: finite elements are compatible with affine mappings, so one can use them!

Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.

Provided the meshes are locally Th-conform, convergence follows for h small enough.
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(at the corners, the operators rely on rotation + angle dilation).

Idea: finite elements are compatible with affine mappings, so one can use them!

Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.

Provided the meshes are locally Th-conform, convergence follows for h small enough.

What is the impact on the condition on the contrast κσ (discrete case)?
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Numerical experiments: with corners

When the interface Σ has corners, one needs to redefine the operators R1, R2.
(at the corners, the operators rely on rotation + angle dilation).

Idea: finite elements are compatible with affine mappings, so one can use them!

Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.

Provided the meshes are locally Th-conform, convergence follows for h small enough.

What is the impact on the condition on the contrast κσ (discrete case)?
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Critical interval upperbound with tiling

Critical interval upperbound
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Numerical experiments: with corners-2

Consider finally an eigenproblem.







Find u ∈ H1
0 (Ω) \ {0}, λ ∈ C such that

−div (σgradu) = ληu in Ω.

(η ∈ L∞(Ω), 0 < η− ≤ η in Ω).
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Numerical experiments: with corners-2

Consider finally an eigenproblem.







Find u ∈ H1
0 (Ω) \ {0}, λ ∈ C such that

−div (σgradu) = ληu in Ω.

(η ∈ L∞(Ω), 0 < η− ≤ η in Ω).

One can use the classical theory (cf. [Osborn’75]) to carry out the numerical analysis:

all eigenvalues are real;

there are two sequences of eigenvalues with limits −∞, +∞;

convergence theory follows from the error estimate for the direct problem.
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Numerical experiments: with corners-2

Consider finally an eigenproblem.







Find u ∈ H1
0 (Ω) \ {0}, λ ∈ C such that

−div (σgradu) = ληu in Ω.

(η ∈ L∞(Ω), 0 < η− ≤ η in Ω).

One can use the classical theory (cf. [Osborn’75]) to carry out the numerical analysis.

Droplet-shape domain Ω (α = π/6); contrast κσ = −13, η = 1.

Discretization using P2 Lagrange finite elements; Matlab software.
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





Find u ∈ H1
0 (Ω) \ {0}, λ ∈ C such that

−div (σgradu) = ληu in Ω.

(η ∈ L∞(Ω), 0 < η− ≤ η in Ω).

One can use the classical theory (cf. [Osborn’75]) to carry out the numerical analysis.

Droplet-shape domain Ω (α = π/6); contrast κσ = −13, η = 1.

Discretization using P2 Lagrange finite elements; Matlab software.
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Conclusion/Perspectives

T-coercivity is versatile!

BEM for the classical Maxwell problem (cf. [Buffa-Costabel-Schwab’02]) ;

FEM for the classical scalar or Maxwell problems (cf. [Jr’12]) ;

Vol. Int. Eq. Methods for scattering from gratings (cf. [Lechleiter-Nguyen’13]) ;

study of Interior Transmission Eigenvalue Problems:
scalar case (cf. [BonnetBenDhia-Chesnel-Haddar’11]) ;
Maxwell problem (cf. [Chesnel’12]) ;

etc.
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Conclusion/Perspectives

T-coercivity is versatile!

Scalar problems with sign-shifting coefficients:

introduction of T-coercivity during WAVES’07 ;

numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf’10],
[Nicaise-Venel’11], [Chesnel-Jr’13], DG-approach [Chung-Jr’13], etc.) ;

theoretical study of well-posedness (cf. [BonnetBenDhia-Chesnel-Jr’12]) ;

theoretical study of the critical cases (cf. [BonnetBenDhia-Chesnel-Claeys’13]) ;

† discretization and numerical analysis of the critical cases.

Maxwell problem(s) with sign-shifting coefficients:

T-coercivity + side results during NELIA’11 (cf. [BonnetBenDhia-Chesnel-Jr’1x]) ;

† numerical analysis when T-coercivity applies.

In the critical cases: are models derived from physics still relevant?

† re-visit models (homogenization, multi-scale numerics, etc.).

† define ad hoc numerical methods.

(A.N.R. METAMATH Project ; coordinator S. Fliss (POEMS)).
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