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Outline

Well-posedness with the help of explicit inf-sup operators: T-coercivity.

Numerical approximation and convergence via T-coercivity.

Helmholtz equation in acoustics.

Time-harmonic problems in electromagnetics.

Transmission problems with sign changing coefficients.

Conclusion.
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Abstract setting
f P et —‘

® V and W be two Hilbert spaces;
® af-,-) be acontinuous sesquilinear form over V- x W;
® { be an element of W', the dual space of .

Aim: solve the Variational Formulation

(VF) FindueV st VweW, a(u,w) = (f,w).
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ADbstract setting
f P et —‘

® V and W be two Hilbert spaces;
#® a(-,-) be acontinuous sesquilinear form over V- x W;
® { be an element of W', the dual space of .

Aim: solve the Variational Formulation
(VF) FindueV st VweW, a(u,w) = (f,w).

9 The Problem (V' F') is well-posed if, and only if, for all f, it has one and
only one solution u, with continuous dependence:

3C >0, Vf e W, |lullv <C|lfllw-
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ADbstract setting
f P et —‘

® V and W be two Hilbert spaces;
#® a(-,-) be acontinuous sesquilinear form over V- x W;
® { be an element of W', the dual space of .

Aim: solve the Variational Formulation
(VF) FindueV st VweW, a(u,w) = (f,w).

9 The Problem (V' F') is well-posed if, and only if, for all f, it has one and
only one solution u, with continuous dependence:

3C >0, Vf e W, |lullv <C|lfllw-

How can one prove well-posedness?
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ADbstract setting
f P et —‘

® V and W be two Hilbert spaces;
#® a(-,-) be acontinuous sesquilinear form over V- x W;
® { be an element of W', the dual space of .

Aim: solve the Variational Formulation
(VF) FindueV st VweW, a(u,w) = (f,w).

9 The Problem (V' F') is well-posed if, and only if, for all f, it has one and
only one solution u, with continuous dependence:

3C >0, Vf e W, |lullv <C|lfllw-

How can one prove well-posedness?

9 OK provided that a(-, -) is coercive!

_ |

” Nancy, April 2012 — p.3/24



NB.

Abstract setting-2

Introduce the two conditions

(BNBy) Ja’ >0, Vv €V,  sup la(v, w)| > o |||y .
wew\{o} llwllw

(BN B2) Vw e W : {Vv eV, a(v,w) =0} = {w = 0}.

Condition (BN Bj) is called an inf-sup condition, or a stability condition.
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Abstract setting-2
|

Introduce the two conditions

(BNBy) Ja’ >0, Vv €V,  sup la(v, w)| > o |||y .
wew\{o} llwllw

(BN B2) Vw e W : {Vv eV, a(v,w) =0} = {w = 0}.

NB. Condition (BN Bj) is called an inf-sup condition, or a stability condition.

® Theorem (Well-posedness) The two assertions below are equivalent:
(i) the Problem (V F) is well-posed;
(i) the form a(-, ) satisfies conditions (BN B;1) and (BN By).
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Abstract setting-2
f 9 Introduce the two conditions

(BNBy) Ja’ >0, Vv €V,  sup la(v, w)| > o |||y .
wew\{o} llwllw

(BN B2) Vw e W : {Vv eV, a(v,w) =0} = {w = 0}.

NB. Condition (BN Bj) is called an inf-sup condition, or a stability condition.

® Definition ( T-COercivity) The form a(-, -) is T-coercive if
3T € L(V, W), bijective, 3a > 0, Yv € V, |a(v, Tv)| > a||v||3.

NB. In other words, the form (v, v’) — a(v, Tv’) is coercive on V x V.
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Abstract setting-2

Introduce the two conditions

(BNBy) Ja’ >0, Vv €V,  sup la(v, w)| > o |||y .
wew\{o} llwllw

(BN B2) Vw e W : {Vv eV, a(v,w) =0} = {w = 0}.
NB. Condition (BN Bj) is called an inf-sup condition, or a stability condition.
Definition ( T-coercivity) The form a(-, -) is T-coercive if

3T € L(V, W), bijective, 3a > 0, Yv € V, |a(v, Tv)| > a||v||3.

Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem (V F) is well-posed;

(i) the form a(-, ) satisfies conditions (BN B;1) and (BN By).

(i) the form a(-,-) is T-coercive.
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Abstract setting-2

Introduce the two conditions

(BNBy) Ja’ >0, Vv €V,  sup la(v, w)| > o |||y .
wew\{o} llwllw

(BN B2) Vw e W : {Vv eV, a(v,w) =0} = {w = 0}.

NB. Condition (BN Bj) is called an inf-sup condition, or a stability condition.

Definition ( T-coercivity) The form a(-, -) is T-coercive if
3T € L(V, W), bijective, 3a > 0, Yv € V, |a(v, Tv)| > a||v||3.

Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem (V F) is well-posed;

(i) the form a(-, ) satisfies conditions (BN B;1) and (BN By).

(i) the form a(-,-) is T-coercive.

The operator T realizes conditions (BN B1) and (BN B2) explicitly.

|

Nancy, April 2012 — p.4/24



Abstract setting-3

V = W, case of a hermitian form a

The previous definition and theorem can be simplified...
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Abstract setting-3
B -

V = W, case of a hermitian form a

The previous definition and theorem can be simplified...

® Definition ( T-coercivity) The hermitian form a(-, -) is T-coercive if

IT € L(V), Ja >0, Yo € V, |a(v,Tv)| > allv|}.
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Abstract setting-3

V = W, case of a hermitian form a

The previous definition and theorem can be simplified...

® Definition ( T-coercivity) The hermitian form a(-, -) is T-coercive if
IT € L(V), Ja >0, Yo € V, |a(v,Tv)| > allv|}.

® Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem (V F') with hermitian form is well-posed;
(i) the hermitian form a(-, -) satisfies condition (BN B1).
(i) the hermitian form a(-, -) is T-coercive.
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Numerical approximation

- N

® Conforming discretization:
® let (V) be finite dimensional vector subspaces of V' (limjy .o dim(V},) = +00);
® let (Wp) be finite dimensional vector subspaces of W (limy,_,o dim(W3,) = 4+00).

Aim: solve the Discrete Variational Formulation

(DVF) Findup € Vi s.t. Ywp, € Wy, a(up,wp) = (f, wp).
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Numerical approximation

- N

® Conforming discretization:
® let (V) be finite dimensional vector subspaces of V' (limjy .o dim(V},) = +00);
® let (Wp) be finite dimensional vector subspaces of W (limy,_,o dim(W3,) = 4+00).

Aim: solve the Discrete Variational Formulation
(DVF) Findup € Vi s.t. Ywp, € Wy, a(up,wp) = (f, wp).

NB. For simplicity, the discrete forms are assumed to be exact.
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Numerical approximation

® Conforming discretization:

-

® let (V) be finite dimensional vector subspaces of V' (limjy .o dim(V},) = +00);

® let (Wp) be finite dimensional vector subspaces of W (limy,_,o dim(W3,) = 4+00).

Aim: solve the Discrete Variational Formulation

(UDISC)

(DVF) Findup € Vi s.t. Ywp, € Wy, a(up,wp) = (f, wp).

Introduce the uniform discrete inf-sup condition

Eloz]L > 0, Vh > 0, Vv, € Vj,

sup
wp €Wp\{0}

‘CL(U}L,’U)}L”

lwn [lw

> at||vnllv-
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Numerical approximation

-

® Conforming discretization:
® let (V) be finite dimensional vector subspaces of V' (limjy .o dim(V},) = +00);
® let (Wp) be finite dimensional vector subspaces of W (limy,_,o dim(W3,) = 4+00).

Aim: solve the Discrete Variational Formulation

(DVF) Findup € Vi s.t. Ywp, € Wy, a(up,wp) = (f, wp).

9 Introduce the uniform discrete inf-sup condition
(UDISC) day >0, Vh > 0, Yo, € Vp,, sup [@(vh, wn)| > ot |lvplv.
wyp, €W \{0} |wr [|w
® Definition ( Ty -coercivity) The form a(-, -) is uniformly T -coercive if

da*,8* >0, Vh > 0, dT), € ﬁ(Vh,Wh), Yvp € Vi,

la(vn, Thor)| > a*||op |3 and |||T4]|] < B*.
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Numerical approximation-2

® Theorem (approximation error) The three assertions below are equivalent:

(i) Problems (DV F') are well-posed with uniform continuous dependence;

(i) the form a(-, -) satisfies the uniform discrete inf-sup condition (UDISC');

(i) the form a(-,-) is uniformly T;-coercive.
If one of these conditions is satisfied, the error ||u — uy ||y is bounded by

(Strang) lu —upl|ly < C inf |lu—vu]|lv,
vy EVY

with C independent of f and h.
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Numerical approximation-2

-

Theorem (approximation error) The three assertions below are equivalent:
(i) Problems (DV F') are well-posed with uniform continuous dependence;

(i) the form a(-, -) satisfies the uniform discrete inf-sup condition (UDISC');

(i) the form a(-,-) is uniformly T;-coercive.

If one of these conditions is satisfied, the error ||u — uy ||y is bounded by

(Strang) lu —upl|ly < C inf |lu—vu]|lv,
vy EVY

with C independent of f and h.

Proposition ( T}, -coercivity)

Assume

® JT € L(V,W), bijective, such that (v, v") — a(v, Tv’) is coerciveon V x V;

® I(Tp)n, Th € L(Vh, Wh) s.t. limp 0 (SupthVh\{O} H(Th|—|gf)flq|)3)||w) =0

Then, the form a(-, -) is uniformly T -coercive for h small enough.
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Numerical approximation-2

-

Theorem (approximation error) The three assertions below are equivalent:
(i) Problems (DV F') are well-posed with uniform continuous dependence;

(i) the form a(-, -) satisfies the uniform discrete inf-sup condition (UDISC');

(i) the form a(-,-) is uniformly T;-coercive.

If one of these conditions is satisfied, the error ||u — uy ||y is bounded by

(Strang) lu —upl|ly < C inf |lu—vu]|lv,
vy EVY

with C independent of f and h.

Proposition ( T;,-Coercivity)

Assume

® JT € L(V,W), bijective, such that (v, v") — a(v, Tv’) is coerciveon V x V;
® 3(Tp)n, Tp € L(V, W) s.t. limy, g (Supvhevh\{o} ”(Th—T)(’”h)"W) = 0.

Hvnllv
Then, the form a(-, -) is uniformly T -coercive for h small enough.

Similar approach, see for BEM.

Non-conforming discretization, see for DG.
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Helmholtz equation in acoustics

- N

® Consider a bounded domain 2 of R%, with d = 1, 2, 3.
We study the classical problem

[ Find v € H(Q) such that
div (6Vu) + w?nu = fin Q
u = 0 on of2.

N\

\

® Above, fis asource, w > 0 is the given pulsation.
® onel>*(Q),andJo_,n_ >0suchthatec >o_andn > n_ a.e. in .
NB. Other boundary conditions are possible...
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Helmholtz equation in acoustics

- N

® Consider a bounded domain 2 of R%, with d = 1, 2, 3.
We study the classical problem

Find w € H}(Q2) such that
/ oVu - Vo d) —w2/ nuv dQ = —(f,v), Yv € H}(Q).
Q Q

# Above, f € H-1(Q).
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Helmholtz equation in acoustics

- N

® Consider a bounded domain 2 of R%, with d = 1, 2, 3.
We study the classical problem

Find w € H}(Q2) such that
/ oVu - Vo d) —w2/ nuv dQ = —(f,v), Yv € H}(Q).
Q Q

®» \Within our framework:
® V=W=HQ).

® a%“(v,w) = / (oVv - Vw — w?now) dSQ.
Q

How can one achieve T-coercivity of the form a%¢(-,-)?
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Helmholtz equation in acoustics

-

Consider a bounded domain 2 of R%, with d = 1, 2, 3.
We study the classical problem

Find w € H}(Q2) such that
/ oVu - Vo d) —w2/ nuv dQ = —(f,v), Yv € H}(Q).
Q Q

Within our framework:
o V=W= H&(Q).

® a%(v,w) = / (oVv - Vw — w?now) dSQ.
Q

How can one achieve T-coercivity of the form a%¢(-,-)?

Choose the norms:
1/2
® v |v|o:= (/ nv? dQ) in L2(Q).
Q

1/2
® v v = (/ nv* dQ—I—/ J|VU\2dQ> in H1(Q).
Q Q

|
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Helmholtz equation in acoustics-2

-

® Spectral Theorem : 3(ve)s>0, @ Hilbert basis of H () made up of eigenfunctions

Find (v, A¢) € Hj () x R such that vy # 0 and
/ oVuy - VwdQ = Ny / nuew dQY, Yw € Ha (Q).
Q Q

In addition
® (vg)e>0 is also an orthogonal basis of LZ(2);

® all eigenvalues are of finite multiplicity ;
® )\ >0,andlimy_, . Ay = +o0.
NB. The eigenpairs are ordered by increasing values of the eigenvalues.

_ |
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Helmholtz equation in acoustics-2
|

Spectral Theorem : 3(vy)e>0, a Hilbert basis of Hj (€2) made up of eigenfunctions

Find (v, A¢) € Hj () x R such that vy # 0 and
/ oVuy - VwdQ = Ny / nuew dQY, Yw € Ha (Q).
Q Q

® Choice of T@c¢:

Let 4, denote the largest index ¢ > 0 such that A, < w?. Introduce:

$ V7 i=spany<,<y,  (ve), afinite dimensional vector subspace of H}(Q);
® the orthogonal projection operator P~ from H&(Q) toV—.

NB. When w? is smaller than A\, ez = —1, V~ = {0} and P~ = 0...
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Helmholtz equation in acoustics-2
|

Spectral Theorem : 3(vy)e>0, a Hilbert basis of Hj (€2) made up of eigenfunctions

Find (v, A¢) € Hj () x R such that vy # 0 and
/ oVuy - VwdQ = Ny / nuew dQY, Yw € Ha (Q).
Q Q

® Choice of T@c¢:

Let 4, denote the largest index ¢ > 0 such that A, < w?. Introduce:

$ V7 i=spany<,<y,  (ve), afinite dimensional vector subspace of H}(Q);
® the orthogonal projection operator P~ from H&(Q) toV—.

NB. When w? is smaller than A\, ez = —1, V~ = {0} and P~ = 0...

Define T¢¢ := Ipi) — 2P

Tac —vp If0 <4 < linax
,UE =
+vy if £ > emaa:-

_ |
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Helmholtz equation in acoustics-2
|

Spectral Theorem : 3(vy)e>0, a Hilbert basis of Hj (€2) made up of eigenfunctions

Find (v, A¢) € Hj () x R such that vy # 0 and
/ oVuy - VwdQ = Ny / nuew dQY, Yw € Ha (Q).
Q Q

® Choice of T@c¢:

Let 4, denote the largest index ¢ > 0 such that A, < w?. Introduce:

$ V7 i=spany<,<y,  (ve), afinite dimensional vector subspace of H}(Q);
® the orthogonal projection operator P~ from H&(Q) toV—.

NB. When w? is smaller than A\, ez = —1, V~ = {0} and P~ = 0...

Define T¢¢ := Igi) — 2P
® Proposition a®c : (v,w) — / (oVv - Vw — w?now) dS) is T-coercive:
Q

Ap — w?

14+ Ay

Vv € Hp(Q), |a* (v, T*v)| > aljv||3,, with @ := min

- N |
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Helmholtz equation in acoustics-3

- N

® Conforming discretization: Lagrange finite elements = (V},)...
The Discrete Variational Formulation writes:

Find up, € Vi, s.t. a®(up,vn) = —(f,vn), Yop € Vp.

How can one achieve the uniform T -coercivity of the form a%<(-,-)?
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Helmholtz equation in acoustics-3

- N

® Conforming discretization: Lagrange finite elements = (V},)...
The Discrete Variational Formulation writes:

Find up, € Vi, s.t. a®(up,vn) = —(f,vn), Yop € Vp.

How can one achieve the uniform T -coercivity of the form a%<(-,-)?

® |dea (simple!): Build a suitable approximation of V= in V.

Choose approximations (vy p)o<r<r¢ of the basis vectors (vy)o<e<v and set

max max’

V), i=spang<i<y,, ., (Ve,n)-
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Helmholtz equation in acoustics-3

- N

® Conforming discretization: Lagrange finite elements = (V},)...
The Discrete Variational Formulation writes:

Find up, € Vi, s.t. a®(up,vn) = —(f,vn), Yop € Vp.

How can one achieve the uniform T -coercivity of the form a%<(-,-)?

® |dea (simple!): Build a suitable approximation of V= in V.
Because V ~ is finite dimensional, one can find, for A small enough, a sequence of
orthonormal families (ve 1, )o<e<v¢ », and a uniform bound § (limy, .o §(h) = 0) s.t.

max»

lve —ve.nll1 < (h), 0 <€ < lmax, for h small enough.

_ |

Nancy, April 2012 — p.10/24
TA



Helmholtz equation in acoustics-3

® Conforming discretization: Lagrange finite elements = (V},)...
The Discrete Variational Formulation writes:

Find up, € Vi, s.t. a®(up,vn) = —(f,vn), Yop € Vp.

How can one achieve the uniform T -coercivity of the form a%<(-,-)?

® |dea (simple!): Build a suitable approximation of V= in V.
Because V ~ is finite dimensional, one can find, for A small enough, a sequence of

orthonormal families (ve 1 )o<r<v,,,..,» @nd a uniform bound § (limy .o 6(h) = 0) s.t.

lve —ve.nll1 < (h), 0 <€ < lmax, for h small enough.

® Introduce:
$ the orthogonal projection operator P, from Vj, to V,~ = spang<,<, (v n);

$ the operator T?¢ := Iy, — 2P, of L(V},).
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Helmholtz equation in acoustics-3

- N

® Conforming discretization: Lagrange finite elements = (V},)...
The Discrete Variational Formulation writes:

Find up, € Vi, s.t. a®(up,vn) = —(f,vn), Yop € Vp.

How can one achieve the uniform T -coercivity of the form a%<(-,-)?

® |dea (simple!): Build a suitable approximation of V= in V.
Because V ~ is finite dimensional, one can find, for A small enough, a sequence of
orthonormal families (ve 1, )o<e<v¢ », and a uniform bound § (limy, .o §(h) = 0) s.t.

max»

lve —ve.nll1 < (h), 0 <€ < lmax, for h small enough.

® Introduce:
$ the orthogonal projection operator P, from Vj, to V,~ = spang<,<, (v n);
$ the operator T?¢ := Iy, — 2P, of L(V},).

® Proposition There holds limy,_. g (Supvhevh\{()} [Ty ﬂzhH)l(”h)”l) — 0.

Hence, the discrete solution u;, converges to u, with a rate governed by (Strang).

” Nancy, April 2012 — p.10/24



Time-harmonic problem in EM-Ics

L, N

Consider a bounded domain €2 of R3.
We study the classical problem

[ Finde € H(curl; Q) such that

—w?ce+ curl(p~ ! curle) = finQ

7\

\ e X n = 0 on 0f2.

® Above, fis asource, w > 0 is the given pulsation.
® cpel>*°(Q),andJe_,u_ >0suchthate >e_ and p > p— a.e. in Q.
NB. Other boundary conditions are possible...
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Time-harmonic problem in EM-Ics

- N

® Consider a bounded domain €2 of R3.
We study the classical problem

Find e € Ho(curl; ©2) such that
/ u~lcurle- curlvdQ — w2/ ce-vdf) = / f-vdQ, Yv € Hg(curl; Q).
Q Q Q

® Above, f € L?(Q).
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Time-harmonic problem in EM-Ics

- N

® Consider a bounded domain €2 of R3.
We study the classical problem

Find e € Ho(curl; ©2) such that
/ u~lcurle- curlvdQ — w2/ ce-vdf) = / f-vdQ, Yv € Hg(curl; Q).
Q Q Q

®» \Within our framework:
® V =W = Ho(curl; Q).

® ofM(v w) = / (p ! curlw - curlw — w?ev - w) dQ.
Q

How can one achieve T-coercivity of the form a®M (-, .)?

_ |

” Nancy, April 2012 — p.11/24



Time-harmonic problem in EM-Ics

L, N

Consider a bounded domain €2 of R3.
We study the classical problem

Find e € Ho(curl; ©2) such that
/ u~lcurle- curlvdQ — w2/ ce-vdf) = / f-vdQ, Yv € Hg(curl; Q).
Q Q Q

®» \Within our framework:
® V =W = Ho(curl; Q).

® ofM(v w) = / (p ! curlw - curlw — w?ev - w) dQ.
Q

How can one achieve T-coercivity of the form a®M (-, .)?

®» Choose the norms:

1/2
® v ||v|o:= (/ €|'v|2dQ> in L?(0).
Q

1/2
® v ||V|cur = (/ 5\v|2d§2—|—/ ,u_1|curl'v\2d§2) in H(curl; Q).
Q Q

|
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Time-harmonic problem in EM-ics-2

- N

® DIFFICULTY: the embedding of H(curl; Q) into L?(Q) is not compact!
Hence, the Spectral Theorem  can not be applied “as is”...

_ |
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Time-harmonic problem in EM-ics-2

- N

® DIFFICULTY: the embedding of H(curl; Q) into L?(Q) is not compact!
Hence, the Spectral Theorem  can not be applied “as is”...

® Proposition There holds the decomposition

curl

Hy(curl;Q)) = G & W,
where G :=VH}(Q), W. :={w e Hg(curl; Q) : div(sw) = 0}.

_ |
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Time-harmonic problem in EM-ics-2
|

® Proposition There holds the decomposition

-

DIFFICULTY: the embedding of Hy(curl; Q) into L?(2) is not compact!
Hence, the Spectral Theorem  can not be applied “as is”...

J—cur
Hp(curl;Q)) = G & 1 W,
where G :=VH}(Q), W, := {w € Hg(curl;Q) : div (ew) = 0}.

® |dea: one can try and build two Hilbert bases:
#® one for G (cf. acoustics section): (ey),<q, With e, := Vu_(14¢) foré <0;
® one for W_.
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Time-harmonic problem in EM-ics-2
|

® Proposition There holds the decomposition

-

DIFFICULTY: the embedding of Hy(curl; Q) into L?(2) is not compact!
Hence, the Spectral Theorem  can not be applied “as is”...

J_CIJ.I‘

Hp(curl;Q)) = G & 1 W,
where G :=VH}(Q), W, := {w € Hg(curl;Q) : div (ew) = 0}.

(er)¢<o Hilbert basis of G, with ey := Vu_ (14 for £ <O0.
Theorem W . is compactly embedded into L?((2).
DIFFICULTY: W< is not dense in L?(Q).

L I
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Time-harmonic problem in EM-ics-2

- N

® DIFFICULTY: the embedding of H(curl; Q) into L?(Q) is not compact!
Hence, the Spectral Theorem  can not be applied “as is”...

® Proposition There holds the decomposition

J—cur
Hp(curl;Q)) = G & 1 W,
where G :=VH}(Q), W, := {w € Hg(curl;Q) : div (ew) = 0}.

(er)¢<o Hilbert basis of G, with ey := Vu_ (14 for £ <O0.

Theorem W . is compactly embedded into L?((2).
DIFFICULTY: W< is not dense in L?(Q).

L I I

New pivot space: H(dive0;Q2) := {w € H(dive; Q) : div (ew) = 0}.
(+) W is compactly embedded into H(div €0; 2) ;
(+) one can prove that W is dense in H(div 0; €2).

|
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Time-harmonic problem in EM-ics-2
|

® Proposition There holds the decomposition

-

DIFFICULTY: the embedding of Hy(curl; Q) into L?(2) is not compact!
Hence, the Spectral Theorem  can not be applied “as is”...

J—cur
Hp(curl;Q)) = G & 1 W,
where G :=VH}(Q), W, := {w € Hg(curl;Q) : div (ew) = 0}.

(er)¢<o Hilbert basis of G, with e, := Vu_ (14 for £ <O0.

® Spectral Theorem J(es)e¢>0 a Hilbert basis of W. made up of eigenfunctions

{ Find (es, us) € We x R such that e, # 0 and

/(seg cw+ p ! curley - curl w) dQ = (1 —|—,u,g)/ eep - wdf), YVw € W,.
Q Q

® all eigenvalues are of finite multiplicity ;
® 4y, = 0occurs K times, with K + 1 number of c.c. of 992, and limy_, . uy = 4o0.
NB. The eigenpairs are ordered by increasing values of the eigenvalues.
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Time-harmonic problem in EM-ics-3

- N

® Conclusion: (e;), is a Hilbert basis of Hy(curl; 2) such that

Ve, Jpue > 0, (e, w)cur1 = (1 + W)/ eey - wd), Vw € Hy(curl; Q).
Q

® Forl<0:e,eGandpuy =0;

® For/>0:.e € W, and u, are eigenpairs, and
& all eigenvalues are of finite multiplicity ;
£ uy = 0occurs K times, and limy_, o, py = +o0.

_ |
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Time-harmonic problem in EM-ics-3

- N

® Conclusion: (e;), is a Hilbert basis of Hy(curl; 2) such that

Ve, Jpue > 0, (e, w)cur1 = (1 + ,ue)/ eey - wd), Vw € Hy(curl; Q).
Q

NB. Given any w > 0, there is an infinite number of £ s.t. p, < w?.

_ |
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Time-harmonic problem in EM-ics-3

L, N

Conclusion: (ey), is a Hilbert basis of Hy(curl; €2) such that

Ve, Jpue > 0, (e, w)cur1 = (1 + W)/ eey - wd), Vw € Hy(curl; Q).
Q

NB. Given any w > 0, there is an infinite number of £ s.t. p, < w?.

® Choice of TEM:

Let 4,4 denote the largest index ¢ such that py < w?. Introduce:
$ V7 o:=spang<,<, _(er), afinite dimensional vector subspace of W ;
#® the orthogonal projection operator P~ from Hg(curl;Q2) to V.

_ |
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Time-harmonic problem in EM-ics-3

L, N

Conclusion: (ey), is a Hilbert basis of Hy(curl; €2) such that

Ve, Jpue > 0, (e, w)cur1 = (1 + W)/ eey - wd), Vw € Hy(curl; Q).
Q

NB. Given any w > 0, there is an infinite number of £ s.t. p, < w?.

® Choice of TEM:

Let 4,4 denote the largest index ¢ such that py < w?. Introduce:
$ V7 o:=spang<,<, _(er), afinite dimensional vector subspace of W ;
#® the orthogonal projection operator P~ from Hg(curl;Q2) to V.

Define TPM .= —i g +i w_ —2P:

TEMeg — —ep il < limax
“+ey if¢>/lar.

_ |
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Time-harmonic problem in EM-ics-3

L, N

Conclusion: (ey), is a Hilbert basis of Hy(curl; €2) such that

Ve, Jpue > 0, (e, w)cur1 = (1 + W)/ eey - wd), Vw € Hy(curl; Q).
Q

NB. Given any w > 0, there is an infinite number of £ s.t. p, < w?.

® Choice of TEM:

Let 4,4 denote the largest index ¢ such that py < w?. Introduce:
$ V7 o:=spang<,<, _(er), afinite dimensional vector subspace of W ;
#® the orthogonal projection operator P~ from Hg(curl;Q2) to V.

Define TEM .= —i g +iw, — 2P,

® Proposition oM : (v, w) — / (p™ ! curlv - curl w — w?ev - w) dSY is T-coercive.
Q

_ |
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Time-harmonic problem in EM-ics-4

- N

® Conforming discretization: Nédélec's first family finite elements = (V',),...
The Discrete Variational Formulation writes:

Find e;, € V, s.t. CLEM(eh,’Uh) = / I v, dQ2, Yv, € Vy,.
Q

How can one achieve the uniform T;,-coercivity of the form a M (., .)?

_ |
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Time-harmonic problem in EM-ics-4
- -

® Conforming discretization: Nédélec's first family finite elements = (V',),...
The Discrete Variational Formulation writes:

Find e;, € V, s.t. CLEM(eh,’Uh) = / I v, dQ2, Yv, € Vy,.
Q

How can one achieve the uniform T;,-coercivity of the form a M (., .)?

DIFFICULTY: Given any w > 0, there is an infinite number of £ s.t. 1, < w?.

_ |
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Time-harmonic problem in EM-ics-4

L, N

Conforming discretization: Neédélec's first family finite elements — (V'3,),...
The Discrete Variational Formulation writes:

Find e;, € V, s.t. CLEM(eh,’Uh) = / I v, dQ2, Yv, € Vy,.
Q

How can one achieve the uniform T;,-coercivity of the form a M (., .)?

DIFFICULTY: Given any w > 0, there is an infinite number of £ s.t. 1, < w?.
® [dea:

#® split elements of V', (= exact decomposition Hg(curl; Q) = GH W,);

® take the opposite of the gradient part;

#® use the orthogonal projection on the other part (cf. acoustics section).

_ |
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Time-harmonic problem in EM-ics-4

L, N

Conforming discretization: Neédélec's first family finite elements — (V'3,),...
The Discrete Variational Formulation writes:

Find e;, € V, s.t. CLEM(eh,’Uh) = / I v, dQ2, Yv, € Vy,.
Q

How can one achieve the uniform T;,-coercivity of the form a M (., .)?

DIFFICULTY: Given any w > 0, there is an infinite number of £ s.t. 1, < w?.

® [dea:
#® split elements of V', (= exact decomposition Hg(curl; Q) = GH W,);
® take the opposite of the gradient part;
#® use the orthogonal projection on the other part (cf. acoustics section).

DIFFICULTY: The discrete splitting needs to be uniformly close to the exact splitting.

_ |
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Time-harmonic problem in EM-ics-5

- N

® Givenv, € Vy,:
® the exact splitting is 3!(¢, w) € H3 (Q) X W, v, = Vo + w.
® adiscrete splitting is (¢, wy) € Vi, X Vi, v, = Vo, + wy,.
NB. Provided the orders of FE are appropriately chosen, there holds VV,;, C V.

_ |
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Time-harmonic problem in EM-ics-5

L, N

Given vy, € V.

® the exact splitting is 3!(¢, w) € H3 (Q) X W, v, = Vo + w.

® adiscrete splitting is (¢, wy) € Vi, X Vi, v, = Vo, + wy,.

NB. Provided the orders of FE are appropriately chosen, there holds VV,;, C V.

® Proposition (Uniform discrete splittings)
Assume that ¢ is piecewise-constant: there exists a discrete splitting such that

||V(90 - 90h>||curl = ||w - wh”curl < Cr h® ||'vh||cur17

with s := s(€2,¢) > 0, C- > 0 independent of vy, .

_ |
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Time-harmonic problem in EM-ics-5

- N

® Givenv, € Vy,:
® the exact splitting is 3!(¢, w) € H3 (Q) X W, v, = Vo + w.
® adiscrete splitting is (¢, wy) € Vi, X Vi, v, = Vo, + wy,.
NB. Provided the orders of FE are appropriately chosen, there holds VV,;, C V.

® Proposition (Uniform discrete splittings)
Assume that ¢ is piecewise-constant: there exists a discrete splitting such that

||V(90 - 90h>||curl = ||w - wh”curl < Cr h® ||'vh||cur17

with s := s(€2,¢) > 0, C- > 0 independent of vy, .

Proof (main ingredients!)

® reqgular-singular splitting of elements of W, cf. :
® edge element approximability of piecewise-smooth fields, cf. ,

#® edge element interpolation of gradients, cf.

_ |
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Time-harmonic problem in EM-ics-5

L, N

Given vy, € V.

® the exact splitting is 3!(¢, w) € H3 (Q) X W, v, = Vo + w.

® adiscrete splitting is (¢, wy) € Vi, X Vi, v, = Vo, + wy,.

NB. Provided the orders of FE are appropriately chosen, there holds VV,;, C V.

® Proposition (Uniform discrete splittings)
Assume that ¢ is piecewise-constant: there exists a discrete splitting such that

||V(90 - 90h>||curl = ||w - wh”curl < Cr h® ||'vh||cur17

with s := s(€2,¢) > 0, C- > 0 independent of vy, .

® Approximate V'~ in V7, cf. acoustics section: V', := spang<,<, _(ep,p), with

lec — ee nllcurt < 6(h), 0 <€ < Llpmaq, for h small enough (}}im0 d(h) = 0).

_ |
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Time-harmonic problem in EM-ics-5

L, N

Given vy, € V.

® the exact splitting is 3!(¢, w) € H3 (Q) X W, v, = Vo + w.

® adiscrete splitting is (¢, wy) € Vi, X Vi, v, = Vo, + wy,.

NB. Provided the orders of FE are appropriately chosen, there holds VV,;, C V.

® Proposition (Uniform discrete splittings)
Assume that ¢ is piecewise-constant: there exists a discrete splitting such that

||V(90 - 90h>||curl = ||w - wh”curl < Cr h® ||'vh||cur17

with s := s(€2,¢) > 0, C- > 0 independent of vy, .

® Introduce:
# the orthogonal projection operator P, from Vi, to V,
® the operator TZM of £L(V},) defined by TM (v,) :== =V, + (Iv, — 2P, )(wy,).

_ |
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Time-harmonic problem in EM-ics-5

L, N

Given vy, € V.

® the exact splitting is 3!(¢, w) € H3 (Q) X W, v, = Vo + w.

® adiscrete splitting is (¢, wy) € Vi, X Vi, v, = Vo, + wy,.

NB. Provided the orders of FE are appropriately chosen, there holds VV,;, C V.

® Proposition (Uniform discrete splittings)
Assume that ¢ is piecewise-constant: there exists a discrete splitting such that

||V(90 - 90h>||curl = ||w - wh”curl < Cr h® ||'vh||cur17

with s := s(€2,¢) > 0, C- > 0 independent of vy, .

® Introduce:
# the orthogonal projection operator P, from Vi, to V,

® the operator TZM of £L(V},) defined by TM (v,) :== =V, + (Iv, — 2P, )(wy,).
_. e ; ||(TEM_TEM)(vh)||curl _
Proposition  There holds limy .o ( sup,, cv, \ {0} Tor oo = 0.

Hence, the discrete solution e;, converges to e, with a rate governed by (Strang).

_ |
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Sign-changing coefficients

- N

B Consider a scalar transmission problem, set in a bounded domain  of R¢, d = 1, 2, 3.

Find w € H}(Q) such that
div (cVu) = fin Q.

: : : . > 01in Q1, with meas(©21) > 0;
® o € L°°(Q) is a sign-changing coefficient: ’ _ ! _ ()
o < 0in Qq, with meas(Q2) > 0.

® o lel>Q).

_ |
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Sign-changing coefficients

- N

B Consider a scalar transmission problem, set in a bounded domain  of R¢, d = 1, 2, 3.

Find w € H}(Q) such that
div (cVu) = fin Q.

® o0 <€ L*°(Q),Iis a sign-changing coefficient.

® o 1le L= ().

NB. The “generalized” Helmholtz equation div (cVu) + w?nu = f withn € L>°(Q)
can be analyzed similarly, cf.

When o < 0, this models a metamaterial.
One can also consider a Neumann h.c., cf.

_ |
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Sign-changing coefficients

- N

B Consider a scalar transmission problem, set in a bounded domain  of R¢, d = 1, 2, 3.

Find w € H}(Q) such that
div (cVu) = fin Q.

® o0 <€ L*°(Q),Iis a sign-changing coefficient.
® o 1lc L= ().

® The main dificulty is that (v, w) — / o Vv - Vw dS2 is not coercive in H} ().
Q

_ |
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Sign-changing coefficients

- N

B Consider a scalar transmission problem, set in a bounded domain  of R¢, d = 1, 2, 3.

Find w € H}(Q) such that
div (cVu) = fin Q.

® o0 <€ L*°(Q),Iis a sign-changing coefficient.
® o 1lc L= ().
® The main dificulty is that (v, w) — / o Vv - Vw dS2 is not coercive in H} ().
Q

Structure of spectrum? Use of the Spectral Theorem ?

— New approach to achieve T-coercivity!

_ |
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Sign-changing coefficients

- N

B Consider a scalar transmission problem, set in a bounded domain  of R¢, d = 1, 2, 3.

Find w € H}(Q) such that
div (cVu) = fin Q.

® o0 <€ L*°(Q),Iis a sign-changing coefficient.
® o 1lc L= ().
® The main dificulty is that (v, w) — / o Vv - Vw dS2 is not coercive in H} ().
Q

Structure of spectrum? Use of the Spectral Theorem ?

— New approach to achieve T-coercivity!

» e follow
& O and Q- are domains of R¢;
& X := Q1 NQyisthe interface;
® 'y :=00Nn9o0, k=1,2 are the boundaries.

|
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Sign-changing coefficients-2

- N

® For the transmission problem with sign-changing coefficient:
® V=HNQ);
® the sesquilinear form is a'" (v, w) = / o Vv - VuwdS.

Q
NB. Complex-valued forms, to enable the introduction of dissipation...

_ |
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Sign-changing coefficients-2

- N

® For the transmission problem with sign-changing coefficient:
® V=HNQ);

® the sesquilinear form is a'" (v, w) = / o Vv - VuwdS.
Q

® Introduce Vi, := {vx, € H'(Q%) |vgr, =0}, k=1,2:

V = {U | U|Qk c Vk, k = 1,2, Matchingz(v|91,v|ﬂ2) = O}

with Matchingy. (v, v2) = Vi|s — V2%

_ |
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Sign-changing coefficients-2

- N

® For the transmission problem with sign-changing coefficient:
® V=HNQ);

® the sesquilinear form is a'" (v, w) = / o Vv - VuwdS.
Q

® Introduce atkr(vk,wk) = / oV, - VwpdQ, k=1, 2:
Qy

Vo,w eV, al™(v,w) = aﬁr(vml,wml) + a%”"(v|92,w|92)

_ |
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Sign-changing coefficients-2

- N

® For the transmission problem with sign-changing coefficient:
® V=HNQ);

® the sesquilinear form is a'" (v, w) = / o Vv - VuwdS.
Q

® Introduce atkr(vk,wk) = / oV, - VwpdQ, k=1, 2:
Qy

Vo,w eV, al™(v,w) = aﬁr(vml,wml) + a%”"(v|92,w|92)

Vi € ‘/1,0'1_||V’01||2 < +al"(vi,v1) < O‘THV’UlH

2 )
L2(Qq) L2(Qq)’

Vg € V27U2—HV’UQH%2(QQ) < —agr(v27v2) < O-S_HVUQH%2(QQ)'

NB. We have 0 < o, < o/ < oo, k=1,2.

_ |
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Sign-changing coefficients-3

- N

® Firsttry:

in 2
Vo e HEQ), T_wvi=4 =
—V2 In Q9

NB. Given v € H{(Q2), we set vy, := v , k= 1,2.



Sign-changing coefficients-3

- N

® Firsttry:

V1 in Ql

Yo e HY(Q), T_wv:= _ .
—V2 In Q9

(+) Obviously, (T-)2 = T ;1 (.

(-) ButT_ & L(Hj(S)), because the matching condition is not enforced.

_ |
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Sign-changing coefficients-3

-

® Firsttry:

in 2
e HEQ), T_wvi=4{ + 1
—V2 In Q9

(+) Obviously, (T-)2 = T ;1 (.

(-) ButT_ & L(Hj(S)), because the matching condition is not enforced.

® Secondtry: let Ry € £(V1,V3) s.t. forall vy € V4, Matchings, (v1, Riv1) = 0.

U1 in 1

Yo € H3(Q), Tv:= _
—v9+2Rq1 v1 In Q9

-

|
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Sign-changing coefficients-3

-

First try:

in 2
e HEQ), T_wvi=4{ + 1
—V2 In Q9

But T_ ¢ L(H}(Q)), because the matching condition is not enforced.

Second try: let Ry € £(V1, V2) s.t. for all v € Vi, Matchingy, (v1, Riv1) = 0.

U1 in 1

Yo € H3(Q), Tv:= _
—v9+2Rq1 v1 In Q9

T € L(H}(Q)).

One checks easily that T? = i)

|
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Sign-changing coefficients-3

-

® Firsttry:

in 2
e HEQ), T_wvi=4{ + 1
—V2 In Q9

(+) Obviously, (T-)2 = T ;1 (.

(-) ButT_ & L(Hj(S)), because the matching condition is not enforced.

® Secondtry: let Ry € £(V1,V3) s.t. forall vy € V4, Matchings, (v1, Riv1) = 0.

U1 in 1

Yo € H3(Q), Tv:= _
—v9+2Rq1 v1 In Q9

Can one achieve T-coercivity?

-

|
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- N

® Some elementary computations:

@010 = [0l (w1, 01) — af (v, v2) + 20 (03, Ry v1)
|CL§T(’01,’01) - agr(,v27,02)| - 2|CL§T(’U2,R1 Ul)l

op [vill3, — a8 (v2,v2) — 2|as (v2, Ri v1)]

AVARRLV/

_ |
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Sign-changing coefficients-4

- N

® Some elementary computations: let § > 0, apply Young’s inequality

a*" (v, Tv)] = |ai"(v1,v1) — a3 (v2,v2) + 2a5" (v2, R1 v1))
> [ai"(v1,v1) — a3 (v2,v2)| — 2|a5" (v2, Ry v1)
> oy vy, — a8 (v2,v2) — 2]al (v2, Ri v1)]
> oy |lnllf, — a8 (va,v2) + a5 (v2,v2) + 6~ 'ab (Ryv1, Ry v1)
> (o7 =6 Lo IRiIIP)villf, — (1 = 8)al (v2,v2).

_ |

" Nancy, April 2012 — p.19/24



-

® Hence, to obtain |a'" (v, Tv)| > a|lv||?, with o > 0, it is sufficient that

Sign-changing coefficients-4

[a™" (v, Tv)|

AVARN AVARN AV}

'V

la" (v1,v1) — a5 (va,v2) + 2a% (ve, Ry v1)

|ai" (v1,v1) — a3’ (v2,v2)| — 2|a5" (v2, Ry v1)

tr

or [vill3, — a8 (v2,v2) — 2]as (v2, R1 v1)]

® Some elementary computations: let § > 0, apply Young’s inequality

-

o v1llf, — a8 (v2,v2) + 6a5" (v, v2) + 67 "a" (Ry v1, Ry v1)

(o7 =07 og [IR1l1*)[[o1ll7, — (1 = 8)al" (va, v2).

91
+
09

> |I[Ral]]*.

|
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Sign-changing coefficients-5

-

® Third try: let Ry € L(V2, V1) s.t. for all v € Va, Matchingy, ( Ravs, v2) = 0.

v1—2Ro v in 2
Yoe HLQ), Tv:=¢ 1 77272 T
—v9 In Q29



Sign-changing coefficients-5

- N

® Third try: let Ry € L(V2, V1) s.t. for all v € Va, Matchingy, ( Ravs, v2) = 0.

v1—2R9 vo in Ql

Yo € H3(Q), Tuv:= .
—V2 in QQ

(+) T € L(Hy(Q)).

(+) One checks easily that T? = Ii1(o)!

_ |
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Sign-changing coefficients-5

-

® Third try: let Ry € L(V2, V1) s.t. for all v € Va, Matchingy, ( Ravs, v2) = 0.

v1—2Ro v in 2
Ywe HYQ), Tv:={ 1T T
—v9 In Q29

(+) T € L(Hy(Q)).

(+) One checks easily that T? = Ii1(o)!

® Toobtain |a'" (v, Tv)| > a||v||3- with a > 0, it is sufficient that

Ty 2
- > |||R2]]]*.
g1

_ |
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Sign-changing coefficients-5

® Third try: let Ry € L(V2, V1) s.t. for all v € Va, Matchingy, ( Ravs, v2) = 0.

Yo € H3(Q), Tuv:=

v1—2R25 vo in Ql
—V2 in QQ

(+) T € L(Hy()).
(+) One checks easily that T? = Ii1(o)!

® Toobtain |a'" (v, Tv)| > a||v||3- with a > 0, it is sufficient that

Oy 2
— > [|[Ra|[]".
g1

® Conclusion: | to achieve T-coercivity |, one needs

-
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Sign-changing coefficients-6

- N

® How to choose the operators R; or Ro?
® using traces on X, liftings, cf.
#® using geometrical transformations, cf.

_ |
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Sign-changing coefficients-6

- N

® How to choose the operators R; or Ry?
® using traces on %, liftings, cf. , ;
#® using geometrical transformations, cf.

® Numerical studies in (V3,)p:

# in general, one cannot build discrete operators (T ) S.t.

. Ty —T)(v .
llmh—>0 (Supvhevh\{o} ||( h||v}3|(|v}f)||v) — 01

$ one can only prove that (Rg p)p is bounded wrt ||| Ry,

k=1,2.

_ |
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Sign-changing coefficients-6

® How to choose the operators R; or Ry?
® using traces on X, liftings, cf. :
#® using geometrical transformations, cf.

® Numerical studies in (V3,)p:

# in general, one cannot build discrete operators (T ) S.t.

limp 0 (Supvh eV \{0} ||(Th||_UTf3|(|UV}'L)||V) =0

$ one can only prove that (Rg p)p is bounded wrt ||| Ry,

k=1,2.

® Safety net: choose o s.t. o7 /o or o, /o are sufficiently large to ensure

o 0o
— > |[|[Rynlll? or =2 >||[RasllI?, for h small enough.
02 91

|
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Sign-changing coefficients-6

How to choose the operators R, or R2?
® using traces on X, liftings, cf. :
#® using geometrical transformations, cf.

Numerical studies in (V)x:

# in general, one cannot build discrete operators (T ) S.t.

limp 0 (Supvh eV \{0} ||(Th||_UTf3|(|UV}'L)||V) =0

$ one can only prove that (Rg p)p is bounded wrt ||| Ry,

k=1,2.

Safety net: choose o s.t. o7 /o or o, /o are sufficiently large to ensure

> |||Ry nll|* or > |||R2.1|l|?, for h small enough.

91 92
T T+
09 g4

Under this last assumption, convergence follows.

|
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Sign-changing coefficients-6

How to choose the operators R, or R2?
® using traces on X, liftings, cf.
#® using geometrical transformations, cf.

Numerical studies in (V)x:

# in general, one cannot build discrete operators (T ) S.t.

limp 0 (Supvh eV \{0} ||(Th||_UTf3|(|UV}'L)||V) =0

$ one can only prove that (Rg p)p is bounded wrt ||| Ry,

k=1,2.
Safety net: choose o s.t. o7 /o or o, /o are sufficiently large to ensure

> |||Ry nll|* or > |||R2.1|l|?, for h small enough.

91 92
T T+
09 g4

Under this last assumption, convergence follows.

NB. One can also add dissipation, cf.
(+) convergence follows without safety net;
(=) convergence rate is reduced.

|
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Sign-changing coefficients-6

How to choose the operators R, or R2?
® using traces on X, liftings, cf. :
#® using geometrical transformations, cf.

Numerical studies in (V)x:

# in general, one cannot build discrete operators (T ) S.t.

limp 0 (Supvh eV \{0} ||(Th||_UTf3|(|UV}'L)||V) =0

$ one can only prove that (Rg p)p is bounded wrt ||| Ry,

k=1,2.
Safety net: choose o s.t. o7 /o or o, /o are sufficiently large to ensure

> |||Ry nll|* or > |||R2.1|l|?, for h small enough.

91 92
T T+
09 g4

Under this last assumption, convergence follows.

Numerical results:
® conforming discretization, cf.
® non-conforming discretization, cf, :

|
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Sign-changing coefficients-7

In a symmetric domain. Here, Q =] — 1, 1[x]0, 1[, €21 and Q9 are unit squares.
o = 0jq,, k = 1,2, are constant numbers, and o2 /01 = —1.001; w = 0.

An exact piecewise smooth solution of the transmission problem is available.
Conforming discretization using P; Lagrange FE.

We study below the influence of the meshes (errors in L2-norm; O(h?) is expected).

-

|
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Relative errors

-3

In a symmetric domain.

Conforming discretization using P; Lagrange FE.

Contrast ==1.001

o = o|q,, k = 1,2, are constant numbers, and o2/o1 = —1.001; w = 0.

An exact piecewise smooth solution of the transmission problem is available.

* Non symmetric mesh
e Locally symmetric mesh
Symmetric mesh

° a=-1.2433

a=-1.2539

a=-1.9993

0.8 1 12 1.4

1.6
log(1/h)

2 2.2 2.4 2.6

-

We study below the influence of the meshes (errors in L?-norm; O(h?) is expected).

|
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Sign-changing coefficients-8

-

In a rectangle. Here, Q =]0,5[x]0, 2[, Q2 =]1,3[x]0,2[, and Q21 = Q \ Q.

metamaterial
Q,q Q5 Q,q
(0k)k=1,2 are constant numbers, and o2 /01 = —1/3, w = 1.6 and n = o1

An exact piecewise smooth solution of the transmission problem is available.
Non-conforming discretization using staggered DG, FE, cf.

Errors in L2-norm; O(h?) is expected.

|
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Sign-changing coefficients-8

-

In a rectangle.

metamaterial
Q4 Q, Q4
(0k)k=1,2 are constant numbers, and o2 /01 = —1/3;, w = 1.6 and n = o1

An exact piecewise smooth solution of the transmission problem is available.
Non-conforming discretization using staggered DG, FE, cf.

Errors in L2-norm; O(h?) is expected. Numerically, the order is 1.9999.

|
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Sign-changing coefficients-8

In a rectangle.

-

metamaterial
Q4 Q, Q4
(0k)k=1,2 are constant numbers, and o2 /01 = —1/3;, w = 1.6 and n = o1

An exact piecewise smooth solution of the transmission problem is available.

Non-conforming discretization using staggered DG, FE, cf. [Chung-Engquist’06/'09].

Errors in L2-norm; O(h?) is expected. Numerically, the order is 1.9999.

Exact solution

Numerical solution

0 |

0.05

ot
o}
—0.05[
o
—01F
o}
-0.15
-0.2F
-0.25
-0.3F

-0.35

Numerical and exact solutions at y=0.98
T T T T T T T

@
(]
@
b
]
&
& o}
] xacl 1
R ¢

L 9 L L L L L L L

0 0.5 1 15 2 25 3 35 4 4.5 5
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°

Conclusion/Perspectives

® T-coercivity is versatile!

BEM for the classical Maxwell problem (cf.

FEM for the classical scalar or Maxwell problems (cf.
Vol. Int. Egq. Methods for scattering from gratings (cf.
study of Interior Transmission Eigenvalue Problems:
& scalar case (cf.

£ Maxwell problem (cf. );

etc.

|
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Conclusion/Perspectives

® T-coercivity is versatile!

® Scalar problems with sign-shifting coefficients:

i
i

°

introduction of T-coercivity during WAVES’07 (cf. );

numerical analysis when T-coercivity applies (cf. :
: , DG-approach , etc.);

theoretical study of well-posedness (cf. );
theoretical study of the critical cases (with );
discretization and numerical analysis of the critical cases.

|
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Conclusion/Perspectives

® T-coercivity is versatile!

® Scalar problems with sign-shifting coefficients:

i
i

>
i
i

introduction of T-coercivity during WAVES’07 (cf. );

numerical analysis when T-coercivity applies (cf. :
: , DG-approach , etc.);

theoretical study of well-posedness (cf. );
theoretical study of the critical cases (with );
discretization and numerical analysis of the critical cases.

® Maxwell problem(s) with sign-shifting coefficients:

K

T-coercivity + side results during NELIA'11 (cf. );

® numerical analysis when T-coercivity applies.
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® T-coercivity is versatile!

® Scalar problems with sign-shifting coefficients:
#® introduction of T-coercivity during WAVES'07 (cf. );

#® numerical analysis when T-coercivity applies (cf. :
: , DG-approach , etc.);

® theoretical study of well-posedness (cf. );
#® theoretical study of the critical cases (with );
® discretization and numerical analysis of the critical cases.

® Maxwell problem(s) with sign-shifting coefficients:
® T-coercivity + side results during NELIA'11 (cf. );
® numerical analysis when T-coercivity applies.

® In the critical cases: are models derived from physics still relevant?
® re-visit models (homogenization, multi-scale numerics, etc.).
(A.N.R. METAMATH Project; coordinator ).

_ |

" Nancy, April 2012 — p.24/24



	Outline
	Abstract setting
	Abstract setting-2
	Abstract setting-3
	Numerical approximation
	Numerical approximation-2
	Helmholtz equation in acoustics
	Helmholtz equation in acoustics-2
	Helmholtz equation in acoustics-3
	Time-harmonic problem in EM-ics
	Time-harmonic problem in EM-ics-2
	Time-harmonic problem in EM-ics-3
	Time-harmonic problem in EM-ics-4
	Time-harmonic problem in EM-ics-5
	Sign-changing coefficients
	Sign-changing coefficients-2
	Sign-changing coefficients-3
	Sign-changing coefficients-4
	Sign-changing coefficients-5
	Sign-changing coefficients-6
	Sign-changing coefficients-7
	Sign-changing coefficients-8
	Conclusion/Perspectives

