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Time-dependent Maxwell equations

In vacuum, over the time interval ]0, T [, T > 0.

Goal: compute the EM field in a domain Ω (with Lipschitz polyhedral boundary)
encased in a perfect conductor.
Find (E(t),H(t)) such that
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:

ε0∂tE − curlH = −J in Ω, 0 < t < T ;

µ0∂tH + curl E = 0 in Ω, 0 < t < T ;

div (ε0E) = ρ in Ω, 0 < t < T ;

div (µ0H) = 0 in Ω, 0 < t < T ;

E × n = 0 on ∂Ω, 0 < t < T ;

E(0) = E0 , H(0) = H0 in Ω.

„

Charge conservation equation: ∂tρ + divJ = 0.

Initial conditions: div E0 =
1

ε0
ρ(0) ; divH0 = 0.

n is the unit outward normal to ∂Ω.
«
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Related systems of equations

Second order (in time) wave equations...

In the electric field E

Equivalent system : Find E(t) such that
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:

∂2
ttE + c2 curl curl E = −

1

ε0
∂tJ in Ω, 0 < t < T ;

div (ε0E) = ρ in Ω, 0 < t < T ;

E × n = 0 on ∂Ω, 0 < t < T ;

E(0) = E0 , ∂tE(0) = E1 in Ω.

„

E1 :=
1

ε0

“

curlH0 − J (0)
”

.

«

Or ...
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Related systems of equations

Eigenmode computations in a resonator cavity...

Assume the time-dependence writes exp(−ıωt).
„

ω > 0 is the pulsation.

«

In the electric field E

Equivalent system: Find (E, ω) such that
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:

c2curl curl E = ω2E in Ω ;

div E = 0 in Ω ;

E × n = 0 on ∂Ω.

Or ...

Eigenmodes (Spring ’08) – p. 3/18



Related systems of equations

(Magnetic) quasi-static computations...

Assume that the electric displacement current ε0∂tE is negligible.

In the electric field E

Find E such that
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:

curl E = −µ0∂tH in Ω, 0 < t < T ;

div (ε0E) = ρ in Ω, 0 < t < T ;

E × n = 0 on ∂Ω, 0 < t < T.
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Functional space: possible choices

Which functional space to measure the electric field?

First choice:
H0(curl , Ω) := {F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3, F × n|∂Ω = 0} .

(cf. [Kikuchi’87/’89], [Demkowicz et al’9x], [Boffi et al’9x/’0x], ...)
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Functional space: possible choices

Which functional space to measure the electric field?

First choice:
H0(curl , Ω) := {F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3, F × n|∂Ω = 0} .

(cf. [Kikuchi’87/’89], [Demkowicz et al’9x], [Boffi et al’9x/’0x], ...)

Scalar product: (u, v)H(curl ,Ω) := (u, v)0 + (curlu, curl v)0.
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Functional space: possible choices

Which functional space to measure the electric field?

Second choice:
X0 := {F ∈ H0(curl , Ω) |divF ∈ L2(Ω)} .

OK in a convex domain Ω

(cf. [Assous-Degond-Heintzé-Raviart-Segré’93].)
OK in a 2D or 2D1/2 non-convex domain Ω (Singular Complement Method)
(cf. [Assous-Jr et al’98/’00/’03], [Bonnet-Hazard-Lohrengel’99/’02].)
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Functional space: possible choices

Which functional space to measure the electric field?

Second choice:
X0 := {F ∈ H0(curl , Ω) |divF ∈ L2(Ω)} .

OK in a convex domain Ω

(cf. [Assous-Degond-Heintzé-Raviart-Segré’93].)
OK in a 2D or 2D1/2 non-convex domain Ω (Singular Complement Method)
(cf. [Assous-Jr et al’98/’00/’03], [Bonnet-Hazard-Lohrengel’99/’02].)

Scalar product: (u, v)X0
:= (curlu, curl v)0 + (div u, div v)0.
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Functional space: possible choices

Which functional space to measure the electric field?

Third choice:
Xγ := {F ∈ H0(curl , Ω) |divF ∈ L2

γ(Ω)} .
„

L2
γ(Ω) := {v ∈ L2

loc(Ω) |wγ v ∈ L2(Ω)}, ||v||0,γ := ||wγ v||0.

The weight wγ is a function of the distance r to the reentrant edges (called E):
wγ(r) ≈ rγ for small r,

with a suitable γ ∈]γmin, 1[, 0 < γmin < 1
2

, cf. [Costabel-Dauge’02/’03].
«
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Functional space: possible choices

Which functional space to measure the electric field?

Third choice:
Xγ := {F ∈ H0(curl , Ω) |divF ∈ L2

γ(Ω)} .
„

L2
γ(Ω) := {v ∈ L2

loc(Ω) |wγ v ∈ L2(Ω)}, ||v||0,γ := ||wγ v||0.

The weight wγ is a function of the distance r to the reentrant edges (called E):
wγ(r) ≈ rγ for small r,

with a suitable γ ∈]γmin, 1[, 0 < γmin < 1
2

, cf. [Costabel-Dauge’02/’03].
«

Scalar product: (u, v)Xγ
:= (curlu, curl v)0 + (div u, div v)0,γ .
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Functional space: possible choices

Which functional space to measure the electric field?

Third choice:
Xγ := {F ∈ H0(curl , Ω) |divF ∈ L2

γ(Ω)} .
„

L2
γ(Ω) := {v ∈ L2

loc(Ω) |wγ v ∈ L2(Ω)}, ||v||0,γ := ||wγ v||0.

The weight wγ is a function of the distance r to the reentrant edges (called E):
wγ(r) ≈ rγ for small r,

with a suitable γ ∈]γmin, 1[, 0 < γmin < 1
2

, cf. [Costabel-Dauge’02/’03].
«

Scalar product: (u, v)Xγ
:= (curlu, curl v)0 + (div u, div v)0,γ .

This is the so-called Weighted Regularization Method: our choice from now on...
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The constraint on the divergence

What happens if one wants to take into account the constraint on the divergence of the

electric field explicitly?
„

div (ε0E) = ρ or div E = 0.

«
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The constraint on the divergence

What happens if one wants to take into account the constraint on the divergence of the

electric field explicitly?
„

div (ε0E) = ρ or div E = 0.

«

Motivations:

Improve the quality of the divergence of the discrete fields.
„

For instance, for the computed eigenmodes.
«

Resolve numerical problems related to the discrete charge conservation equation.
„

Solve the Vlasov-Maxwell system to compute the motion of charged particles.
«
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The constraint on the divergence

What happens if one wants to take into account the constraint on the divergence of the

electric field explicitly?
„

div (ε0E) = ρ or div E = 0.

«

Motivations:

Improve the quality of the divergence of the discrete fields.
„

For instance, for the computed eigenmodes.
«

Resolve numerical problems related to the discrete charge conservation equation.
„

Solve the Vlasov-Maxwell system to compute the motion of charged particles.
«

Solution:

Introduce a Lagrange multiplier.
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Mixed Variational Formulations

The eigenproblem to be solved writes equivalently (λ = ω2/c2)
Find (E, λ) ∈ Kγ × R+ such that

(curl E, curlF)0 = λ(E,F)0, ∀F ∈ Kγ ,

with Kγ := {F ∈ Xγ |divF = 0} .
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Mixed Variational Formulations

The eigenproblem to be solved writes
Find (E, λ) ∈ Kγ × R+ such that

(E,F)Xγ
= λ(E,F)0, ∀F ∈ Kγ ,

with Kγ := {F ∈ Xγ |divF = 0} .
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Mixed Variational Formulations

The mixed eigenproblem to be solved writes
Find (E, p, λ) ∈ Xγ × L2

−γ(Ω) × R+ such that

8

<

:

(E,F)Xγ
+ L2

−γ
〈p, divF〉L2

γ
= λ(E,F)0, ∀F ∈ Xγ

L2

−γ
〈q, div E〉L2

γ
= 0, ∀q ∈ L2

−γ(Ω).

It is equivalent to the original eigenproblem (p = 0, see the Annex of [Jr’05].)
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Mixed Variational Formulations

The mixed eigenproblem to be solved writes
Find (E, p, λ) ∈ Xγ × L2

−γ(Ω) × R+ such that

8

<

:

(E,F)Xγ
+ L2

−γ
〈p, divF〉L2

γ
= λ(E,F)0, ∀F ∈ Xγ

L2

−γ
〈q, div E〉L2

γ
= 0, ∀q ∈ L2

−γ(Ω).

It is equivalent to the original eigenproblem (p = 0, see the Annex of [Jr’05].)

A discrete approximation is ((Xh)h ⊂ Xγ , (Mh)h ⊂ L2
−γ(Ω))

Find (Eh, ph, λh) ∈ Xh × Mh × R+ such that

8

<

:

(Eh,Fh)Xγ
+ L2

−γ
〈ph, divFh〉L2

γ
= λh(Eh,Fh)0, ∀Fh ∈ Xh

L2

−γ
〈qh, div Eh〉L2

γ
= 0, ∀qh ∈ Mh.

Abstract convergence theory, see [Boffi-Brezzi-Gastaldi’97], [Boffi’06].
Uses strong approximability of solutions E , weak approximability of solutions p
„

with (E, p) solutions to the plain mixed problem...
«
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Elements of convergence theory

A desired property is the uniform discrete inf-sup condition

∃β > 0, ∀h, inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

≥ β.
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Elements of convergence theory

A desired property is the uniform discrete inf-sup condition

∃β > 0, ∀h, inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

≥ β.

Formulation with E set in X0 (Ω convex or SCM in 2D, 2D1/2 domains).

With the P2 − iso − P1 Taylor-Hood finite element,
as in [Assous-Degond-Heintzé-Raviart-Segré’93].
The udisc is satisfied, cf. [Girault-Jr’02].

With the Pk+1 − Pk Taylor-Hood finite elements,
the udisc is satisfied, cf. [Stenberg’84], [Boffi’97].
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Elements of convergence theory

A desired property is the uniform discrete inf-sup condition

∃β > 0, ∀h, inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

≥ β.

Formulation in E set in Xγ (WRM).

With the Pk+1 − Pk Taylor-Hood finite elements
The udisc is not satisfied anymore!
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Elements of convergence theory

A desired property is the uniform discrete inf-sup condition

∃β > 0, ∀h, inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

≥ β.

Formulation in E set in Xγ (WRM).

With the Pk+1 − Pk Taylor-Hood finite elements
The udisc is not satisfied anymore!

Why?
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A negative result

In order to check the discrete inf-sup condition, let

βh = inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

.

How can one estimate (βh)h?
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A negative result

In order to check the discrete inf-sup condition, let

βh = inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

.

How can one estimate (βh)h?

Introduce the plain mixed Variational Formulation (rhs f , g).
Find (Eh, ph) such that

8

<

:

a(Eh,Fh) + b(ph,Fh) = f(Fh), ∀Fh ∈ Xh

b(qh, Eh) = g(qh), ∀qh ∈ Mh.
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A negative result

In order to check the discrete inf-sup condition, let

βh = inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

.

How can one estimate (βh)h?

Introduce the matrix version of the plain mixed Variational Formulation.
Find (~E, ~p) such that

8

<

:

A ~E + BT ~p = ~f

B ~E = ~g.
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A negative result

In order to check the discrete inf-sup condition, let

βh = inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

.

How can one estimate (βh)h?

Introduce the matrix version of the plain mixed Variational Formulation.
Find (~E, ~p) such that

8

<

:

A ~E + BT ~p = ~f

B ~E = ~g.

Proposition (e. g. [Jamelot’05]): Define M by (M~q | ~q) = ‖qh‖
2
Mh

. There holds

κ(M−1(B A
−1

B
T )) ≤

„

‖b‖

βh

«2

.
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A negative result

In order to check the discrete inf-sup condition, let

βh = inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

.

How can one estimate (βh)h?

Practical experiments with the P2 − P1 Taylor-Hood finite element.

In the unit cube (see [Hechme-Jr’07a])

Meshsize h′ h′/2 h′/4

κ 2.9 2.8 2.8

⇒ Consistent with the fact that (βh)h is independent of h...
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A negative result

In order to check the discrete inf-sup condition, let

βh = inf
qh∈Mh

sup
Fh∈Xh

L2

−γ
〈qh, divFh〉L2

γ

‖Fh‖Xγ
‖qh‖0,−γ

.

How can one estimate (βh)h?

Practical experiments with the P2 − P1 Taylor-Hood finite element.

The WRM in a 2D L-shape domain (see [Hechme-Jr’07a])

Meshsize h h/2 h/4 h/8

κ 29 69 161 364

⇒ (βh)h decreases sharply when h decreases...

Eigenmodes (Spring ’08) – p. 8/18



A new family of finite elements for the WRM

Consider a family of triangular/tetrahedral meshes (Th)h of Ω ⊂ Rd.
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A new family of finite elements for the WRM

Consider a family of triangular/tetrahedral meshes (Th)h of Ω ⊂ Rd.

Standard family of Pk+1 − Pk Taylor-Hood finite elements:

Xh = {Fh ∈ C0(Ω̄)d | Fh|T ∈ Pk+1(T )d,∀T ∈ Th, and Fh × n|∂Ω = 0},

Mh = {qh ∈ C0(Ω̄) | qh|T ∈ Pk(T ),∀T ∈ Th}.
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A new family of finite elements for the WRM

Consider a family of triangular/tetrahedral meshes (Th)h of Ω ⊂ Rd.

Standard family of Pk+1 − Pk Taylor-Hood finite elements:

Xh = {Fh ∈ C0(Ω̄)d | Fh|T ∈ Pk+1(T )d,∀T ∈ Th, and Fh × n|∂Ω = 0},

Mh = {qh ∈ C0(Ω̄) | qh|T ∈ Pk(T ),∀T ∈ Th}.

New family of Pk+1 − Pk finite elements (cf. [Hechme-Jr’07a]):

Xh = {Fh ∈ C0(Ω̄)d | Fh|T ∈ Pk+1(T )d,∀T ∈ Th, and Fh × n|∂Ω = 0},

M̄h = {q̄h ∈ C0(Ω̄) | q̄h|T ∈ Pk(T ),∀T ∈ Th, and q̄h|Eh
= 0},

with Eh a neighborhood of the reentrant corners and/or edges:

Eh = ∪T∈Th s.t. T∩E 6=∅ T .
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A new family of finite elements for the WRM

Consider a family of triangular/tetrahedral meshes (Th)h of Ω ⊂ Rd.

Standard family of Pk+1 − Pk Taylor-Hood finite elements:

Xh = {Fh ∈ C0(Ω̄)d | Fh|T ∈ Pk+1(T )d,∀T ∈ Th, and Fh × n|∂Ω = 0},

Mh = {qh ∈ C0(Ω̄) | qh|T ∈ Pk(T ),∀T ∈ Th}.

New family of Pk+1 − Pk finite elements (cf. [Hechme-Jr’07a]):

Xh = {Fh ∈ C0(Ω̄)d | Fh|T ∈ Pk+1(T )d,∀T ∈ Th, and Fh × n|∂Ω = 0},

M̄h = {q̄h ∈ C0(Ω̄) | q̄h|T ∈ Pk(T ),∀T ∈ Th, and q̄h|Eh
= 0},

with Eh a neighborhood of the reentrant corners and/or edges:

Eh = ∪T∈Th s.t. T∩E 6=∅ T .

=⇒ Zero Near Singularity Pk+1 − Pk finite elements .
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Remarks

In the variational formulations, at the discrete level, one has

L2

−γ
〈q̄h, divFh〉L2

γ
= (q̄h, divFh)0, ∀(Fh, qh) ∈ Xh × M̄h...
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Remarks

In the variational formulations, at the discrete level, one has

L2

−γ
〈q̄h, divFh〉L2

γ
= (q̄h, divFh)0, ∀(Fh, qh) ∈ Xh × M̄h...

As a consequence, the quantity of interest is

β̄h = inf
q̄h∈M̄h

sup
Fh∈Xh

(q̄h, divFh)0

‖Fh‖Xγ
‖q̄h‖0,−γ

.
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Remarks

In the variational formulations, at the discrete level, one has

L2

−γ
〈q̄h, divFh〉L2

γ
= (q̄h, divFh)0, ∀(Fh, qh) ∈ Xh × M̄h...

As a consequence, the quantity of interest is

β̄h = inf
q̄h∈M̄h

sup
Fh∈Xh

(q̄h, divFh)0

‖Fh‖Xγ
‖q̄h‖0,−γ

.

Method of proof (udisc): the macroelement technique (cf. [Stenberg’84], [Boffi’97]).
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Remarks

In the variational formulations, at the discrete level, one has

L2

−γ
〈q̄h, divFh〉L2

γ
= (q̄h, divFh)0, ∀(Fh, qh) ∈ Xh × M̄h...

As a consequence, the quantity of interest is

β̄h = inf
q̄h∈M̄h

sup
Fh∈Xh

(q̄h, divFh)0

‖Fh‖Xγ
‖q̄h‖0,−γ

.

Method of proof (udisc): the macroelement technique (cf. [Stenberg’84], [Boffi’97]).

→ Follows (more or less!) the series of lemmas of [Stenberg’84].
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Remarks

In the variational formulations, at the discrete level, one has

L2

−γ
〈q̄h, divFh〉L2

γ
= (q̄h, divFh)0, ∀(Fh, qh) ∈ Xh × M̄h...

As a consequence, the quantity of interest is

β̄h = inf
q̄h∈M̄h

sup
Fh∈Xh

(q̄h, divFh)0

‖Fh‖Xγ
‖q̄h‖0,−γ

.

Method of proof (udisc): the macroelement technique (cf. [Stenberg’84], [Boffi’97]).

→ Follows (more or less!) the series of lemmas of [Stenberg’84].

→ Difficulties:
– Presence of weights in ‖Fh‖Xγ

and ‖q̄h‖0,−γ .
– Local estimates (near the reentrant edges).
– Existence of gradients in Xh.
– Non-zero mean value Lagrange multipliers.

Eigenmodes (Spring ’08) – p. 10/18



Remarks (cont’d)

Existence of gradients in Xh (bibliography of [Costabel-Dauge’02] revisited):
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Remarks (cont’d)

Existence of gradients in Xh (bibliography of [Costabel-Dauge’02] revisited):

k = 2, 3, · · ·: OK in 2D (HCT FE ; [Hsieh’62]+[Clough-Tocher’65], [Percell-76]...)

k = 2, 4, · · ·: OK in 3D (HCT FE ; [Alfeld’84], [Worsey-Farin’87]...)

→ k = 1: OK in 2D/3D (Powell-Sabin interpolant ; [Sorokina-Worsey’07]).
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Remarks (cont’d)

Existence of gradients in Xh (bibliography of [Costabel-Dauge’02] revisited):

k = 2, 3, · · ·: OK in 2D (HCT FE ; [Hsieh’62]+[Clough-Tocher’65], [Percell-76]...)

k = 2, 4, · · ·: OK in 3D (HCT FE ; [Alfeld’84], [Worsey-Farin’87]...)

→ k = 1: OK in 2D/3D (Powell-Sabin interpolant ; [Sorokina-Worsey’07]).

The final result on (β̄h)h:
Measuring the quality of the regular family of triangulations (Th)h.

∃σ > 1, ∀h, ∀T ∈ Th, hT ≤ σ ρT ;

∃η > 1, ∀h, ∀T, T ′ ∈ Th, T ∩ T ′ 6= ∅ =⇒ ρT ≤ η ρT ′ .
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Remarks (cont’d)

Existence of gradients in Xh (bibliography of [Costabel-Dauge’02] revisited):

k = 2, 3, · · ·: OK in 2D (HCT FE ; [Hsieh’62]+[Clough-Tocher’65], [Percell-76]...)

k = 2, 4, · · ·: OK in 3D (HCT FE ; [Alfeld’84], [Worsey-Farin’87]...)

→ k = 1: OK in 2D/3D (Powell-Sabin interpolant ; [Sorokina-Worsey’07]).

The final result on (β̄h)h:
Measuring the quality of the regular family of triangulations (Th)h.

∃σ > 1, ∀h, ∀T ∈ Th, hT ≤ σ ρT ;

∃η > 1, ∀h, ∀T, T ′ ∈ Th, T ∩ T ′ 6= ∅ =⇒ ρT ≤ η ρT ′ .

Theorem ([Hechme-Jr’07a]): There exists a constant C > 0 such that

β̄h ≥ C (σ5 η)−1.
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Remarks (cont’d)

Existence of gradients in Xh (bibliography of [Costabel-Dauge’02] revisited):

k = 2, 3, · · ·: OK in 2D (HCT FE ; [Hsieh’62]+[Clough-Tocher’65], [Percell-76]...)

k = 2, 4, · · ·: OK in 3D (HCT FE ; [Alfeld’84], [Worsey-Farin’87]...)

→ k = 1: OK in 2D/3D (Powell-Sabin interpolant ; [Sorokina-Worsey’07]).

The final result on (β̄h)h:
Measuring the quality of the regular family of triangulations (Th)h.

∃σ > 1, ∀h, ∀T ∈ Th, hT ≤ σ ρT ;

∃η > 1, ∀h, ∀T, T ′ ∈ Th, T ∩ T ′ 6= ∅ =⇒ ρT ≤ η ρT ′ .

Theorem ([Hechme-Jr’07a]): There exists a constant C > 0 such that

β̄h ≥ C (σ5 η)−1.

=⇒ Zero Near Singularity finite elements satisfy the udisc .
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Computing eigenvalues and eigenvectors

Find (Eh, p̄h, λh) ∈ Xh × M̄h × R+ such that

8

<

:

(Eh,Fh)Xγ
+ (p̄h, divFh)0 = λh(Eh,Fh)0, ∀Fh ∈ Xh

(q̄h, div Eh)0 = 0, ∀q̄h ∈ M̄h.

Proof of convergence, apply the theory of [Boffi-Brezzi-Gastaldi’97].
(cf. [Buffa-Jamelot-Jr’07].)
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Computing eigenvalues and eigenvectors

Find (Eh, p̄h, λh) ∈ Xh × M̄h × R+ such that

8

<

:

(Eh,Fh)Xγ
+ (p̄h, divFh)0 = λh(Eh,Fh)0, ∀Fh ∈ Xh

(q̄h, div Eh)0 = 0, ∀q̄h ∈ M̄h.

Proof of convergence, apply the theory of [Boffi-Brezzi-Gastaldi’97].
(cf. [Buffa-Jamelot-Jr’07].)

Convergence results on n smallest eigenvalues (n ∈ N.)

(Eλ)λ≤λn
the corresponding eigenspaces.

Approximation error ελ(h) = supv∈Eλ,‖v‖Xγ
=1 infFh∈Xh

‖v −Fh‖Xγ

(worst case: ελ(h) ≤ Cεhγ−γmin−ε.)

Error on eigenvalues: |λ − λh| < Cn ελ(h)2.

Gap between exact and discrete eigenspaces: δ̂(Eλ, Eλh
) < Cn ελ(h).
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Computing eigenvalues and eigenvectors

Find (Eh, p̄h, λh) ∈ Xh × M̄h × R+ such that

8

<

:

(Eh,Fh)Xγ
+ (p̄h, divFh)0 = λh(Eh,Fh)0, ∀Fh ∈ Xh

(q̄h, div Eh)0 = 0, ∀q̄h ∈ M̄h.

Proof of convergence, apply the theory of [Boffi-Brezzi-Gastaldi’97].
(cf. [Buffa-Jamelot-Jr’07].)

Convergence results on n smallest eigenvalues (n ∈ N.)

(Eλ)λ≤λn
the corresponding eigenspaces.

Approximation error ελ(h) = supv∈Eλ,‖v‖Xγ
=1 infFh∈Xh

‖v −Fh‖Xγ

(worst case: ελ(h) ≤ Cεhγ−γmin−ε.)

Error on eigenvalues: |λ − λh| < Cn ελ(h)2.

Gap between exact and discrete eigenspaces: δ̂(Eλ, Eλh
) < Cn ελ(h).

=⇒ No more spurious eigenmodes .
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Numerical experiments in 2D

On a ’practical’ example, taken from Monique Dauge’s benchmark.

2D, L-shaped, domain, straight sides, corners in (0,0), (1,0), (1,1), (-1,1), (-1,-1), (0,-1).

First five eigenvalues (with repetition), up to six digits:

λ1 = 1.47562, eigenmode has the strong unbounded singularity ;

λ2 = 3.53403 ; λ3 = λ4 = 9.86960 ; λ5 = 11.3895.

The weight is implemented with γ = 0.95 (NB. γmin = 1/3.)

Experiments (cf. [Buffa-Jamelot-Jr’07]):

on a series of quasi-uniform meshes ;

relative errors rk,h = |λk,h − λk|/λk , 1 ≤ k ≤ 5 are reported.
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Numerical experiments in 2D

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Three meshes with respectively

738, 2952 and 11808 triangles ;

410, 1557 and 6065 vertices ;

Results for the Zero Near Singularity finite elements:

mesh r1,h r2,h r3,h r4,h r5,h

uniform1 1.3e − 2 3.3e − 4 9.4e − 5 1.1e − 4 9.9e − 3

uniform2 8.0e − 3 6.2e − 5 2.3e − 5 2.5e − 5 1.3e − 5

uniform3 4.4e − 3 1.2e − 5 5.5e − 6 6.2e − 6 5.3e − 6
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Comparisons in 3D

On a second ’practical’ example, taken from Monique Dauge’s benchmark.

3D, thick L-shaped, domain (] − 1, 1[2\[−1, 0]2)×]0, 1[.

First nine eigenvalues (with repetition), up to six digits:

λ1 = 9.6397 ; λ2 = 11.3452 ; λ3 = 13.4036 ; λ4 = 15.1972 ;

λ5 = 19.5093 ; λ6 = λ7 = λ8 = 19.7392 ; λ9 = 21.2591.

The weight is implemented with γ = 0.95 (NB. γmin = 1/3.)

Experiments (cf. [Hechme-Jr’07b]):

on a graded mesh (grading towards the reentrant edge) ;

relative errors rk,h = |λk,h − λk|/λk, 1 ≤ k ≤ 9 are reported ;
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Comparisons in 3D

On a second ’practical’ example, taken from Monique Dauge’s benchmark.

3D, thick L-shaped, domain (] − 1, 1[2\[−1, 0]2)×]0, 1[.

First nine eigenvalues (with repetition), up to six digits:

λ1 = 9.6397 ; λ2 = 11.3452 ; λ3 = 13.4036 ; λ4 = 15.1972 ;

λ5 = 19.5093 ; λ6 = λ7 = λ8 = 19.7392 ; λ9 = 21.2591.

The weight is implemented with γ = 0.95 (NB. γmin = 1/3.)

Experiments (cf. [Hechme-Jr’07b]):

comparison of the mixed approach with
the parameterized approach [Costabel-Dauge’02] with parameter s = ı.
Find (E ′

h, λ′
h) ∈ Xh × C such that

(curl E ′
h, curlFh)0 + ı(div E ′

h, divFh)0,γ = λ′
h(E ′

h,Fh)0, ∀Fh ∈ Xh.

Spurious (curl-free) eigenvalues are filtered out by comparing

Re(λ′
h) to Im(λ′

h).
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Comparisons in 3D

On a second ’practical’ example, taken from Monique Dauge’s benchmark.

3D, thick L-shaped, domain (] − 1, 1[2\[−1, 0]2)×]0, 1[.

First nine eigenvalues (with repetition), up to six digits:

λ1 = 9.6397 ; λ2 = 11.3452 ; λ3 = 13.4036 ; λ4 = 15.1972 ;

λ5 = 19.5093 ; λ6 = λ7 = λ8 = 19.7392 ; λ9 = 21.2591.

The weight is implemented with γ = 0.95 (NB. γmin = 1/3.)

Experiments (cf. [Hechme-Jr’07b]):

comparison of the mixed approach with
the filter approach [Costabel-Dauge’03], [Hechme-Jr’07b].
Find (Eh, λh) ∈ Xh × R+ such that

(Eh,Fh)Xγ
= λh(Eh,Fh)0, ∀Fh ∈ Xh.

Spurious (curl-free) eigenvalues are filtered out by evaluating the filter ratio

‖div Eh‖0,γ

‖curl Eh‖0
.
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Comparisons in 3D

A mesh with

4032 tetrahedra ; 1010 vertices.

Number of d.o.f.

15818 for the parameterized and filter approaches ; 18162 for the mixed approach.

Results:

Method Filter Parameterized Mixed

r1 6.1 × 10−4 6.1 × 10−4 6.2 × 10−4

r2 6.5 × 10−3 1.1 × 10−2 8.5 × 10−3

r3 8.1 × 10−4 7.4 × 10−4 8.4 × 10−4

r4 1.1 × 10−4 1.0 × 10−4 1.1 × 10−4

r5 2.0 × 10−3 4.7 × 10−3 6.9 × 10−3

r6 1.8 × 10−4 1.8 × 10−4 1.8 × 10−4

r7 1.2 × 10−3 1.1 × 10−3 1.2 × 10−3

r8 1.2 × 10−3 1.1 × 10−3 1.3 × 10−3

r9 1.3 × 10−3 1.1 × 10−3 1.1 × 10−2
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Focusing on eigenvalues or eigenvectors?

On a last ’practical’ example, taken from Monique Dauge’s benchmark.

3D, Fichera corner, domain (] − 1, 1[3\[−1, 0]3).

The weight is implemented with γ = 0.95 (NB. γmin = 1/3.)

A graded mesh with

2688 tetrahedra ; 665 vertices.

Experiments on the first eight eigenpairs (cf. [Hechme-Jr’07b]):
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Focusing on eigenvalues or eigenvectors?

On a last ’practical’ example, taken from Monique Dauge’s benchmark.

3D, Fichera corner, domain (] − 1, 1[3\[−1, 0]3).

The weight is implemented with γ = 0.95 (NB. γmin = 1/3.)

A graded mesh with

2688 tetrahedra ; 665 vertices.

Experiments on the first eight eigenpairs (cf. [Hechme-Jr’07b]):

Filter ratios for the filter (left) and mixed (right) methods
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Focusing on eigenvalues or eigenvectors?

On a last ’practical’ example, taken from Monique Dauge’s benchmark.

3D, Fichera corner, domain (] − 1, 1[3\[−1, 0]3).

The weight is implemented with γ = 0.95 (NB. γmin = 1/3.)

A graded mesh with

2688 tetrahedra ; 665 vertices.

Experiments on the first eight eigenpairs (cf. [Hechme-Jr’07b]):

Filter ratios for both methods (P2 FE for the field)
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Concluding remarks

Implementing the mixed method with the WRM turned out to be a challenging problem!

The classical Pk+1 − Pk Taylor-Hood finite elements fail to verify the udisc.
The Zero Near Singularity Pk+1 − Pk finite elements provide an adequate answer.
(with G. Hechme.)

These FE allowed us to solve accurately the EM eigenvalue problem in mixed form.
No more spurious eigenmodes.
(with E. Jamelot, A. Buffa, G. Hechme.)
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Concluding remarks

Implementing the mixed method with the WRM turned out to be a challenging problem!

The classical Pk+1 − Pk Taylor-Hood finite elements fail to verify the udisc.
The Zero Near Singularity Pk+1 − Pk finite elements provide an adequate answer.
(with G. Hechme.)

These FE allowed us to solve accurately the EM eigenvalue problem in mixed form.
No more spurious eigenmodes.
(with E. Jamelot, A. Buffa, G. Hechme.)

Application to the time-dependent problem (Vlasov-Maxwell) has been completed.
(with S. Labrunie.)

Extension to materials (ε, µ piecewise constant) is possible.
(with F. Lefèvre, S. Lohrengel, S. Nicaise.)
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