o N

Continuous Galerkin methods for
solving Maxwell equations in 3D

Erell Janel ot

POEMS, UMR 2706 CNRS-ENSTA-INRIA



Time-dependent Maxwell equations

. N

In vacuum, over the time interval |0, T'[, T > 0.
Find (£(t), H(t)) € L?(-) x L2(-) such that

([ c00tE —curlH = —-TJ ;
o0t H + curl€ =0

q div(eo€) = p;
div (uo™H) = 0;

L £(0) =&y, H(0) = Ho .

( 0: T € L?(0, T;L2(.)), p € C°(0,T; L2(")) ; Otp + div T = 0.
1
Eo € H(curl, ), divEy = —p(0) ; Ho € H(curl, ), divHo = 0. )
€0

® Goal: compute the EM field around a perfect conducting body O, with Lipschitz
polyhedral boundary.
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Time-dependent Maxwell equations (2)

But... Consider a bounded computational domain €2, with Lipschitz polyhedral boundary.

Its boundary 92 is splitas 0 = I'c UT 4, with T'c = 80 N O1.
A Silver-Muller boundary condition is imposed on the artificial boundary I' 4: incoming plane
waves (e* # 0), or 1st order absorbing condition (e* = 0).

® Boundary conditions

Exn=00onI¢;

(€ — @HXH)XHZQ*XHOHFA.
€0

<8té* € L%(0,T;L%(T4)). )

® Consequences: some "additional" boundary conditions

H-n=Hp-n; (curlH) xn=7J xnonTg¢.

1 1
(curlS) X n= Eate} — Eath

onl'y.

1
(curlH) x n=J X n+gpdt(e* x n) — — O Hr
c
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Time-dependent Maxwell equations (3)

2nd order in time, electric field £...

$® Equation
1
aftg + c?curlcurlé = ——8,.7 ; 0:£(0) = &1
€0
1
(81 = — (curl’Ho — .,7(0)))
€0
® Functional space (see for instance )

T :={v € H(curl,Q)) : v xXnjpq € L?(09), v x nr, =0},

® Variational Formulation
Find £(t) € Tg such that

” { < 04E,v > +c?(curl €, curlv)y + C%(ST,VT)O,FA

— —%(8t\7,v)0 + c%(é’},vT)o,pA, Vv € Tg.
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TA Zirich (Jan. 06) — p. 4/23



L

"Electrostatic" model

(see for proofs.)

Set of static equations

Find £ € L?(Q) such that
curl€ =f, divE=ginQ; & Xnpq =0.

(f € L?(Q), g € L*(Q): divf =0and f - njpo = 0. )
Define X}, := Hy(curl, Q) N H(div, Q).
Hypothesis: the semi-norm associated to

(,-)xo0 : (u,v) — (curlu,curlv)g + (divu,divv)g

IS a norm on X]%, which is equivalent to the full norm.
From
Assume for instance that 0¢2 is connected.

|
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"Electrostatic” model (2)

Define the variational problem (PY) in X3,

Find £ € X3 such that
(E,v)xo = (f,curlv)o + (g,divv)g, Vv € XD.

Theorem: 3!€ € X2 solution to problem (PY).
In addition, £ is the only solution to the electrostatic model.

Hypothesis: the subspace of regular fields X, . := H'(Q) N XY is dense in XD.
From ok if €2 is convex.

Conclusion: numerical approximation with the Continuous P, Lagrange FE is possible.

With respect to (1), (P°) is an Augmented Variational Formulation (AVF).
Similar AVF and results for 7 in XY, := H(curl, Q) N Ho(div, Q) (with (-, ) x0)...

|
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"Electrostatic” model (2 proof)

-

® Define the variational problem (PY) in X3

Find £ € X3 such that
(&,v)xo = (f,curlv)o + (g,divv)g, Vv € XD.

® Theorem: 3I& € X2, solution to problem (PY).
In addition, £ is the only solution to the electrostatic model.

Proof;

(i) Existence and uniqueness of the solution to problem (PP) is straightforward.

(i) Vg’ € L?(Q): 3¢ € H} () such that Ap = ¢'.
As v = V¢ € X2, there holds (div &, ¢’)o = (g,9")o, Vg'. divE = g follows.

(i) f € Ho(div?, Q): according to ,
J'w € X% such that divw = 0, and curlw = f.
v=E—we X} yields ||curl (€ — w)||2 =0, so curl€ = f.

(iv) Now, if the electrostatic problem admits two solutions, it is clear that the difference
satisfies (P°) with homogeneous r.h.s., so it is zero; uniqueness follows.

|
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L I

"Electrostatic” model (3)

-

What happens when the domain €2 is not convex? X% r Isnotdense in X]%...

Remedy: solve the electrostatic problem in a weighted Sobolev space...
Introduce:
#® The set E of reentrant edges of 92, and the distance do(x) = d(x, F).
® The sets (y € [0,1])
L2(Q) = {g: g€Li.(Q),do"ge L*(Q)}, withnorm [|gllo,, = lldo”gll0 ;
XJOEN = {v : ve Hp(curl, ), divv € L,QY(Q)}
Theorem : 3vo0 €]0, 1/2], such that

(i) Vv €]vo, 1], the subspace of regular fields H! () N Xgﬁ is dense in Xgﬁ.
(i) Vv €]vo0, 1], the semi-norm associated to

()xo ¢ (w,v) = (curlu, curlv)o + (divu,divv)o,,

IS anorm in X]% - which is equivalent to the full norm.

|
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Welight Regularization Method

Define the AVF (PY) in X% y

Find £ € X3 _ such that
(E,V)Xg = (f,curlv)g + (g,divv)o,, VVE X]%ﬁ.

Theorem: 3!€ € X7, _ solution to (P°).
It is the only solution to the electrostatic model.

Numerical approximation with the Continuous P, Lagrange FE is possible:
#® convergence results: ||€ — 5h||Xg < Cf,yg CchY7707¢ Ve > 0

(for k > 2, cf, );
® comparisons and numerical experiments in 2D: cf.

According to

Similar results are also valid for finding H in X% e

|
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AVF for the time-dependent equations

-

Without a Silver-Miiller boundary condition (I' 4 = 0):
Find £(t) € X2  such that

1 2
2 < OZE,V>+A(E,V)yo = —— (T, V)0 + C—(p, divv)e , Vv € X2
€0 €0

( 02T € L*(0,T;L3(Q)), drp € CO(0,T; L% (). )

With a Silver-Muller boundary condition (I' 4 # 0):
® replace X$ by Xz ={veTg :divve L2(Q)};
#® add the boundary terms of (1) in (2)...

Find £(t) € X4  such that

(3){ < atth,V > —I-Cz(g,V)Xo + C%(gTva)O,FA

2 _ .
_%(075;7, v)o + Z—O(p, divv)g - + C%(G%VT)O,FA, Vv € Xé‘ .

|
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Mixed AVF for the time-dependent equations

. N

Coupling with the Vlasov equation (Particle methods):
® Atthe discrete level: 0-py, + div , I #~ 0.
® Need of a Lagrange multiplier on div £.

® The mixed AVF (case I' 4, = 0):
Find (£(t),p(t)) € X x L? such that

( < OLE, v > +c2(E,v)xo + (p,divv)g
2 .
(4) g :—%(8tj,v)o—|—g—0(p,dlvv)o : VVEX]% ;
\ (dlvg7Q)0 — %(p7 q)O ) \V/q S L2°

(87 € 20, T512@), 020 € 20,7517 (). )

® The mixed AVF (case I' 4 # 0):
replace X2 by X7 and add the boundary terms of (1) in (4)...

|
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Discretization

In time: leap-frog scheme

U(tnt1) — 2u(tn) + u(tn—1) |

atQtU(tn) (At)Q

In space, a continuous Galerkin Method:
& P Lagrange FE, or Py, — Py Taylor-Hood FE;
® P, —1iso— P; Taylor-Hood FE is possible ( in the convex case).

Overall, an explicit discretization scheme:

—n-+1

(MQ + %MMA,H) E + (At)2CT5n+1 _ fn+1/2

CEntl — gnt+l

Under a CFL: c At < ('), min; h;.

Mass lumping is possible : Py or Py FE ~ fully explicit scheme.

|
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Discretization (2)

o N

® s the Lagrange multiplier (MAVF) mandatory?

® Not really, except for Vlasov-Maxwell?! (cf. )

® Computed once every 10 (or more) time-steps...

® Use the Preconditioned CG method to compute p™*1 (cf. )
® convergence result for the implicit scheme (see ):

maac (11006 ) = 0713 + 11€(2) — € 1o )
< Ce ((At)?2 + h2(r=70=2) 4 (At)2R2(v—70—1=2)) | Ve > 0.
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Numerical examples

o N

® Computation of the electromagnetic field in a closed convex cavity (cf. ):
#® no source terms ((J, p) = (0,0));
® no artificial boundary (I'4 = 0);
o P, 151 or P, FE on 25K tetrahedra.

® Computation of the electromagnetic field around a non-convex body:
® generated by a current (7 # 0, p #£ 0);
® absorbing boundary conditionon I 4 ;
® P, or P, FE on 684K tetrahedra.

_ |
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Computation of the EM field in a cavity

® Solving Maxwell equations in a unit cube (no source terms, non-zero |. C.):
Find £(t) € X2 and H(t) € X7, such that

< ORE,v>+c?(E,v)x0 =0, Vv e X
< OLH,v > +c* (H,v)x0 =0, Vv € X7,
® Exact solution: cos(mx) sin(my) sin(—27z)
E(t) = cos(wt) | sin(nx) cos(my) sin(—27mz) :

sin(7mx) sin(my) cos(—2mz)

. — sin(7wx) cos(my) cos(—2mz)
H(t) = sin(wt) cos(mx) sin(mwy) cos(—27z)
fow .

® c~30x108ms !, po=47rx10""H.m !, w ~ 2.3 x 10° Hz.

® 10 discretization nodes per wave length ~ 25K tetrahedra.

| -
E
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Pl,/ﬁ;andpg FE

® £, relative amplitude at point (0.19,0.12,0.12).
0.4
0.31 — Exact .
P
0.2 ? .
__ P,
e 0.1 .
= ~ Lumped P1
[}
R I
2
£
< -0.1r =
-0.2f- :
-0.3f :
_04 | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time x 10—9
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Some results without Lagrange multiplier, P, FE

(0,6,0) 9,6,0)

AT T

|
I 6.3,0
(6,3.0) (9,3,0)
I 4: artificial boundary.
,,,,, Current.
-- Reentrant edge.
iiiiii (6,0,0)
______ ey
S e.T
eZ

c~3.0108m.s~ !, w~~2510° Hz.

™2 ™2

J = 107° w sin (T> cos(wt)es, p=107° % cos (T) sin(wt); & = Ho = 0.

9
9
® No incoming wave: e* = 0.
9

684K tetrahedra.
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En INplane z = 2.5 space evolution

® T, =1ns,To = 8ns, T3 = 15ns, Ty = 20ns.
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En INplane z = 2.5: zooming In...

‘ ® 7, =1ns, T = 8ns, T3 = 15ns, Ty = 20ns. \

Zirich (Jan. 06) = p. 19/23



Eny INplane z = 2.5: space evolution

® T, =1ns,To = 8ns, T3 = 15ns, Ty = 20ns.
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En- Inplane z = 2.5: space evolution

® T, =1ns,To = 8ns, T3 = 15ns, Ty = 20ns.

-5000
10000
-15000
4 4
6 X10 6 — x10
- - - 5
. 5
4 i 0 4 .
: 0
] B Dl T BERR . 5 00 e R
- - -3
0 5 -10 0
0 2 4 6 8 0 2 4 6 8

TA Zirich (Jan. 08) — o. 21/23



En- time evolution

® My =(1,1,2), M2 =(1,5,2), M3 = (5.5,2.5,2), My = (8,5.5,2).

4

2x 10
[¢})
o
=
=
e
<
_3 I | | |
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Time xlO_S
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2x 10
1t i
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30 *
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_3 I | | |
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Time x10_8

x 10°
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Time X 10-8
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L I

Conclusion/Perspectives

-

One can solve numerically Maxwell equations with continuous Galerkin methods!
(cf. )

The numerical implementation is not very costly, and one can use mass lumping...
To achieve better precision:

® increase ., the order of the FE;

® use PMLs to close the domain.

The Mixed AVF can be useful to solve:

#® the coupled Vlasov-Maxwell system of equations (ongoing project with );
® eigenvalue problems

Alternate methods:
® 2D, 3D: the Natural Boundary Condition Method ( ).
® 2D, 2D1/2: the Singular Complement Method (

). J
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