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Time-dependent Maxwell equations

., .

In vacuum, over the time interval [0, 7'[, T > 0.

[ Find (£(t), H(t)) € L2(-) x L2(-) such that
50% —curlH =—-7;
< ,uoa—qj +curl =0
div (e0€) = p;
div (poH) = 0;
| £(0) =&o, H(0) =Ho .

(% € 2200, 15L2()), p € CO(0, 75 12()) 1 22 4 div T = 0.

1
£o € H(curl, ), divEg = —p(0) ; Ho € H(curl, ), divHo = 0. )
€0

® Goal: compute the EM field around a perfect conducting body O, with Lipschitz
polyhedral boundary.

o -
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Time-dependent Maxwell equations (2)

But... Consider a bounded computational domain €2, with Lipschitz polyhedral boundary.

Its boundary 092 is splitas 0Q = I'c UT' 4, with T'c = 80O N 81).
A Silver-Muller boundary condition is imposed on the artificial boundary I" 4: incoming plane
waves (e* # 0), or 1st order absorbing condition (e* = 0).

® Boundary conditions

Exn=00nI¢;

(€ — ?HXH)Xn:é’*XnonFA.
0
98
<8teﬁmjm%u»)

® Consequences: some "additional" boundary conditions

H-n=Hp-n; (curlH) x n=7 xnonTlg.

10 19
1€ = ——(er) — - ;¢
(curl€) X n oy (e7) 57 ET

(curl?—l)Xn:an—l—soa(e*Xn)———’HT J

c Ot
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Time-dependent Maxwell equations (3)

2nd order in time, electric field £...

® Equation
2 1
8—8 + c?curlcurl £ = ——8—J ; 8—8(0) =&
ot? ) gg Ot = Ot
(51 = — (curl Ho — J(O)))
€0

® Functional space
T7%V¢ .= {v € H(curl,Q) : v x ngn € L2(09Q), v x nr, =0}

® \Variational Formulation

Find £ € 79 I'c such that
d2
ﬁ(g,v)o + c2(cur18,curlv)o + CE(E:T)VT)O,FA
1 d

d r
- _ga(j,V)ocha(e}»VT)o,FAv vv e T, (1)
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Continuous and discrete formulations (1)

., .

Putting scalar potentials in (1): ¢ € Hj(2), v = Vg € Hg(curl, Q)

d? 1 d 1 d?
EVQo=———(divT,q)o = .q)o, Yq € HX ().
~ gz (& Vo = = — 2(div T, q)o = ——5(p.a)o, Yg € Ho (Y

® Discretization: Edge FE (Nédélec’s 1st family) + P; Lagrange FE for potentials

d? 1 d?

3 (En, Van)o = ) (psqn)os Vgn.

The divergence constraint is weakly enforced in the discrete case.
» But

® An H(curl)-conforming FEM yields a discontinuous approximation of the field,
whereas it is smooth (except at interfaces between different materials).

® Implicit schemes for the discretization in time are expensive

(cf. )

o -
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Continuous and discrete formulations (2)

Consider an approximation of the field, via an H(curl, div )-conforming discretization,
using the P, Lagrange FE (cf. ). Some a priori remarks:

® A continuous approximation.

® Mass lumping is possible (and optimal!), so the discretization in time is no longer
an issue.

® But, the divergence constraint does not appear to be enforced...
® Define

x0lc .= 70.I'c nH(div, Q),
(v,w)x := (curlv,curlw)g + (divv,divw)o + (v, W7 )0.60Q;
XY := Hg(curl, Q) N H(div, Q),

(v,w)yo := (curlv,curlw)g + (div v, div w)g.

® Hypothesis: the semi-norms associated to the scalar products above define norms on
X9Tc and X9, which are equivalent to the full norm.
From

Assume for instance that 92 is connected.
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Continuous and discrete formulations (3)

o e .

® Then, € is the solution to the Mixed, Augmented Variational Formulation:
find (€,p) € X%c x L2(Q) s.t.

d? d
dt2 (g V)O + CE(‘CJT)VT)O I'a + c (g V)XO + (p, leV)O
1 d c? . d or
=———(J,v)o+ —(p,divv)o + c—(€F7,vT)or,, VVE X C,
go dt €0 dt
. 1
(divE, q)o = g(p, q9)o, Vg € L*().

® The constraint on I'¢ is usually enforced numerically, which means that the discrete
field satisfies &, x njr, = 0...

= This plain discretization leads to trouble, when the polyhedral domain is not convex.
(That is, when strong electromagnetic fields appear.)

» From now on, it is assumed that I' = 99, i. e. the electric field belongs to X'°.
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Strong/singular electric fields

=

By construction, the discrete field £, belongs to X° N H'(Q) := X3.

But, X}?{ is a strict, closed subspace of X2 when € is not convex (cf.
.) One can thus write

L
X% = xg @ &2, with X2 the subspace of singular electric fields.

Consequently, if one splits £ as €& = Ex + Eg, one finds [|€ — &4 xo > ||Es]] o
a strong electric field cannot be approximated in X° by the discrete field only...

Consider ® := {¢ € Hj () : A¢ € L?(Q)}.
If ones defines the orthogonal complement ® 5 of H2(2) N H} (£2) in @, there holds

(cf. )
Vxs € X9, (X, ¢s5) € Xp x ®g, x5 =%+ Vog.

Idea: study the singular potentials and ways to compute them, to derive numerical
techniques for computing the singular electric fields.
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The SCM for scalar fields: theory
f P et T

(I's)1< r<F denote the set of faces of the boundary 952.

According to , one can write

L?(Q) = A(H?*(Q) n H} () 5 Sp, with

Sp:={s € L*(Q) : As=0, sir, =0in (HééQ(Ff)>/, 1< fL F}

® From now on, assume w is a polygon, with K reentrant corners on its boundary.
Let (r, 0% ) denote the local polar coordinates, with incoming edges described locally
by 6, = 0 or 6, = 7/ay. There holds
® dim(Sp)= K:let(sp ), be abasis of Sp;
® spcanbechosenas sp p =r, “¥sin(agby) + $p g, With $p , € H' (w);
® given f € L?(w), the solution u to the problem find v € H}(w) s.t. —Au = f
can be written as

K
o o 1 i
u = Z At ¥ sin(ag0y) + @, with A, = —(f,sp ko, @ € H*(w).

. W -
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The SCM for scalar fields: numerical analysis

o .

» Many Refs:

(i) The Dual Singular Function Method:
and many, many others... With a cut-off function, and a different representation
formula for .

(i) Or and others... No cut-off, but a non-homogeneous boundary
condition, see the previous page.

® Here, we follow (ii) and set o = mingay,.
Given a regular triangulation 77, of w with meshsize h, define V/, the space of
continuous and piecewise linear functions on 77},.

® Write 8%,]@ = T;ak Sin(akek) + 5%,1@ with 5%,k e V.
Proposition: 3C' > 0 such that ||sp x — s% , |lo < Ch?®.

K
: o - - . 1
O \Write v = Z )\Zrkk sin(a 0y ) + a, with A = ;(f, S}b,k)o.
k=1
Proposition: 3C > 0 such that ||u — u®||; < Ch.

o -
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(i)

The SCM for electric fields: theory

We follow here

dim(X%) = K: let (xg,x ), be a basis of X%.
K
The electric field can be splitas E = Eg + »  cxxs, Er € X%.
k=1

(xs,k )k can be chosen as the solution to:

find x € XOst curlxgr = sy i, divxs e = Sp k.
S,k S,k : S, :

ap—1 [ sin(agbk)

Letting xp r, = —apr, , (xs,k )k Can be chosen as

cos(aby)

1 . . .
xs.k = — (IIsp.&llg + Isn.&llg) Xpk + Xk, with %, € H'(w)? ensuring orthogonality.
7T

The two choices yield the same basis.

-
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® To compute the additional basis vectors, which approximate the singular fields of X2,

The SCM for electric fields: numer. anal.

=

no cut-off is required, but a non-homogeneous boundary condition is used again.

1
h h h ~h cL ~
x = = (Ish slld + sk ulI3) xpe + %5, with 27 € V2,
Proposition:

® Ve>0,3C. > 0suchthat ||xg, —x% ,||x < Ceh?*—17¢,
® Ve>0,3C. > 0suchthat||xg, —x2 , |lo < Cch*>—27¢,

® To approximate the electric field, one uses elements of X° N Vh2 and (xg . )k to get

K
E" = E% + > ¢¢x% ., and similarly for test fields.

k=1
Proposition:

® Ve > 0,3C: > 0suchthat |E — E?||x < Cch?2o—1-¢,
® Ve > 0,3C: > 0suchthat |E — E?|g < C.h*>—27¢,

-
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Extensions: finite dimensional X’¢

(1) Case of the 3D axisymmetric Maxwell equations:

(2)

- In a domain €2, which is invariant by rotation;
- given data, which is also invariant by rotation.
One gets that the dimension of the singular space of electric fields behaves like

dim(X9) = Ke+Ke,

with K. the number of circular reentrant edges, and /K. the number of sharp conical
vertices (see .r)

Case of the 3D Maxwell equations, set in a domain €2, whose only geometrical
singularities are smooth-based, sharp conical vertices.
One gets that the dimension of the singular space behaves like

dim(X9) = K..

(see )

-
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(3)

(4)
(5)

(x)

Extensions: the Fourier SCM

The 3D Laplace problem in a prismatic or axisymmetric domain
(see )

The 3D Maxwell equations in an axisymmetric domain (see

The 3D Maxwell equations in a prismatic domain (see

An open problem: the 3D Maxwell equations in a general domain
Is that edge and vertex singularities are linked (see

... The main difficulty

) J
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Alternative methods (1)

=

One can choose to include explicitly the vanishing boundary condition on I'~ in the
Variational Formulation, i.e.

replace (£7,vr)o,r, bY (E7,vT)0,00-
It is thus handled as a natural boundary condition, with the electric and test fields in

X :={v € H(curl, Q) N H(div,) : vXnppq € LZ(09Q)}.

According to ;
the subspace of H!-regular fields is dense in X. No need for a Singular Complement!

One can also add a Lagrange multiplier for the boundary condition, see

-
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Alternative methods (2)

-

® Solving the electric problem in a weighted Sobolev space...

® ntroduce:
® The set E of reentrant edges of 02, and the distance dg(x) = d(x, F).
® The sets (v € [0,1])

L2(Q) = {g:geD(Q),dge L*(Q)}, with norm ||g|lo,y = |ldo”gllo ;
Xj%’,y := {v : v € Hp(curl,Q), divv € L,QY(Q)}
® Theorem : dv0 €]0,1/2], such that

(i) Vv €]vo,1], the regular subspace H! () N Xgﬁ is dense in Xgﬁ.
(i) V~ €]vo, 1], the semi-norm associated to

(-, '>X2 : (u,v) — (curlu,curlv)g + (divu,divv)g

IS a norm in Xg v which is equivalent to the full norm.

o -
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