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ABSTRACT

We study the so-called interior transmission problem
using the T-coercivity approach. In particular, we prove
that this problem, which appears when one is inter-
ested in the reconstruction of the support of an inclu-
sion embedded in a homogeneous medium, is of Fred-
holm type and that so-called transmission eigenvalues
form at most a discrete set. The simple technique we
propose allows to treat cases, which were not covered
by existing methods, where the difference between the
inclusion index and the background index changes sign.

1. INTRODUCTION

The term “interior transmission eigenvalue problem”
refers to a family of spectral problems which appear in
scattering theory for inhomogeneous medium. In par-
ticular, they arise when one is interested in the recon-
struction of an inclusion embedded in a homogeneous
medium from multi-static measurements of diffracted
fields at a given frequency. In this case, to implement
any method, it is natural to require that, for the given
frequency, there are no waves which do not scatter.
Mathematically, this last property boils down to say
that the frequency is not a transmission eigenvalue,
that is, an eigenvalue of the interior transmission prob-
lem (see (2) where u denotes the total field and w, the
incident field). This explains why it is crucial to prove
that transmission eigenvalues form at most a discrete
set with infinity as the only accumulation point.

In this talk, we focus on the scalar case of a het-
erogeneous and possibly anisotropic medium for which
the contrast in the scattering medium occurs in two
independent functions A and n (see (2)) which are re-
spectively equal to Id and 1 for the reference medium.
From a technical point of view, the sesquilinear form as-

sociated with the natural variational formulation of this
interior transmission problem, defined in (3), exhibits
a sign-changing in its principal part. Consequently, the
associated operator is not strongly elliptic and its study
is not standard. One observes an equivalent difficulty in
the study of the transmission problem between a dielec-
tric and a negative metamaterial in harmonic regime.
To tackle it, we can use the T-coercivity technique [1].
The idea consists in testing, in variational formulations,
not directly against the field, but against a simple geo-
metrical transformation of the field, in order to restore
some properties of positivity for the associated opera-
tors. In [2], thanks to this simple approach, we have
been able to extend the results of [3]: only the values
of A− Id in a neighbourhood of the boundary actually
matter for determining whether or not the problem is
of Fredholm type.

2. SETTING OF THE PROBLEM

Consider D a bounded domain of R3, with Lipschitz
boundary ∂D and denote ν the outward unit normal.
Let A ∈ L∞(D,R3×3) be a matrix valued function such
that A(x) is symmetric for almost all x ∈ D. The
function n ∈ L∞(D,R) will be scalar real valued. We
suppose that

A− := inf
x∈D

inf
ξ∈R3,|ξ|=1

(ξ ·A(x)ξ) > 0 ;

A+ := sup
x∈D

sup
ξ∈R3,|ξ|=1

(ξ ·A(x)ξ) < ∞ ;

n− := inf
x∈D

n(x) > 0 and n+ := sup
x∈D

n(x) < ∞.

(1)

The transmission eigenvalue problem reads :

Find (u,w) ∈ H1(D)×H1(D) such that :
div (A∇u) + k2nu = 0 in D
∆w + k2w = 0 in D
u− w = 0 on ∂D
ν ·A∇u− ν · ∇w = 0 on ∂D.

(2)
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Values of k ∈ C for which problem (2) has a nontrivial
solution (u,w) are called transmission eigenvalues. If O
is an open subset of R3, we denote (·, ·)O the Hermitian
scalar products of L2(O) and (L2(O))3. The pair (u,w)
satisfies problem (2) if and only if (u,w) satisfies the
problem

Find (u,w) ∈ X such that, for all (u′, w′) ∈ X,
ak((u,w), (u

′, w′)) = 0,
(3)

with ak((u,w), (u
′, w′)) = (A∇u,∇u′)D−(∇w,∇w′)D−

k2 ((nu, u′)D − (w,w′)D) and X = {(u,w) ∈ H1(D) ×
H1(D) |u− w ∈ H1

0(D)}. Define the operator Ak from
X to X such that, for all ((u,w), (u′, w′)) ∈ X × X,
(Ak(u,w), (u

′, w′))H1(D)×H1(D) = ak((u,w), (u
′, w′)). This

eigenvalue problem differs from classical ones because
ak is not coercive on X neither “coercive+compact”.

3. THE T-COERCIVITY METHOD

For the sake of clarity, we present the technique in the
simple case: A+ < 1 and n+ < 1. The idea is to
consider an equivalent formulation of (3) where ak is
replaced by aTk defined by

aTk((u,w), (u
′, w′)) := ak((u,w), T(u

′, w′)), (4)

T being an ad hoc isomorphism of X. Indeed, (u,w) ∈ X
satisfies ak((u,w), (u

′, w′)) = 0 for all (u′, w′) ∈ X if,
and only if, it satisfies aTk((u,w), (u

′, w′)) = 0 for all
(u′, w′) ∈ X. In the present case, let us take T(u,w) :=
(u − 2w,−w) (T is an isomorphism since T

2 = Id).
Using Young’s inequality, one has for k = iκ with κ ∈
R

∗, ∀α, β > 0, ∀(u,w) ∈ X,

|aTk((u,w), (u,w))|

= |(A∇u,∇u)D + (∇w,∇w)D − 2(A∇u,∇w)D

+κ2 ((nu, u)D + (w,w)D − 2(nu,w)D)
∣

∣

≥ (A∇u,∇u)D + (∇w,∇w)D

+κ2 ((nu, u)D + (w,w)D)

−2 |(A∇u,∇w)D| − 2κ2 |(nu,w)D|

≥ ((1− α)A∇u,∇u)D + ((1− α−1A+)∇w,∇w)D

+κ2
(

((1− β)nu, u)D + ((1− β−1n+)w,w)D
)

.

Taking α and β such that A+ < α < 1 and n+ < β < 1,
this estimate proves that aTk is coercive over X. Using
Lax-Milgram theorem and since T is an isomorphism
of X, one deduces that Ak is an isomorphism of X for
k = iκ with κ ∈ R

∗. Besides, for a general k ∈ C, the
operator Ak is a compact perturbation of an isomor-
phism of X since the embedding of X in L2(D)×L2(D)
is compact.
Using a localization argument and applying the ana-
lytic Fredholm theorem, finally, we can prove the

Theorem 1 • If A(x) ≤ A⋆Id < Id or if Id < A⋆Id ≤
A(x) a.e. in a neighbourhood of ∂D, then for all k ∈ C,

the operator Ak is Fredholm from X to X.
• If A(x) ≤ A⋆Id < Id and n(x) ≤ n⋆ < 1 or if

Id < A⋆Id ≤ A(x) and 1 < n⋆ ≤ n(x) a.e. in a neigh-

bourhood of ∂D, then the set of transmission eigen-

values is discrete. Moreover, there exist two positive

constants ρ and δ such that if k ∈ C satisfies |k| > ρ

and |ℜe k| < δ |ℑmk|, then k is not a transmission

eigenvalue.

This result is optimal in the sense that, when the
sign of A − Id changes (or worse, when A − Id re-
duces to zero) in a neighbourhood of the boundary,
there are geometries and values of A for which the in-
terior transmission problem is not Fredholm in H1 be-
cause of the apparition of “strong” singularities (see [1]
for the transmission problem between a dielectric and
a negative metamaterial).

4. DISCUSSIONS

The T-coercivity approach can be used to deal with the
interior transmission problem for Maxwell’s equations
([4]). However, up to now, the question of existence
of real transmission eigenvalues when A − Id or n − 1
change sign is still an open question. Indeed, the equiv-
alent formulation of problem (3) we consider, which
presents a useful property of positivity, is no longer
symmetric: this prevents using the nice min-max ar-
guments of [5].
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