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Abstract

We study a time-harmonic waves problem in a
2D waveguide. The geometry is symmetric with
respect to an axis orthogonal to the direction
of propagation of waves. Moreover, the waveg-
uide contains one branch of finite length L. We
analyse the behaviour of the complex scattering
coefficients R, T as L goes to +∞ and we ex-
hibit situations where non reflectivity (R = 0,
|T | = 1), perfect reflectivity (|R| = 1, T = 0)
or perfect invisibility (R = 0, T = 1) hold.
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1 Introduction

In recent articles [1, 2], an approach has been
proposed to construct acoustic waveguides dif-
ferent from the reference (straight) geometry
where the incident waves produce only expo-
nentially decaying scattered fields. The idea is
to perturb the walls of the reference domain in
a clever way mimicking the proof of the implicit
function theorem. In this work, we wish to ob-
tain a similar result following a different path.
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Figure 1: Geometry of ΩL.

Consider some ` > 0. For L > 0, set

ΩL := {(x, y) ∈ R×(0; 1) ∪ (− `
2

;
`

2
)×[1; 1+L)}.

Propagation of acoustic waves in the waveguide
ΩL with sound hard walls leads to study the
problem

∆v + k2v = 0 in ΩL

∂nv = 0 on ∂ΩL.
(1)

We assume that k ∈ (0;π) so that only two
waves w±(x, y) = e±ikx/

√
2k can propagate in

ΩL. The scattering of the wave w+ coming from
the left yields a solution of (1) such that

v =
w+ +Rw− + . . . , for x < −`

T w+ + . . . , for x > `.
(2)

Here the dots correspond to a superposition of
modes which are exponentially decaying at ±∞.
In (2), the reflection coefficient R ∈ C and
transmission coefficient T ∈ C are uniquely de-
fined. Moreover, energy conservation writes

|R|2 + |T |2 = 1. (3)

In the following, we explain how to find `, L
such that R = 0, |T | = 1 (non reflectivity);
|R| = 1, T = 0 (perfect reflectivity); or R = 0,
T = 1 (perfect invisibility). To get such par-
ticular values, we will use the symmetry of the
geometry with respect to the (Oy) axis.

2 Half-waveguide problems
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Figure 2: Domains ωL (left) and ω∞ (right).

Set ωL := {(x, y) ∈ ΩL |x < 0}. Introduce the
problem with Neumann boundary conditions

∆u+ k2u = 0 in ωL

∂nu = 0 on ∂ωL
(4)

and the one with mixed boundary conditions

∆U + k2U = 0 in ωL

∂nU = 0 on ∂ωL ∩ ∂ΩL

U = 0 on {0} × (0;L).

(5)
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Problems (4) and (5) respectively admit the so-
lutions u = w+ + r w− + . . . and U = w+ +
Rw−+ . . . where r, R ∈ C are uniquely defined
and where the dots stand for terms which are
exponentially decaying at −∞. Due to conser-
vation of energy, one has

|r| = |R| = 1. (6)

Besides, a simple analysis shows that the coef-
ficients R, T appearing in (2) are such that

R =
r +R

2
and T =

r −R
2

. (7)

3 Non reflection and perfect reflection

Now, we study the asymptotic behaviour of R,
T as L→ +∞. To proceed, we use (7) and work
with r, R. The behaviours of r, R as L→ +∞
depend on the properties of the equivalents of
Problems (4), (5) set in the limit geometry ω∞
obtained from ωL making formally L → +∞
(see Figure 2, right). In particular, the num-
ber of propagating waves existing in the vertical
branch Π∞ of ω∞ plays a crucial role.

? Assume that ` ∈ (0;π/k) (`/2 is the width
of Π∞). Then for Problem (5) set in ω∞, prop-
agative modes in Π∞ do not exist. Due to this
property, we can show that R = R∞+. . . where
R∞ ∈ S := {z ∈ C | |z| = 1} is a constant. Here
the dots correspond to a remainder which is ex-
ponentially small as L → +∞. For Problem
(4) (with Neumann boundary condition) set in
ω∞, one propagative mode exists in Π∞. And
because of the reflection of this mode on the wall
at y = L, the coefficient r does not converge as
L→ +∞. More precisely, we can prove that it
admits the expansion r = rasy(L) + . . . where
rasy(L) is a term whose dependence with respect
to L can be obtained explicitly and which runs
periodically on S as L → +∞. Again the dots
stand for an exponentially small remainder.

Imagine that we want to have R = 0 (non re-
flectivity). According to (7), we must impose
r = −R. Relations (6) guarantee that for all
L > 0, both r and R are located on the unit cir-
cle S. But R tends to a constant R∞ ∈ S while
r runs continuously on S as L → +∞. This
proves the existence of L such that r = −R and
so R = 0. This also shows that there are some
L such that r = R and so T = 0 (perfect reflec-

tivity). Numerics of Figure 3 confirm these re-
sults. To obtain perfect invisibility, i.e. T = 1,
we must impose both r = 1 and R = −1. This
requires a bit more work but can be achieved.
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Figure 3: Numerical approximations of R (×)
and T ( ). We take k = 3, ` = 1 and L ∈ (1; 9).
As predicted, we obtain circles of radius 1/2
passing through zero.

? When ` ∈ (π/k; 2π/k), both for Problem (5)
and (4) set in ω∞, one propagative mode exists
in Π∞. Then, we can prove that R = Rasy(L)+
. . . and r = rasy(L)+. . . where Rasy(L), rasy(L)
are explicitly known coefficients which run pe-
riodically on S with different speeds V , v. This
is enough to conclude that R = 0 or T = 0 for
an infinite number of L. However, compared to
the case ` ∈ (0;π/k), the behaviour of R and
T can be much more complex, especially when
v/V is not a rational number (see Figure 4).

Figure 4: Numerical approximation of R for
k = 3, ` = 1.7 and L ∈ (1; 99).
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