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Abstract

We study a time-harmonic waves problem in a
2D waveguide. The geometry is symmetric with
respect to an axis orthogonal to the direction
of propagation of waves. Moreover, the waveg-
uide contains one branch of finite length L. We
analyse the behaviour of the complex scattering
coefficients R, T as L goes to 400 and we ex-
hibit situations where non reflectivity (R = 0,
|T| = 1), perfect reflectivity (|R| = 1, T = 0)
or perfect invisibility (R =0, 7 = 1) hold.
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1 Introduction

In recent articles [1,2], an approach has been
proposed to construct acoustic waveguides dif-
ferent from the reference (straight) geometry
where the incident waves produce only expo-
nentially decaying scattered fields. The idea is
to perturb the walls of the reference domain in
a clever way mimicking the proof of the implicit
function theorem. In this work, we wish to ob-
tain a similar result following a different path.
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Figure 1: Geometry of Q.

Consider some ¢ > 0. For L > 0, set

SN

Qr :={(z,y) e Rx(0;1) U (—5; 5

Propagation of acoustic waves in the waveguide
Q7 with sound hard walls leads to study the
problem

Av+kv = 0 inQp

_ (1)
Opv = 0 on 09Qp.

We assume that k£ € (0;7) so that only two
waves w(z,y) = e**** /\/2k can propagate in
Q. The scattering of the wave w™ coming from
the left yields a solution of (1) such that

Jwt+Rw +..., forz<—/ )
N Twt+..., forz>/.

Here the dots correspond to a superposition of
modes which are exponentially decaying at +oo.
In (2), the reflection coefficient R € C and
transmission coefficient 7 € C are uniquely de-
fined. Moreover, energy conservation writes

R+ [T = 1. (3)

In the following, we explain how to find ¢, L
such that R = 0, |T| = 1 (non reflectivity);
|R| =1, T = 0 (perfect reflectivity); or R = 0,
T = 1 (perfect invisibility). To get such par-
ticular values, we will use the symmetry of the
geometry with respect to the (Oy) axis.

2 Half-waveguide problems
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Figure 2: Domains wy, (left) and ws (right).

Set wr, := {(x,y) € Qr |z < 0}. Introduce the
problem with Neumann boundary conditions

Au+ku = 0 inwy

ou (4)

0 on Owy,

and the one with mixed boundary conditions

AU+ kKU = 0 inwp
oU = 0 ondwrndQy (5)
U = 0 on{0}x(0;L).
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Problems (4) and (5) respectively admit the so-
lutions u = wr +rw™ + ... and U = w' +
Rw™+... where r, R € C are uniquely defined
and where the dots stand for terms which are
exponentially decaying at —oo. Due to conser-
vation of energy, one has

rl =Rl = 1. (6)

Besides, a simple analysis shows that the coef-
ficients R, T appearing in (2) are such that

r+ R and T:r—R'

R=— 2

(7)

3 Non reflection and perfect reflection

Now, we study the asymptotic behaviour of R,
T as L — 4o00. To proceed, we use (7) and work
with 7, R. The behaviours of r, R as L — +o00
depend on the properties of the equivalents of
Problems (4), (5) set in the limit geometry w
obtained from wjy making formally L — —+oo
(see Figure 2, right). In particular, the num-
ber of propagating waves existing in the vertical
branch Il of wy plays a crucial role.

* Assume that ¢ € (0;7/k) (£/2 is the width
of ITs). Then for Problem (5) set in weo, prop-
agative modes in Il do not exist. Due to this
property, we can show that R = R, +... where
Ry €S :={z € C||z| =1} is a constant. Here
the dots correspond to a remainder which is ex-
ponentially small as L — +4o0o. For Problem
(4) (with Neumann boundary condition) set in
Weo, One propagative mode exists in Il,. And
because of the reflection of this mode on the wall
at y = L, the coeflicient  does not converge as
L — +00. More precisely, we can prove that it
admits the expansion r = 1,y (L) + ... where
Tasy (L) is a term whose dependence with respect
to L can be obtained explicitly and which runs
periodically on S as L. — +00. Again the dots
stand for an exponentially small remainder.

Imagine that we want to have R = 0 (non re-
flectivity). According to (7), we must impose
r = —R. Relations (6) guarantee that for all
L > 0, both 7 and R are located on the unit cir-
cle S. But R tends to a constant Ro, € S while
r runs continuously on S as L — +oo. This
proves the existence of L such that r = —R and
so R = 0. This also shows that there are some
L such that r = R and so T = 0 (perfect reflec-

tivity). Numerics of Figure 3 confirm these re-
sults. To obtain perfect invisibility, i.e. T =1,
we must impose both r =1 and R = —1. This
requires a bit more work but can be achieved.
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Figure 3: Numerical approximations of R (x)
and T (¢). We take k =3,/ =1and L € (1;9).
As predicted, we obtain circles of radius 1/2
passing through zero.

* When ¢ € (7/k;2n/k), both for Problem (5)
and (4) set in ws, one propagative mode exists
in ITo. Then, we can prove that R = Ragy (L) +
cand r = ragy(L)+. .. where Rygy (L), rasy(L)
are explicitly known coeflicients which run pe-
riodically on S with different speeds V', v. This
is enough to conclude that R =0 or 7 = 0 for
an infinite number of L. However, compared to
the case ¢ € (0;7/k), the behaviour of R and
T can be much more complex, especially when
v/V is not a rational number (see Figure 4).

Figure 4: Numerical approximation of R for
k=3,0=1.7and L € (1;99).
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