Workshop Mathematical methods for spectral problems: Applications to waveguides, periodic media and metamaterials

A bilaplacian problem with a sign-changing coefficient

 $\underline{\text{Lucas Chesnel}}^{\dagger},$ Jérémy Firozaly ‡

†Inverse Problems Research Group, Aalto University, Helsinki, Finland †POems team, Ensta, Paris, France

▶ Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

- ► This leads to study the Interior Transmission Eigenvalue Problem:
 - ightharpoonup u is the total field in Ω

$$\Delta u + k^2 n^2 u = 0 \quad \text{in } \Omega$$

Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

- ► This leads to study the Interior Transmission Eigenvalue Problem:
 - \blacksquare u is the total field in Ω

ightharpoonup w is the incident field in Ω

$$\begin{vmatrix} \Delta u + k^2 n^2 u \\ \Delta w + k^2 w \end{vmatrix} = 0 \quad \text{in } \Omega$$

Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

- This leads to study the Interior Transmission Eigenvalue Problem:

ightharpoonup u is the total field in Ω ightharpoonup w is the incident field in Ω

$$\text{BCs?} \qquad \left| \begin{array}{l} [u] = 0 & \text{ on } \partial \Omega \\ [\nu \cdot \nabla u] = 0 & \text{ on } \partial \Omega \end{array} \right. \qquad + \qquad u = w + {\color{red}0} \text{ in } \mathbb{R}^2 \setminus \Omega.$$

Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

- ▶ This leads to study the Interior Transmission Eigenvalue Problem:
 - lacklosim u is the total field in Ω lacklosim w is the incident field in Ω

Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

- ► This leads to study the Interior Transmission Eigenvalue Problem:
 - u is the total field in Ω w is the incident field in Ω

Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

- ► This leads to study the Interior Transmission Eigenvalue Problem:
 - u is the total field in Ω w is the incident field in Ω

$$\begin{array}{ccccc} \Delta u + k^2 n^2 u & = & 0 & \text{in } \Omega \\ \Delta w + k^2 w & = & 0 & \text{in } \Omega \\ \hline u - w & = & 0 & \text{on } \partial \Omega \\ \nu \cdot \nabla u - \nu \cdot \nabla w & = & 0 & \text{on } \partial \Omega. \end{array}$$

Trans. cond. on $\partial\Omega$

Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

- ► This leads to study the Interior Transmission Eigenvalue Problem:
 - \blacksquare u is the total field in Ω \blacksquare w is the incident field in Ω

$$\begin{array}{ccccc} \Delta u + k^2 n^2 u & = & 0 & \text{in } \Omega \\ \Delta w + k^2 w & = & 0 & \text{in } \Omega \\ \hline u - w & = & 0 & \text{on } \partial \Omega \\ \nu \cdot \nabla u - \nu \cdot \nabla w & = & 0 & \text{on } \partial \Omega. \end{array}$$

Trans. cond. on $\partial\Omega$

DEFINITION. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

Introducing v = u - w the scattered field inside Ω

• Introducing v = u - w the scattered field inside Ω

• There holds $\Delta u + k^2 n^2 u = 0$ and $\Delta w + k^2 w = 0$ in Ω .

• Introducing v = u - w the scattered field inside Ω

- There holds $\Delta u + k^2 n^2 u = 0$ and $\Delta w + k^2 w = 0$ in Ω .
- We deduce $\Delta v + k^2 n^2 v = k^2 (1 n^2) w$ in Ω .

• Introducing v = u - w the scattered field inside Ω

- There holds $\Delta u + k^2 n^2 u = 0$ and $\Delta w + k^2 w = 0$ in Ω .
- We deduce $\Delta v + k^2 n^2 v = k^2 (1 n^2) w$ in Ω .
- This implies

$$\left| \begin{array}{l} (\Delta + k^2) \Big(\frac{1}{1 - n^2} (\Delta v + k^2 n^2 v) \Big) = 0 & \text{in } \Omega \\ v = \nu \cdot \nabla v = 0 & \text{on } \partial \Omega. \end{array} \right.$$

▶ Introducing v = u - w the scattered field inside Ω , we can write an equivalent formulation:

Find
$$(k, v) \in \mathbb{C} \times \mathrm{H}_0^2(\Omega) \setminus \{0\}$$
 such that:

$$\int_{\Omega} \frac{1}{1 - n^2} (\Delta v + k^2 n^2 v) (\Delta v' + k^2 v') = 0, \quad \forall v' \in \mathrm{H}_0^2(\Omega).$$

▶ Introducing v = u - w the scattered field inside Ω , we can write an equivalent formulation:

Find
$$(k, v) \in \mathbb{C} \times \mathrm{H}_0^2(\Omega) \setminus \{0\}$$
 such that:

$$\int_{\Omega} \frac{1}{1 - n^2} (\Delta v + k^2 n^2 v) (\Delta v' + k^2 v') = 0, \quad \forall v' \in \mathrm{H}_0^2(\Omega).$$

▶ One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

▶ Introducing v = u - w the scattered field inside Ω , we can write an equivalent formulation:

Find
$$(k, v) \in \mathbb{C} \times \mathrm{H}_0^2(\Omega) \setminus \{0\}$$
 such that:

$$\int_{\Omega} \frac{1}{1 - n^2} (\Delta v + k^2 n^2 v) (\Delta v' + k^2 v') = 0, \quad \forall v' \in \mathrm{H}_0^2(\Omega).$$

- ▶ One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- ▶ This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when n>1 on Ω or n<1 on Ω .

equivalent formulation:

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when n > 1 on Ω or n < 1 on Ω .

What happens when $1 - n^2$ changes sign?

equivalent formulation:

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when n > 1 on Ω or n < 1 on Ω .

What happens when $1 - n^2$ changes sign?

We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

Find
$$v \in H_0^2(\Omega)$$
 such that:

$$\int_{\Omega} \sigma \Delta v \Delta v' = \langle f, v' \rangle_{\Omega}, \quad \forall v' \in H_0^2(\Omega).$$

• ... and more generally, we study the problem:

$$(\mathscr{P}) \quad \left| \begin{array}{l} \text{Find } v \in \mathbf{X} \text{ such that:} \\ \int_{\Omega} \sigma \Delta v \Delta v' = \underbrace{\langle f, v' \rangle_{\Omega}}_{l(v')}, \quad \forall v' \in \mathbf{X}. \end{array} \right.$$

The form a is not coercive. Does well-posedness hold for this problem ?

• ... and more generally, we study the problem:

$$(\mathscr{P}) \quad \left| \begin{array}{l} \text{Find } v \in \mathbf{X} \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{l(v')}, \quad \forall v' \in \mathbf{X}. \end{array} \right|$$

The form a is not coercive. Does well-posedness hold for this problem ?

A bilaplacian problem with mixed boundary conditions I

We study
$$(\mathscr{P})$$
 with $X = H_0^1(\Delta) := \{ v \in H_0^1(\Omega) \mid \Delta v \in L^2(\Omega) \}.$

• ... and more generally, we study the problem:

$$(\mathscr{P}) \quad \left| \begin{array}{l} \text{Find } v \in \mathbf{X} \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{l(v')}, \quad \forall v' \in \mathbf{X}. \end{array} \right|$$

The form a is not coercive. Does well-posedness hold for this problem $\mathbf{?}$

A bilaplacian problem with mixed boundary conditions I

We study
$$(\mathscr{P})$$
 with $\mathbf{X} = \mathbf{H}_0^1(\Delta) := \{v \in \mathbf{H}_0^1(\Omega) \, | \, \Delta v \in \mathbf{L}^2(\Omega) \}.$

2 A bilaplacian problem with mixed boundary conditions II

We study
$$(\mathscr{P})$$
 with $\mathbf{X} = \mathbf{H}_0^1(\Omega) \cap \mathbf{H}^2(\Omega)$.

• ... and more generally, we study the problem:

$$(\mathscr{P}) \quad \left| \begin{array}{l} \text{Find } v \in \mathbf{X} \text{ such that:} \\ \int_{\Omega} \sigma \Delta v \Delta v' = \underbrace{\langle f, v' \rangle_{\Omega}}_{l(v')}, \quad \forall v' \in \mathbf{X}. \end{array} \right|$$

The form a is not coercive. Does well-posedness hold for this problem ?

1 A bilaplacian problem with mixed boundary conditions I

We study
$$(\mathscr{P})$$
 with $X = H_0^1(\Delta) := \{v \in H_0^1(\Omega) \mid \Delta v \in L^2(\Omega)\}.$

2 A bilaplacian problem with mixed boundary conditions II

We study
$$(\mathscr{P})$$
 with $\mathbf{X} = \mathbf{H}_0^1(\Omega) \cap \mathbf{H}^2(\Omega)$.

3 A bilaplacian problem with Dirichlet boundary conditions

We study
$$(\mathscr{P})$$
 with $\mathbf{X} = \mathbf{H}_0^2(\Omega)$.

Reminder: properties of div $(\sigma \nabla \cdot)$

➤ In the fields of plasmonic and negative metamaterials, we study:

$$(\mathscr{F}) \quad \left| \begin{array}{l} \text{Find } v \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \nabla v \cdot \nabla v' = \langle f, v' \rangle_{\Omega} \,, \quad \forall v' \in \mathrm{H}^1_0(\Omega). \end{array} \right.$$

 $ightharpoonup \Omega$ is partitioned into two domains Ω_1 and Ω_2 . We assume that $\sigma_1 := \sigma|_{\Omega_1}$ and $\sigma_2 := \sigma|_{\Omega_2}$ are constants.

Reminder: properties of div $(\sigma \nabla \cdot)$

▶ In the fields of plasmonic and negative metamaterials, we study:

$$(\mathscr{F}) \quad \left| \begin{array}{l} \text{Find } v \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \nabla v \cdot \nabla v' = \langle f, v' \rangle_{\Omega} \,, \quad \forall v' \in \mathrm{H}^1_0(\Omega). \end{array} \right.$$

 $ightharpoonup \Omega$ is partitioned into two domains Ω_1 and Ω_2 . We assume that $\sigma_1 := \sigma|_{\Omega_1}$ and $\sigma_2 := \sigma|_{\Omega_2}$ are constants.

$\boxed{\begin{array}{c} \sigma_2 < 0 \\ \sigma_1 > 0 \end{array}}$

 \checkmark (\mathscr{F}) well-posed in the Fredholm sense iff $\kappa_{\sigma} = \sigma_2/\sigma_1 \neq -1$.

 \checkmark (ℱ) well-posed in the Fredholm sense iff $κ_σ \notin [-I; -1/I]$, I = (2π - ϑ)/ϑ.

Reminder: properties of div $(\sigma \nabla \cdot)$

▶ In the fields of plasmonic and negative metamaterials, we study:

$$(\mathscr{F}) \quad \left| \begin{array}{l} \text{Find } v \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \nabla v \cdot \nabla v' = \left\langle f, v' \right\rangle_{\Omega}, \quad \forall v' \in \mathrm{H}^1_0(\Omega). \end{array} \right|$$

 $ightharpoonup \Omega$ is partitioned into two domains Ω_1 and Ω_2 . We assume that $\sigma_1 := \sigma|_{\Omega_1}$ and $\sigma_2 := \sigma|_{\Omega_2}$ are constants.

 \checkmark (\mathscr{F}) well-posed in the Fredholm sense iff $\kappa_{\sigma} = \sigma_2/\sigma_1 \neq -1$.

nolm $\checkmark (\mathscr{F})$ well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin [-I; -1/I], I = (2\pi - \vartheta)/\vartheta.$

Well-posedness depends on the smoothness of the interface and on σ (c.f. talks given by X. Claeys and A.-S. Bonnet-Ben Dhia).

A bilaplacian problem with mixed boundary conditions I

2 A bilaplacian problem with mixed boundary conditions II

3 A bilaplacian problem with Dirichlet boundary conditions

Let T be an isomorphism of X.

$$(\mathscr{P}) \mid \text{Find } u \in X \text{ such that:} \\ a(u, v) = l(v), \forall v \in X.$$

Let T be an isomorphism of X.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathsf{T}}) \ \middle| \ \text{Find} \ u \in \mathbf{X} \ \text{such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \ \forall v \in \mathbf{X}.$$

Let T be an isomorphism of X.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathsf{T}}) \mid \text{Find } u \in \mathbf{X} \text{ such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathbf{X}.$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \, \Delta u \Delta(\mathsf{T} u) \geq C \|u\|_{\mathsf{X}}^{2}.$

In this case, Lax-Milgram \Rightarrow $(\mathcal{P}^{\mathbb{T}})$ (and so (\mathcal{P})) well-posed.

Let T be an isomorphism of X.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathsf{T}}) \mid \text{Find } u \in \mathbf{X} \text{ such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \ \forall v \in \mathbf{X}.$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \, \Delta u \Delta(\mathsf{T} u) \geq C \|u\|_{\mathsf{X}}^{2}.$

In this case, Lax-Milgram \Rightarrow $(\mathcal{P}^{\mathsf{T}})$ (and so (\mathcal{P})) well-posed.

In this section, $X = H_0^1(\Delta)$.

1 Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.

Let T be an isomorphism of X.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathsf{T}}) \mid \text{Find } u \in \mathsf{X} \text{ such that:} \\ a(u,\mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathsf{X}.$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \, \Delta u \Delta(\mathsf{T} u) \geq C \, \|u\|_{\mathsf{X}}^2.$

In this case, Lax-Milgram \Rightarrow (\mathscr{P}^{T}) (and so (\mathscr{P})) well-posed.

In this section, $X = H_0^1(\Delta)$.

- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
- **2** T is an isomorphism of $H_0^1(\Delta)$.

Let T be an isomorphism of X.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathsf{T}}) \mid \text{Find } u \in \mathsf{X} \text{ such that:} \\ a(u,\mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathsf{X}.$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \, \Delta u \Delta(\mathsf{T} u) \geq C \, \|u\|_{\mathsf{X}}^2.$

In this case, Lax-Milgram \Rightarrow (\mathscr{P}^{T}) (and so (\mathscr{P})) well-posed.

In this section, $X = H_0^1(\Delta)$.

- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
- 2 T is an isomorphism of $H_0^1(\Delta)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \Delta u \Delta(Tu)$

Let T be an isomorphism of X.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathsf{T}}) \middle| \begin{array}{l} \text{Find } u \in \mathbf{X} \text{ such that:} \\ a(u,\mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathbf{X}. \end{array}$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \, \Delta u \Delta(\mathsf{T} u) \geq C \, \|u\|_{\mathsf{X}}^2.$

In this case, Lax-Milgram \Rightarrow (\mathscr{P}^{T}) (and so (\mathscr{P})) well-posed.

In this section, $X = H_0^1(\Delta)$.

- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
- 2 T is an isomorphism of $H_0^1(\Delta)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \, \Delta u \Delta(Tu) = \|\Delta u\|_{\Omega}^2$.

Let T be an isomorphism of X.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathsf{T}}) \middle| \begin{array}{l} \text{Find } u \in \mathsf{X} \text{ such that:} \\ a(u,\mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathsf{X}. \end{array}$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \, \Delta u \Delta(\mathsf{T} u) \geq C \|u\|_{\mathsf{X}}^{2}.$

In this case, Lax-Milgram \Rightarrow (\mathscr{P}^{T}) (and so (\mathscr{P})) well-posed.

In this section, $X = H_0^1(\Delta)$.

- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
- **2** T is an isomorphism of $H_0^1(\Delta)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \, \Delta u \Delta(Tu) = \|\Delta u\|_{\Omega}^2$.

THEOREM. Assume that $\sigma \in L^{\infty}(\Omega)$ is such that $\sigma^{-1} \in L^{\infty}(\Omega)$. Then, the operator $A: H_0^1(\Delta) \to H_0^1(\Delta)$ associated with (\mathscr{P}) is an isomorphism.

Let T be an isomorphism of X.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathsf{T}}) \mid \text{Find } u \in \mathsf{X} \text{ such that:} \\ a(u,\mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathsf{X}.$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \, \Delta u \Delta(\mathsf{T} u) \geq C \, \|u\|_{\mathsf{X}}^2.$

In this case, Lax-Milgram \Rightarrow (\mathscr{P}^{T}) (and so (\mathscr{P})) well-posed.

The change of sign of σ

In this section, $X = H_0^1(\Delta)$.

- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
- **2** T is an isomorphism of $H_0^1(\Delta)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \, \Delta u \Delta(Tu)$ is not a problem!

THEOREM. Assume that $\sigma \in L^{\infty}(\Omega)$ is such that $\sigma^{-1} \in L^{\infty}(\Omega)$ Then, the operator $A: H_0^1(\Delta) \to H_0^1(\Delta)$ associated with (\mathscr{P}) is an isomorphism.

A bilaplacian problem with mixed boundary conditions I

2 A bilaplacian problem with mixed boundary conditions II

3 A bilaplacian problem with Dirichlet boundary conditions

In this section, $X = H_0^1(\Omega) \cap H^2(\Omega)$.

$$(\mathscr{P}) \ \left| \begin{array}{l} \text{Find } u \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta v = l(v), \, \forall v \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega). \end{array} \right.$$

In this section, $X = H_0^1(\Omega) \cap H^2(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathtt{T}}) \left| \begin{array}{l} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega) \ \mathrm{such \ that:} \\ \int_{\Omega} \sigma \ \Delta u \Delta(\mathrm{T} v) = l(\mathrm{T} v), \ \forall v \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega). \end{array} \right.$$

In this section, $X = H_0^1(\Omega) \cap H^2(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathtt{T}}) \left| \begin{array}{l} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega) \ \mathrm{such \ that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta(\mathtt{T} v) = l(\mathtt{T} v), \ \forall v \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega). \end{array} \right.$$

1 Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.

In this section, $X = H_0^1(\Omega) \cap H^2(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathtt{T}}) \left| \begin{array}{l} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega) \ \mathrm{such \ that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta(\mathtt{T} v) = l(\mathtt{T} v), \ \forall v \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega). \end{array} \right.$$

- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
- 2 Assume that Ω is convex or of class \mathscr{C}^2 .

In this section, $X = H_0^1(\Omega) \cap H^2(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathtt{T}}) \left| \begin{array}{l} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega) \ \mathrm{such \ that:} \\ \int_{\Omega} \sigma \ \Delta u \Delta(\mathrm{T} v) = l(\mathrm{T} v), \ \forall v \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega). \end{array} \right.$$

- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
- **2** Assume that Ω is convex or of class \mathscr{C}^2 . Then, T is an isomorphism of $H_0^1(\Omega) \cap H^2(\Omega)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \, \Delta u \Delta(Tu) = \|\Delta u\|_{\Omega}^2$.

THEOREM. Assume that $\sigma \in L^{\infty}(\Omega)$ is such that $\sigma^{-1} \in L^{\infty}(\Omega)$. Assume that Ω is convex or of class \mathscr{C}^2 . Then, the operator $A: H_0^1(\Omega) \cap H^2(\Omega) \to H_0^1(\Omega) \cap H^2(\Omega)$ associated with (\mathscr{P}) is an isomorphism.

In this section, $X = H_0^1(\Omega) \cap H^2(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}^{\mathtt{T}}) \left| \begin{array}{l} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega) \ \mathrm{such \ that:} \\ \int_{\Omega} \sigma \ \Delta u \Delta(\mathtt{T} v) = l(\mathtt{T} v), \ \forall v \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega). \end{array} \right.$$

- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
- **2** Assume that Ω is convex or of class \mathscr{C}^2 . Then, T is an isomorphism of $H_0^1(\Omega) \cap H^2(\Omega)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \Delta u \Delta(Tu) = \|\Delta u\|_{\Omega}^2$.

THEOREM. Assume that $\sigma \in L^{\infty}(\Omega)$ is such that $\sigma^{-1} \in L^{\infty}(\Omega)$. Assume that Ω is convex or of class \mathscr{C}^2 . Then, the operator $A: H_0^1(\Omega) \cap H^2(\Omega) \to H_0^1(\Omega) \cap H^2(\Omega)$ associated with (\mathscr{P}) is an isomorphism.

What happens if Ω has a reentrant corner $\ref{eq:partial}$

i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .

i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .

ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1} \Delta u$

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with a = (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with a = (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want $\mathbf{T}u \in \mathrm{H}^2(\Omega)$

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- (ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with a = (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want
$$Tu \in H^2(\Omega) \Leftrightarrow (\Delta(Tu), \zeta)_{\Omega} = 0$$

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with a = (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want
$$Tu \in \mathrm{H}^2(\Omega) \quad \Leftrightarrow \quad (\Delta(Tu),\zeta)_{\Omega} = 0$$

$$\Leftrightarrow \quad (\sigma^{-1}(\Delta u - a\zeta),\zeta)_{\Omega} = 0$$

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with a = (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want
$$Tu \in H^2(\Omega) \Leftrightarrow (\Delta(Tu), \zeta)_{\Omega} = 0$$

$$\Leftrightarrow (\sigma^{-1}(\Delta u - a\zeta), \zeta)_{\Omega} = 0$$

$$\Leftrightarrow a = (\sigma^{-1}\Delta u, \zeta)_{\Omega}/(\sigma^{-1}\zeta, \zeta)_{\Omega}.$$

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with a = (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want
$$Tu \in H^2(\Omega) \quad \Leftrightarrow \quad (\Delta(Tu), \zeta)_{\Omega} = 0$$

$$\Leftrightarrow \quad (\sigma^{-1}(\Delta u - a\zeta), \zeta)_{\Omega} = 0$$

$$\Leftrightarrow \quad a = (\sigma^{-1}\Delta u, \zeta)_{\Omega} / (\sigma^{-1}\zeta, \zeta)_{\Omega}$$

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_{\Omega}/(\sigma^{-1}\zeta, \zeta)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_{\Omega}/(\sigma^{-1}\zeta, \zeta)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
- **2** One can prove that T is an isomorphism of $H_0^1(\Omega) \cap H^2(\Omega)$.

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_{\Omega}/(\sigma^{-1}\zeta, \zeta)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
- **2** One can prove that T is an isomorphism of $H_0^1(\Omega) \cap H^2(\Omega)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \Delta u \Delta(Tu)$

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_{\Omega}/(\sigma^{-1}\zeta, \zeta)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
- **2** One can prove that T is an isomorphism of $H_0^1(\Omega) \cap H^2(\Omega)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \Delta u \Delta(Tu) = \int_{\Omega} \Delta u (\Delta u a\zeta)$

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- ① Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_{\Omega}/(\sigma^{-1}\zeta, \zeta)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
- **2** One can prove that T is an isomorphism of $H_0^1(\Omega) \cap H^2(\Omega)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \Delta u \Delta(Tu) = \int_{\Omega} \Delta u (\Delta u a\zeta) = ||\Delta u||_{\Omega}^2$.

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- **1** Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_{\Omega}/(\sigma^{-1}\zeta, \zeta)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
- **2** One can prove that T is an isomorphism of $H_0^1(\Omega) \cap H^2(\Omega)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \, \Delta u \Delta(Tu) = \int_{\Omega} \Delta u (\Delta u a\zeta) = \|\Delta u\|_{\Omega}^2$.

THEOREM. Assume that $\sigma \in L^{\infty}(\Omega)$ is such that $\sigma^{-1} \in L^{\infty}(\Omega)$. Introduce $A: H_0^1(\Omega) \cap H^2(\Omega) \to H_0^1(\Omega) \cap H^2(\Omega)$ the operator associated with (\mathscr{P}) .

• If $(\sigma^{-1}\zeta,\zeta)_{\Omega}\neq 0$, then A is an isomorphism.

- i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ .
- ii) $\varphi \in H_0^1(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega} = 0$.
- 1 Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_{\Omega}/(\sigma^{-1}\zeta, \zeta)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
- **2** One can prove that T is an isomorphism of $H_0^1(\Omega) \cap H^2(\Omega)$.
- 3 One obtains $a(u, Tu) = \int_{\Omega} \sigma \, \Delta u \Delta(Tu) = \int_{\Omega} \Delta u (\Delta u a\zeta) = \|\Delta u\|_{\Omega}^2$.

THEOREM. Assume that $\sigma \in L^{\infty}(\Omega)$ is such that $\sigma^{-1} \in L^{\infty}(\Omega)$. Introduce $A: H_0^1(\Omega) \cap H^2(\Omega) \to H_0^1(\Omega) \cap H^2(\Omega)$ the operator associated with (\mathscr{P}) .

- If $(\sigma^{-1}\zeta,\zeta)_{\Omega}\neq 0$, then A is an isomorphism.
- If $(\sigma^{-1}\zeta,\zeta)_{\Omega}=0$, then A is Fredholm of index zero and dim ker A=1.

Summary of the results when $X = H_0^1(\Omega) \cap H^2(\Omega)$

$$(\mathscr{P}) \left| \begin{array}{l} \text{Find } u \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta v = l(v), \, \forall v \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega). \end{array} \right|$$

▶ We introduce the operator $A: \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega) \to \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega)$ such that $(\Delta(Au), \Delta v)_{\Omega} = (\sigma \Delta u, \Delta v)_{\Omega}$ for all $u, v \in \mathrm{H}^1_0(\Omega) \cap \mathrm{H}^2(\Omega)$.

 \checkmark A is an isomorphism.

 \checkmark A is an isomorphism.

 \checkmark A is an isomorphism because $(\sigma^{-1}\zeta,\zeta)_{\Omega}\neq 0$.

$$\sigma=1$$
 $\sigma=-1$

✓ A is a Fredholm operator of index 0 and dim ker A = 1 because $(\sigma^{-1}\zeta, \zeta)_{\Omega} = 0$.

1 A bilaplacian problem with mixed boundary conditions I

2 A bilaplacian problem with mixed boundary conditions II

3 A bilaplacian problem with Dirichlet boundary conditions

In this section, $X = H_0^2(\Omega)$.

(
$$\mathscr{P}$$
) Find $u \in \mathrm{H}_0^2(\Omega)$ such that:
$$\int_{\Omega} \sigma \, \Delta u \Delta v = l(v), \quad \forall v \in \mathrm{H}_0^2(\Omega).$$

In this section, $X = H_0^2(\Omega)$.

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta v = l(v), \quad \forall v \in \mathrm{H}^2_0(\Omega).$$

Message: The operators $\Delta(\sigma\Delta\cdot): \mathrm{H}^2_0(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and $\mathrm{div}(\sigma\nabla\cdot): \mathrm{H}^1_0(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

• In this section, $X = H_0^2(\Omega)$.

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}_0^2(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta v = l(v), \quad \forall v \in \mathrm{H}_0^2(\Omega).$$

Message: The operators $\Delta(\sigma\Delta\cdot): H_0^2(\Omega) \to H^{-2}(\Omega)$ and div $(\sigma\nabla\cdot): H_0^1(\Omega) \to H^{-1}(\Omega)$ have very different properties.

THEOREM. The problem (\mathcal{P}) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial\Omega$.

Fredholm

IDEAS OF THE PROOF: We have

$$a(v, v) = (\sigma \Delta v, \Delta v)_{\Omega}.$$

We would like to build $T: H_0^2(\Omega) \to H_0^2(\Omega)$ such that $\Delta(Tv) = \sigma^{-1}\Delta v$

so that
$$a(v, \mathsf{T} v) = (\sigma \Delta v, \Delta(\mathsf{T} v))_{\Omega} = (\Delta v, \Delta v)_{\Omega}.$$

IDEAS OF THE PROOF: We have

$$a(v, v) = (\sigma \Delta v, \Delta v)_{\Omega}.$$

We would like to build $T: H_0^2(\Omega) \to H_0^2(\Omega)$ such that $\Delta(Tv) = \sigma^{-1}\Delta v$

so that
$$a(v, Tv) = (\sigma \Delta v, \Delta(Tv))_{\Omega} = (\Delta v, \Delta v)_{\Omega}.$$

Not simple!

IDEAS OF THE PROOF: We have

$$a(v, v) = (\sigma \Delta v, \Delta v)_{\Omega}$$
. Not simple!

We would like to build $T: H_0^2(\Omega) \to H_0^2(\Omega)$ such that $\Delta(Tv) = \sigma^{-1}\Delta v$

so that
$$a(v, \mathsf{T} v) = (\sigma \Delta v, \Delta(\mathsf{T} v))_{\Omega} = (\Delta v, \Delta v)_{\Omega}.$$

• Let
$$w \in H_0^1(\Omega)$$
 such that $\Delta w = \sigma^{-1} \Delta v$.

IDEAS OF THE PROOF: We have

$$a(v, v) = (\sigma \Delta v, \Delta v)_{\Omega}$$
. Not simple!

We would like to build $T: H_0^2(\Omega) \to H_0^2(\Omega)$ such that $\Delta(Tv) = \sigma^{-1}\Delta v$

so that
$$a(v, \mathsf{T} v) = (\sigma \Delta v, \Delta(\mathsf{T} v))_{\Omega} = (\Delta v, \Delta v)_{\Omega}.$$

- Let $w \in H_0^1(\Omega)$ such that $\Delta w = \sigma^{-1} \Delta v$.

IDEAS OF THE PROOF: We have

$$a(v, v) = (\sigma \Delta v, \Delta v)_{\Omega}$$
. Not simple!

We would like to build $\mathtt{T}:\mathrm{H}^2_0(\Omega)\to\mathrm{H}^2_0(\Omega)$ such that $\Delta(\mathtt{T} v)=\sigma^{-1}\Delta v$

so that
$$a(v, \mathsf{T} v) = (\sigma \Delta v, \Delta(\mathsf{T} v))_{\Omega} = (\Delta v, \Delta v)_{\Omega}.$$

- Let $w \in H_0^1(\Omega)$ such that $\Delta w = \sigma^{-1} \Delta v$.
- $2 \text{ Let } \zeta \in \mathscr{C}_0^{\infty}(\Omega). \text{ Define } \mathsf{T} v = \zeta w + (1-\zeta)v \in \mathsf{H}_0^2(\Omega).$
- We find $a(v, \mathsf{T}v) = ([\zeta + \sigma(1-\zeta)]\Delta v, \Delta v)_{\Omega} + (Kv, v)_{\mathsf{H}_0^2(\Omega)}$ where $K : \mathsf{H}_0^2(\Omega) \to \mathsf{H}_0^2(\Omega)$ is compact.

Treamonn

IDEAS OF THE PROOF: We have

$$a(v, v) = (\sigma \Delta v, \Delta v)_{\Omega}.$$

We would like to build $T: H_0^2(\Omega) \to H_0^2(\Omega)$ such that $\Delta(Tv) = \sigma^{-1}\Delta v$

so that
$$a(v, \mathsf{T} v) = (\sigma \Delta v, \Delta(\mathsf{T} v))_{\Omega} = (\Delta v, \Delta v)_{\Omega}.$$

- Let $w \in H_0^1(\Omega)$ such that $\Delta w = \sigma^{-1} \Delta v$.
- ② Let $\zeta \in \mathscr{C}_0^{\infty}(\Omega)$. Define $\mathsf{T} v = \zeta w + (1-\zeta)v \in \mathsf{H}_0^2(\Omega)$.
- We find $a(v, \mathsf{T}v) = (\zeta + \sigma(1-\zeta)) \Delta v, \Delta v)_{\Omega} + (Kv, v)_{\mathsf{H}_0^2(\Omega)}$ where $K : \mathsf{H}_0^2(\Omega) \to \mathsf{H}_0^2(\Omega)$ is compact.

- 11canonn

Not simple!

IDEAS OF THE PROOF: We have

 $\zeta = 1$

$$a(v, v) = (\sigma \Delta v, \Delta v)_{\Omega}.$$

We would like to build $T: H_0^2(\Omega) \to H_0^2(\Omega)$ such that $\Delta(Tv) = \sigma^{-1}\Delta v$

so that
$$a(v, \mathsf{T} v) = (\sigma \Delta v, \Delta(\mathsf{T} v))_{\Omega} = (\Delta v, \Delta v)_{\Omega}.$$

- Let $w \in H_0^1(\Omega)$ such that $\Delta w = \sigma^{-1} \Delta v$.
- ② Let $\zeta \in \mathscr{C}_0^{\infty}(\Omega)$. Define $\mathsf{T} v = \zeta w + (1-\zeta)v \in \mathsf{H}_0^2(\Omega)$.
- We find $a(v, \mathsf{T}v) = (\zeta + \sigma(1-\zeta)) \Delta v, \Delta v)_{\Omega} + (Kv, v)_{\mathsf{H}_0^2(\Omega)}$ where $K : \mathsf{H}_0^2(\Omega) \to \mathsf{H}_0^2(\Omega)$ is compact.

1 rounom

• In this section, $X = H_0^2(\Omega)$.

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}_0^2(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta v = l(v), \quad \forall v \in \mathrm{H}_0^2(\Omega).$$

Message: The operators
$$\Delta(\sigma\Delta\cdot): H_0^2(\Omega) \to H^{-2}(\Omega)$$
 and div $(\sigma\nabla\cdot): H_0^1(\Omega) \to H^{-1}(\Omega)$ have very different properties.

THEOREM. The problem (\mathcal{P}) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial\Omega$.

Fredholm

In this section, $X = H_0^2(\Omega)$.

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta v = l(v), \quad \forall v \in \mathrm{H}^2_0(\Omega).$$

Message: The operators $\Delta(\sigma\Delta\cdot): H_0^2(\Omega) \to H^{-2}(\Omega)$ and div $(\sigma\nabla\cdot): H_0^1(\Omega) \to H^{-1}(\Omega)$ have very different properties.

... but (\mathcal{P}) can be ill-posed (not Fredholm) when σ changes sign "on $\partial\Omega$ " \Rightarrow work with J. Firozaly.

Fredholm

Not always Fredholm A bilaplacian problem with mixed boundary conditions I

2 A bilaplacian problem with mixed boundary conditions II

3 A bilaplacian problem with Dirichlet boundary conditions

Conclusion

Find
$$v \in H_0^1(\Omega)$$
 s.t., $\forall v' \in H_0^1(\Omega)$,
$$\int_{\Omega} \sigma \nabla v \cdot \nabla v' = \ell(v').$$

▲ Smooth interface

Well-posed in the Fredholm sense iff $\kappa_{\sigma} = \sigma_2/\sigma_1 \neq -1$.

▲ Interface with a corner

Well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin [-I; -1/I]$, $I = (2\pi - \vartheta)/\vartheta$.

Find
$$v \in X$$
 s.t., $\forall v' \in X$,
$$\int_{\Omega} \sigma \Delta v \Delta v' = \ell(v').$$

We assume $\sigma \in L^{\infty}(\Omega)$, $\sigma^{-1} \in L^{\infty}(\Omega)$.

- \spadesuit If $X = H_0^1(\Delta)$: Well-posed.
- Well-posed when Ω is convex or of class \mathscr{C}^2 .
 - When Ω has one reentrant corner, it can occur a kernel of dimension 1.
- \blacktriangle If $X = H_0^2(\Omega)$:
 - Well-posed in the Fredholm sense when σ does not change sign on a neighbourhood of $\partial\Omega$.
 - When σ changes sign on $\partial\Omega$, Fredholmness can be lost.

Thank you for your attention!!!