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» Scattering in time-harmonic regime by a penetrable
(coefficient n) in R?: we look for an incident wave that does not scatter.

\\I\Au +k2u=0

» This leads to study the Interior Transmission Eigenvalue Problem:

@ y is the total field in @ w is the incident field in €
Au+ kE*n’u = 0 inQ
Aw + Kw = 0 inQ
uU—w = 0 onof
U-Vu—v-Vwo = 0 ondQ.| TRANS. COND. ON 90

DEFINITION. Values of £ € C for which this problem has a nontrivial solution
(u, w) are called transmission eigenvalues.

2 /16



Introduction: a bilaplacian problem

» Introducing v = u — w the scattered field inside 2

3 /16



Introduction: a bilaplacian problem

» Introducing v = u — w the scattered field inside 2

There holds Au+ k2n2u=0 and Aw+Ekw=0 1inQ.

3 /16



Introduction: a bilaplacian problem

» Introducing v = u — w the scattered field inside 2

There holds
We deduce

Au+E2n2u=0 and Aw+kw=0

Av+ k*n?v = k* (1 — n®)w

in Q.

in Q.

3 /16
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» Introducing v = u — w the scattered field inside 2

There holds Au+ k2n2u=0 and Aw+Ekw=0 1inQ.
We deduce  Av+ k?n?v=k*(1 —n?)w in Q.
This implies

2
(A+k)<1_n2
v=v-Vv=0 on 0f).

(Av+ k2'n,2v)> =0 inQ
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» One of the goals is to prove that the set of transmission eigenvalues is at
most discrete.

» This problem has been widely studied since 1986-1988 (Bellis, Cakoni,
Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Paivédrinta,
Rynne, Sleeman, Sylvester...) when n > 1on Q or n <1 on Q.

(What happens when 1 — n? changes Sign?)

» We define 0 = (1 — n?)~! and we focus on the principal part:

Find v € H3(Q) such that:
/ o AvAY = (f,v)),, Vv € H3(Q).
Q
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» ... and more generally, we study the problem:
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Reminder: properties of div (cV-)

» In the fields of plasmonic and negative metamaterials, we study:

Find v € H}(Q) such that:
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o1 :=olg, and oy := g|q, are constants.
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1
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v (F) well-posed in the Fredholm sense
iff ko & [—1;—1/1], I = (2m —9)/9.

Well-posedness depends on the smoothness of the interface and
on o (c.f. talks given by X. Claeys and A.-S. Bonnet-Ben Dhia).
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Mixed Boundary Conditions I
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Mixed Boundary Conditions II

In this section, X = H}(Q2) N H?(Q).
Find v € H}(Q) N H?(Q) such that:

(2) /amm: I(v), Vo € HY(Q) N HA(Q).
Q
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THEOREM. Assume that o € L>°((2) is such that o~ € L>°(Q2). Introduce
A HE(Q) NH2(Q) — HY(Q) N H2(2) the operator associated with (22).
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@ One obtains a(u, Tu) = /
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Q Q

THEOREM. Assume that o € L>°((2) is such that o~ € L>°(Q2). Introduce
A HE(Q) NH2(Q) — HY(Q) N H2(2) the operator associated with (22).

@ If (67¢,¢)q # 0, then A is an isomorphism.

@ If (671¢,{)q = 0, then A is Fredholm of index zero and dimker 4 = 1.
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Summary of the results when X = H}(Q) N H?()

Find v € H}(Q) N H2(Q) such that:

(2) /QaAuAv:z(v>,weH3(9)nH2(ﬂ).

» We introduce the operator A : H}(Q2) N H?(Q) — H{(Q) N H3(Q) such
that (A(Au), Av)g = (0Au, Av)g for all u, v € H{(Q) N H2(Q).

v A is an isomorphism.

— v A is an isomorphism.

¢ A is an isomorphism because (07 1¢,()q # 0.

v A is a Fredholm operator of index 0 and
dimker A = 1 because (0 '¢,()q = 0.
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© A bilaplacian problem with Dirichlet boundary conditions
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A bilaplacian problem with Dirichlet boundary
conditions

» In this section, X = H2(9).

Find u € H3(Q) such that:

(2) /QUMAU: I(v), VveH3(Q).
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A bilaplacian problem with Dirichlet boundary
conditions

» In this section, X = H2().

Find u € H3(Q) such that:

(#) /QaAuszl(v), Vo € H3(Q).

=4 Message: The operators A(cA-) : H3(2) — H=2(Q2) and div (¢V") :
H}(Q) — H=1(Q) have very different properties.
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A bilaplacian problem with Dirichlet boundary
conditions

» In this section, X = H2().

Find u € H3(Q) such that:
(Z) / o AuAv = 1(v), Yve€ Hi(Q).
o

=4 Message: The operators A(cA-) : H3(2) — H=2(Q2) and div (¢V") :
H}(Q) — H=1(Q) have very different properties.

THEOREM. The problem () is well-posed in the Fredholm sense as soon
as o does not change sign in a neighbourhood of 0f2.

Fredholm
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A bilaplacian problem with Dirichlet boundary
conditions

IDEAS OF THE PROOF: We have
a(v,v) = (cAv, Av)q.
We would like to build T : H3(€2) — H3(£2) such that A(Tv) = o 'Av
so that a(v, Tv) = (cAv, A(Tv))q = (Av, Av)g.
o=1
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Not simple!
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so that a(v, Tv) = (cAv, A(Tv))q = (Av, Av)g.

@ Let w € HY(Q) such that Aw = o~ 1 Aw.
@ Let ¢ € 65°(Q). Define Tv = Cw + (1 — ¢)ve HE(Q).

© We find  a(v,Tv) = ([( + o(1 — ()]Av, Av)g + (Kv, v)52(0)
where K : H3(Q) — H2(Q) is compact.

T CCITTOTITT
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A bilaplacian problem with Dirichlet boundary
f:onditions

IDEAS OF THE PROOF: We have
| Not simple! l

a(v,v) = (cAv, Av)q.

We would like to build T : H3(Q2) — H3(£2) such that [A(Tv) = a‘lAv]
so that a(v, Tv) = (cAv, A(Tv))q = (Av, Av)g.

Q Let w € HY(Q) such that Aw = o~ 1Av.

Q Let ¢ € 65°(Q2). Define Tv = Cw + (1 — ¢)ve H3(Q).

@ We find a(v,Tv) = ([ + o(1 — {)]Av, Av)q + (K, V)Hz(Q)

where K : H3(Q) — H2(Q) is compact.

o H
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A bilaplacian problem with Dirichlet boundary
conditions

» In this section, X = H2().

Find u € H3(Q) such that:
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A bilaplacian problem with Dirichlet boundary
conditions

» In this section, X = H2().

Find u € H3(Q) such that:
(Z) / o AuAv = 1(v), Yve€ Hi(Q).
o

=4 Message: The operators A(cA-) : H3(2) — H=2(Q2) and div (¢V") :
H}(Q) — H=1(Q) have very different properties.

... but (Z) can be ill-posed (not Fredholm) when o changes sign “on 927
= work with J. Firozaly.

| |
| ||

Not always

Fredholm Fredholm
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@ A bilaplacian problem with mixed boundary conditions I

© A bilaplacian problem with mixed boundary conditions II

© A bilaplacian problem with Dirichlet boundary conditions
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Conclusion

Find v € H}(Q) s.t., Vo' € H{(Q),

oV - Vv = L().
Q

& Smooth interface

o1 >0

Well-posed in the Fredholm sense iff
ko = o2/01 # —1.

& Interface with a corner

Well-posed in the Fredholm sense iff
ko & [—I;—1/I], I = (2w — ) /9.

Find v € X s.t., Vv’ € X,

/ g AvAY = L(v').
Q

We assume o € L°(Q), 0~ € L=°(Q).

& If X = H{(A): Well-posed.

& If X = H{(Q) nH3(Q):
e Well-posed when (2 is convex or of
class 62.
e When () has one reentrant corner,
it can occur a kernel of dimension 1.

& If X = H3(Q):
e Well-posed in the Fredholm sense
when o does not change sign on a
neighbourhood of 92.
e When o changes sign on 052,
Fredholmness can be lost.
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Thank you for your attention!!!
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