A bilaplacian problem with a sign-changing coefficient

Lucas Chesnel †, Jérémy Firozaly ${ }^{\ddagger}$
†Inverse Problems Research Group, Aalto University, Helsinki, Finland ${ }^{\ddagger}$ PDems team, Ensta, Paris, France

University of Helsinki, March 5th-7th, 2013

Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω
(coefficient n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω
(coefficient n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

- This leads to study the Interior Transmission Eigenvalue Problem:
(u is the total field in Ω

$$
\Delta u+k^{2} n^{2} u \quad=\quad 0 \quad \text { in } \Omega
$$

Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

- This leads to study the Interior Transmission Eigenvalue Problem:
$\sim u$ is the total field in Ω

$$
\left\lvert\, \begin{array}{llll}
\Delta u+k^{2} n^{2} u & = & \text { in } \Omega \\
\Delta w+k^{2} w & = & 0 & \text { in } \Omega
\end{array}\right.
$$

Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

- This leads to study the Interior Transmission Eigenvalue Problem:
- u is the total field in Ω

$$
w \text { is the incident field in } \Omega
$$

$$
\left\lvert\, \begin{aligned}
& \Delta u+k^{2} n^{2} u \\
& \Delta w+k^{2} w
\end{aligned}\right.
$$

$$
\begin{array}{ll}
= & \text { in } \Omega \\
= & 0
\end{array} \quad \text { in } \Omega
$$

$$
\begin{array}{l|l}
\text { BCs? } & \begin{array}{l}
{[u]=0} \\
{[\nu \cdot \nabla u]=0}
\end{array} \\
\text { on } \partial \Omega \\
\text { on } \partial \Omega
\end{array} \quad+\quad u=w+0 \text { in } \mathbb{R}^{2} \backslash \Omega .
$$

Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

- This leads to study the Interior Transmission Eigenvalue Problem:
(u is the total field in Ω

$$
\begin{array}{|lll}
\Delta u+k^{2} n^{2} u & =0 & \text { in } \Omega \\
\Delta w+k^{2} w & =0 & \text { in } \Omega \\
u-w & =0 & \text { on } \partial \Omega \\
\nu \cdot \nabla u-\nu \cdot \nabla w & =0 & \text { on } \partial \Omega
\end{array}
$$

$$
\begin{array}{|l|l}
\hline \text { BCs? } & \begin{array}{l}
{[u]=0} \\
{[\nu \cdot \nabla u]=0}
\end{array} \\
\text { on } \partial \Omega \\
\text { on } \partial \Omega
\end{array} \quad+\quad u=w+0 \text { in } \mathbb{R}^{2} \backslash \Omega .
$$

Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

- This leads to study the Interior Transmission Eigenvalue Problem:
- u is the total field in Ω

$$
\left\lvert\, \begin{array}{lll}
\Delta u+k^{2} n^{2} u & =0 & \text { in } \Omega \\
\Delta w+k^{2} w & =0 & \text { in } \Omega \\
u-w & =0 & \text { on } \partial \Omega \\
\nu \cdot \nabla u-\nu \cdot \nabla w & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

- This leads to study the Interior Transmission Eigenvalue Problem:
(u is the total field in Ω
(w is the incident field in Ω

$$
\begin{array}{|lll}
\Delta u+k^{2} n^{2} u & =0 & \text { in } \Omega \\
\Delta w+k^{2} w & =0 & \text { in } \Omega \\
\hline u-w & =0 & \text { on } \partial \Omega \\
\nu \cdot \nabla u-\nu \cdot \nabla w & =0 & \text { on } \partial \Omega .
\end{array}
$$

Trans. COND. ON $\partial \Omega$

Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

- This leads to study the Interior Transmission Eigenvalue Problem:
u is the total field in Ω is the incident field in Ω

$$
\begin{array}{|lll}
\Delta u+k^{2} n^{2} u & =0 & \text { in } \Omega \\
\Delta w+k^{2} w & =0 & \text { in } \Omega \\
\hline u-w & =0 & \text { on } \partial \Omega \\
\nu \cdot \nabla u-\nu \cdot \nabla w & =0 & \text { on } \partial \Omega .
\end{array}
$$

Trans. COND. ON $\partial \Omega$
Definition. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

Introduction: a bilaplacian problem

- Introducing $v=u-w$ the scattered field inside Ω

Introduction: a bilaplacian problem

- Introducing $v=u-w$ the scattered field inside Ω
- There holds $\quad \Delta u+k^{2} n^{2} u=0 \quad$ and $\quad \Delta w+k^{2} w=0 \quad$ in Ω.

Introduction: a bilaplacian problem

- Introducing $v=u-w$ the scattered field inside Ω
- There holds $\quad \Delta u+k^{2} n^{2} u=0 \quad$ and $\quad \Delta w+k^{2} w=0 \quad$ in Ω.
- We deduce $\Delta v+k^{2} n^{2} v=k^{2}\left(1-n^{2}\right) w \quad$ in Ω.

Introduction: a bilaplacian problem

- Introducing $v=u-w$ the scattered field inside Ω
- There holds $\quad \Delta u+k^{2} n^{2} u=0 \quad$ and $\quad \Delta w+k^{2} w=0 \quad$ in Ω.
- We deduce $\Delta v+k^{2} n^{2} v=k^{2}\left(1-n^{2}\right) w \quad$ in Ω.
- This implies

$$
\left\lvert\, \begin{array}{ll}
\left(\Delta+k^{2}\right)\left(\frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\right)=0 & \text { in } \Omega \\
v=\nu \cdot \nabla v=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Introduction: a bilaplacian problem

- Introducing $v=u-w$ the scattered field inside Ω, we can write an equivalent formulation:

Find $(k, v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \backslash\{0\}$ such that:
$\int_{\Omega} \frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega)$.

Introduction: a bilaplacian problem

- Introducing $v=u-w$ the scattered field inside Ω, we can write an equivalent formulation:

$$
\begin{aligned}
& \text { Find }(k, v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \backslash\{0\} \text { such that: } \\
& \int_{\Omega} \frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}
$$

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

Introduction: a bilaplacian problem

- Introducing $v=u-w$ the scattered field inside Ω, we can write an equivalent formulation:

$$
\begin{aligned}
& \text { Find }(k, v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \backslash\{0\} \text { such that: } \\
& \int_{\Omega} \frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}
$$

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when $n>1$ on Ω or $n<1$ on Ω.

Introduction: a bilaplacian problem

- Introducing $v=u-w$ the scattered field $\frac{i d e}{} \Omega$, we can write an equivalent formulation:

$$
\text { Find }(k, v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \backslash\{0\} \text { such that: }{ }^{H_{A N N_{G I N}}}{ }_{C_{B L}}
$$

$$
\int_{\Omega} \frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
$$

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when $n>1$ on Ω or $n<1$ on Ω.

$$
\text { What happens when } 1-n^{2} \text { changes sign? }
$$

Introduction: a bilaplacian problem

- Introducing $v=u-w$ the scattered field $\frac{\text { ide } \Omega \text {, we can write an }}{T_{\text {RAN }}}$ equivalent formulation:

$$
\int_{\Omega} \frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega)
$$

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when $n>1$ on Ω or $n<1$ on Ω.

$$
\text { What happens when } 1-n^{2} \text { changes sign? }
$$

- We define $\sigma=\left(1-n^{2}\right)^{-1}$ and we focus on the principal part:

Find $v \in \mathrm{H}_{0}^{2}(\Omega)$ such that:
$\int_{\Omega} \sigma \Delta v \Delta v^{\prime}=\left\langle f, v^{\prime}\right\rangle_{\Omega}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega)$.

Outline of the talk

- ... and more generally, we study the problem:

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathbf{X} \text { such that: } \\
& \underbrace{\int_{\Omega} \sigma \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathbf{X} .
\end{aligned}\right.
$$

The form a is not coercive. Does well-posedness hold for this problem?

Outline of the talk

- ... and more generally, we study the problem:

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathbf{X} \text { such that: } \\
& \underbrace{\int_{\Omega} \sigma \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathbf{X} .
\end{aligned}\right.
$$

The form a is not coercive. Does well-posedness hold for this problem?
(1) A bilaplacian problem with mixed boundary conditions I

We study (\mathscr{P}) with $\mathrm{X}=\mathbf{H}_{0}^{1}(\Delta):=\left\{v \in \mathbf{H}_{0}^{1}(\Omega) \mid \Delta v \in \mathrm{~L}^{2}(\Omega)\right\}$.

Outline of the talk

- ... and more generally, we study the problem:

$$
\text { (P) } \begin{aligned}
& \text { Find } v \in \mathbf{X} \text { such that: } \\
& \underbrace{\int_{\Omega} \sigma \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathbf{X} .
\end{aligned}
$$

The form a is not coercive. Does well-posedness hold for this problem
(1) A bilaplacian problem with mixed boundary conditions I We study (\mathscr{P}) with $\mathrm{X}=\mathbf{H}_{0}^{1}(\Delta):=\left\{v \in \mathbf{H}_{0}^{1}(\Omega) \mid \Delta v \in \mathrm{~L}^{2}(\Omega)\right\}$.
(2) A bilaplacian problem with mixed boundary conditions II

We study (\mathscr{P}) with $\mathbf{X}=\mathbf{H}_{0}^{1}(\Omega) \cap \mathbf{H}^{2}(\Omega)$.

Outline of the talk

- ... and more generally, we study the problem:

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathbf{X} \text { such that: } \\
& \underbrace{\int_{\Omega} \sigma \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathbf{X} .
\end{aligned}\right.
$$

The form a is not coercive. Does well-posedness hold for this problem
(1) A bilaplacian problem with mixed boundary conditions I

We study (\mathscr{P}) with $\mathrm{X}=\mathbf{H}_{0}^{1}(\Delta):=\left\{v \in \mathbf{H}_{0}^{1}(\Omega) \mid \Delta v \in \mathrm{~L}^{2}(\Omega)\right\}$.
(2) A bilaplacian problem with mixed boundary conditions II

We study (\mathscr{P}) with $\mathbf{X}=\mathbf{H}_{0}^{1}(\Omega) \cap \mathbf{H}^{2}(\Omega)$.
(3) A bilaplacian problem with Dirichlet boundary conditions

We study (\mathscr{P}) with $\mathrm{X}=\mathrm{H}_{0}^{2}(\Omega)$.

Reminder: properties of $\operatorname{div}(\sigma \nabla \cdot)$

- In the fields of plasmonic and negative metamaterials, we study:

$$
(\mathscr{F}) \quad \int_{\Omega} \sigma \nabla v \cdot \nabla v^{\prime}=\left\langle f, v^{\prime}\right\rangle_{\Omega}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
$$

- Ω is partitioned into two domains Ω_{1} and Ω_{2}. We assume that $\sigma_{1}:=\left.\sigma\right|_{\Omega_{1}}$ and $\sigma_{2}:=\left.\sigma\right|_{\Omega_{2}}$ are constants.

Reminder: properties of $\operatorname{div}(\sigma \nabla \cdot)$

- In the fields of plasmonic and negative metamaterials, we study:

> Find $v \in \mathrm{H}_{0}^{1}(\Omega)$ such that:
> $\int_{\Omega} \sigma \nabla v \cdot \nabla v^{\prime}=\left\langle f, v^{\prime}\right\rangle_{\Omega}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)$.

- Ω is partitioned into two domains Ω_{1} and Ω_{2}. We assume that $\sigma_{1}:=\left.\sigma\right|_{\Omega_{1}}$ and $\sigma_{2}:=\left.\sigma\right|_{\Omega_{2}}$ are constants.

Smooth interface

$\checkmark(\mathscr{F})$ well-posed in the Fredholm sense iff $\kappa_{\sigma}=\sigma_{2} / \sigma_{1} \neq-1$.

Interface with a corner

$\checkmark(\mathscr{F})$ well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin[-I ;-1 / I], I=(2 \pi-\vartheta) / \vartheta$.

Reminder: properties of $\operatorname{div}(\sigma \nabla \cdot)$

- In the fields of plasmonic and negative metamaterials, we study:

> Find $v \in \mathrm{H}_{0}^{1}(\Omega)$ such that:
> $\int_{\Omega} \sigma \nabla v \cdot \nabla v^{\prime}=\left\langle f, v^{\prime}\right\rangle_{\Omega}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)$.

- Ω is partitioned into two domains Ω_{1} and Ω_{2}. We assume that $\sigma_{1}:=\left.\sigma\right|_{\Omega_{1}}$ and $\sigma_{2}:=\left.\sigma\right|_{\Omega_{2}}$ are constants.

Smooth interface

$\checkmark(\mathscr{F})$ well-posed in the Fredholm sense iff $\kappa_{\sigma}=\sigma_{2} / \sigma_{1} \neq-1$.

Interface with a corner

$\checkmark(\mathscr{F})$ well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin[-I ;-1 / I], I=(2 \pi-\vartheta) / \vartheta$. on σ (c.f. talks given by X. Claeys and A.-S. Bonnet-Ben Dhia).

(1) A bilaplacian problem with mixed boundary conditions I

(2) A bilaplacian problem with mixed boundary conditions II

3 A bilaplacian problem with Dirichlet boundary conditions

Mixed Boundary Conditions I

Let T be an isomorphism of X .

(\mathscr{P})	$\begin{array}{l}\text { Find } u \in \mathrm{X} \text { such that: } \\ a(u, v)=l(v), \forall v \in \mathrm{X} .\end{array}$

Mixed Boundary Conditions I

Let T be an isomorphism of X .

$$
(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{X} \text { such that: } \\
& a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{X} .
\end{aligned}\right.
$$

Mixed Boundary Conditions I

Let T be an isomorphism of X .
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{X} \text { such that: } \\ & a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{X} .\end{aligned}\right.$
"Ö: Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u) \geq C\|u\|_{\mathrm{X}}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}^{\mathrm{T}}\right)$ (and so $\left.(\mathscr{P})\right)$ well-posed.

Mixed Boundary Conditions I

Let T be an isomorphism of X ．
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{X} \text { such that：} \\ & a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{X} .\end{aligned}\right.$
＂ค⿱二小欠：Goal：Find T such that a is T－coercive： $\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u) \geq C\|u\|_{\mathrm{X}}^{2}$ ． In this case，Lax－Milgram $\Rightarrow\left(\mathscr{P}^{\mathrm{T}}\right)$（and so $\left.(\mathscr{P})\right)$ well－posed．

In this section， $\mathrm{X}=\mathrm{H}_{0}^{1}(\Delta)$ ．
（1）Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$ ．

Mixed Boundary Conditions I

Let T be an isomorphism of X .
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{X} \text { such that: } \\ & a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{X} .\end{aligned}\right.$
 In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}^{\mathrm{T}}\right)$ (and so $\left.(\mathscr{P})\right)$ well-posed.

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Delta)$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$.
(2) T is an isomorphism of $\mathrm{H}_{0}^{1}(\Delta)$.

Mixed Boundary Conditions I

Let T be an isomorphism of X .
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{X} \text { such that: } \\ & a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{X} .\end{aligned}\right.$
"Ö: Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u) \geq C\|u\|_{\mathrm{X}}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}^{\mathrm{T}}\right)$ (and so $\left.(\mathscr{P})\right)$ well-posed.

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Delta)$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$.
(2) T is an isomorphism of $\mathrm{H}_{0}^{1}(\Delta)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)$

Mixed Boundary Conditions I

Let T be an isomorphism of X .
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{X} \text { such that: } \\ & a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{X} .\end{aligned}\right.$
"Ö: Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u) \geq C\|u\|_{\mathrm{X}}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}^{\mathrm{T}}\right)$ (and so $\left.(\mathscr{P})\right)$ well-posed.

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Delta)$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$.
(2) T is an isomorphism of $\mathrm{H}_{0}^{1}(\Delta)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)=\|\Delta u\|_{\Omega}^{2}$.

Mixed Boundary Conditions I

Let T be an isomorphism of X .
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{X} \text { such that: } \\ & a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{X} .\end{aligned}\right.$
Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u) \geq C\|u\|_{\mathrm{X}}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}^{\mathrm{T}}\right)$ (and so $\left.(\mathscr{P})\right)$ well-posed.

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Delta)$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$.
(2) T is an isomorphism of $\mathrm{H}_{0}^{1}(\Delta)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)=\|\Delta u\|_{\Omega}^{2}$.

Theorem. Assume that $\sigma \in \mathrm{L}^{\infty}(\Omega)$ is such that $\sigma^{-1} \in \mathrm{~L}^{\infty}(\Omega)$. Then, the operator $A: \mathrm{H}_{0}^{1}(\Delta) \rightarrow \mathrm{H}_{0}^{1}(\Delta)$ associated with (\mathscr{P}) is an isomorphism.

Mixed Boundary Conditions I

Let T be an isomorphism of X .
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{X} \text { such that: } \\ & a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{X} .\end{aligned}\right.$
Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u) \geq C\|u\|_{\mathrm{X}}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}^{\mathrm{T}}\right)$ (and so $\left.(\mathscr{P})\right)$ well-posed.

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Delta)$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$.
(2) T is an isomorphism of $\mathrm{H}_{0}^{1}(\Delta)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)=$

The change of sign of σ is not a problem!

Theorem. Assume that $\sigma \in \mathrm{L}^{\infty}(\Omega)$ is such that $\sigma^{-1} \in \mathrm{~L}^{\infty}(\Omega)$ Then, the operator $A: \mathrm{H}_{0}^{1}(\Delta) \rightarrow \mathrm{H}_{0}^{1}(\Delta)$ associated with (\mathscr{P}) Is an isomorphism.
(1) A bilaplacian problem with mixed boundary conditions I
(2) A bilaplacian problem with mixed boundary conditions II

3 A bilaplacian problem with Dirichlet boundary conditions

Mixed Boundary Conditions II

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.

Mixed Boundary Conditions II

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \text { such that: } \\ & \int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) .\end{aligned}\right.$

Mixed Boundary Conditions II

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \text { such that: } \\ & \int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) .\end{aligned}\right.$
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$.

Mixed Boundary Conditions II

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \text { such that: } \\ & \int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) .\end{aligned}\right.$
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$.
(2) Assume that Ω is convex or of class \mathscr{C}^{2}.

Mixed Boundary Conditions II

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \text { such that: } \\ & \int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) .\end{aligned}\right.$
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$.
(2) Assume that Ω is convex or of class \mathscr{C}^{2}. Then, T is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)=\|\Delta u\|_{\Omega}^{2}$.

Theorem. Assume that $\sigma \in \mathrm{L}^{\infty}(\Omega)$ is such that $\sigma^{-1} \in \mathrm{~L}^{\infty}(\Omega)$. Assume that Ω is convex or of class \mathscr{C}^{2}. Then, the operator $A: \mathrm{H}_{0}^{1}(\Omega) \cap$ $\mathrm{H}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$ associated with (\mathscr{P}) is an isomorphism.

Mixed Boundary Conditions II

In this section, $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \text { such that: } \\ & \int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) .\end{aligned}\right.$
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$.
(2) Assume that Ω is convex or of class \mathscr{C}^{2}. Then, T is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)=\|\Delta u\|_{\Omega}^{2}$.

Theorem. Assume that $\sigma \in \mathrm{L}^{\infty}(\Omega)$ is such that $\sigma^{-1} \in \mathrm{~L}^{\infty}(\Omega)$. Assume that Ω is convex or of class \mathscr{C}^{2}. Then, the operator $A: \mathrm{H}_{0}^{1}(\Omega) \cap$ $\mathrm{H}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$ associated with (\mathscr{P}) is an isomorphism.

What happens if Ω has a reentrant corner ?

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1} \Delta u$

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=$ (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ. ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=$
(c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want $\quad \mathrm{T} u \in \mathrm{H}^{2}(\Omega)$

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ. ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=$ (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want $\quad \mathrm{T} u \in \mathrm{H}^{2}(\Omega) \quad \Leftrightarrow \quad(\Delta(\mathrm{T} u), \zeta)_{\Omega}=0$

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ. ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=$
(c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want $\quad \mathrm{T} u \in \mathrm{H}^{2}(\Omega) \quad \Leftrightarrow \quad(\Delta(\mathrm{T} u), \zeta)_{\Omega}=0$
$\Leftrightarrow \quad\left(\sigma^{-1}(\Delta u-a \zeta), \zeta\right)_{\Omega}=0$

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ. ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=$ (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want $\quad \mathrm{T} u \in \mathrm{H}^{2}(\Omega) \quad \Leftrightarrow \quad(\Delta(\mathrm{T} u), \zeta)_{\Omega}=0$

$$
\begin{array}{ll}
\Leftrightarrow & \left(\sigma^{-1}(\Delta u-a \zeta)^{\prime} \zeta\right)_{\Omega}=0 \\
\Leftrightarrow & a=\left(\sigma^{-1} \Delta u, \zeta\right)_{\Omega} /\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega} .
\end{array}
$$

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ. ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=$ (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want $\quad \mathrm{T} u \in \mathrm{H}^{2}(\Omega) \quad \Leftrightarrow \quad(\Delta(\mathrm{T} u), \zeta)_{\Omega}=0$

$$
\begin{array}{ll}
\Leftrightarrow & \left(\sigma^{-1}(\Delta u-a \zeta), \zeta\right)_{\Omega}=0 \\
\Leftrightarrow & a=\left(\sigma^{-1} \Delta u, \zeta\right) s /\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}
\end{array}
$$

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=\left(\sigma^{-1} \Delta u, \zeta\right)_{\Omega} /\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=\left(\sigma^{-1} \Delta u, \zeta\right)_{\Omega} /\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
(2) One can prove that T is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=\left(\sigma^{-1} \Delta u, \zeta\right)_{\Omega} /\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
(2) One can prove that T is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)$

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=\left(\sigma^{-1} \Delta u, \zeta\right)_{\Omega} /\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
(2) One can prove that T is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)=\int_{\Omega} \Delta u(\Delta u-a \zeta)$

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=\left(\sigma^{-1} \Delta u, \zeta\right)_{\Omega} /\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
(2) One can prove that T is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)=\int_{\Omega} \Delta u(\Delta u-a \zeta)=\|\Delta u\|_{\Omega}^{2}$.

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=\left(\sigma^{-1} \Delta u, \zeta\right)_{\Omega} /\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
(2) One can prove that T is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)=\int_{\Omega} \Delta u(\Delta u-a \zeta)=\|\Delta u\|_{\Omega}^{2}$.

Theorem. Assume that $\sigma \in \mathrm{L}^{\infty}(\Omega)$ is such that $\sigma^{-1} \in \mathrm{~L}^{\infty}(\Omega)$. Introduce $A: \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$ the operator associated with (\mathscr{P}).

- If $\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega} \neq 0$, then A is an isomorphism.

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in \mathrm{L}^{2}(\Omega)$ s.t $\Delta \psi=0$ in Ω and $\psi=0$ on $\partial \Omega$, is of dimension 1 , spanned by some ζ.
ii) $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\Delta \varphi \in \mathrm{L}^{2}(\Omega)$ is in $\mathrm{H}^{2}(\Omega)$ iff $(\Delta \varphi, \zeta)_{\Omega}=0$.
(1) Define $\mathrm{T} u \in \mathrm{H}_{0}^{1}(\Omega)$ the function such that $\Delta(\mathrm{T} u)=\sigma^{-1}(\Delta u-a \zeta)$ with $a=\left(\sigma^{-1} \Delta u, \zeta\right)_{\Omega} /\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
(2) One can prove that T is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.
(3) One obtains $a(u, \mathrm{~T} u)=\int_{\Omega} \sigma \Delta u \Delta(\mathrm{~T} u)=\int_{\Omega} \Delta u(\Delta u-a \zeta)=\|\Delta u\|_{\Omega}^{2}$.

Theorem. Assume that $\sigma \in \mathrm{L}^{\infty}(\Omega)$ is such that $\sigma^{-1} \in \mathrm{~L}^{\infty}(\Omega)$. Introduce $A: \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$ the operator associated with ($\left.\mathscr{P}\right)$.

- If $\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega} \neq 0$, then A is an isomorphism.
- If $\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}=0$, then A is Fredholm of index zero and $\operatorname{dim} \operatorname{ker} A=1$.

Summary of the results when $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \text { such that: } \\
& \int_{\Omega} \sigma \Delta u \Delta v=l(v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) .
\end{aligned}\right.
$$

- We introduce the operator $A: \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$ such that $(\Delta(A u), \Delta v)_{\Omega}=(\sigma \Delta u, \Delta v)_{\Omega}$ for all $u, v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$.

$\checkmark A$ is an isomorphism.

$\checkmark A$ is an isomorphism.

$\checkmark A$ is an isomorphism because $\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega} \neq 0$.

$\checkmark A$ is a Fredholm operator of index 0 and $\operatorname{dim} \operatorname{ker} A=1$ because $\left(\sigma^{-1} \zeta, \zeta\right)_{\Omega}=0$.
(1) A bilaplacian problem with mixed boundary conditions I
(2) A bilaplacian problem with mixed boundary conditions II
(3) A bilaplacian problem with Dirichlet boundary conditions

A bilaplacian problem with Dirichlet boundary conditions

- In this section, $\mathrm{X}=\mathrm{H}_{0}^{2}(\Omega)$.

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
& \int_{\Omega} \sigma \Delta u \Delta v=l(v), \quad \forall v \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}\right.
$$

A bilaplacian problem with Dirichlet boundary conditions

- In this section, $\mathrm{X}=\mathrm{H}_{0}^{2}(\Omega)$.

$$
\begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
& \text { (} \mathscr{P}) \mid \int_{\Omega} \sigma \Delta u \Delta v=l(v), \quad \forall v \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}
$$

Message: The operators $\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot)$: $\mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$ have very different properties.

A bilaplacian problem with Dirichlet boundary conditions

- In this section, $\mathrm{X}=\mathrm{H}_{0}^{2}(\Omega)$.

$$
\text { (} \mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
& \int_{\Omega} \sigma \Delta u \Delta v=l(v), \quad \forall v \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}\right.
$$

Message: The operators $\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot):$ $\mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$ have very different properties.

Theorem. The problem (\mathscr{P}) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.

A bilaplacian problem with Dirichlet boundary conditions

IDEAS OF THE PROOF: We have

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

$$
\sigma=1
$$

A bilaplacian problem with Dirichlet boundary conditions

IDEAS OF THE PROOF: We have

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

$$
\sigma=1
$$

A bilaplacian problem with Dirichlet boundary conditions

IDEAS OF THE PROOF: We have
Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.

$$
\sigma=1
$$

A bilaplacian problem with Dirichlet boundary conditions

IDEAS OF THE PROOF: We have
Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.
(2) Let $\zeta \in \mathscr{C}_{0}^{\infty}(\Omega)$. Define $\mathrm{T} v=\zeta w+(1-\zeta) v \in \mathrm{H}_{0}^{2}(\Omega)$.

$$
\sigma=1
$$

A bilaplacian problem with Dirichlet boundary conditions

IDEAS OF THE PROOF: We have

Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.
(2) Let $\zeta \in \mathscr{C}_{0}^{\infty}(\Omega)$. Define $\mathrm{T} v=\zeta w+(1-\zeta) v \in \mathrm{H}_{0}^{2}(\Omega)$.
(3) We find $a(v, \mathrm{~T} v)=([\zeta+\sigma(1-\zeta)] \Delta v, \Delta v)_{\Omega}+(K v, v)_{\mathrm{H}_{0}^{2}(\Omega)}$ where $K: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ is compact.

$$
\sigma=1
$$

A bilaplacian problem with Dirichlet boundary conditions

Ideas of the proof: We have

Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.
(2) Let $\zeta \in \mathscr{C}_{0}^{\infty}(\Omega)$. Define $\mathrm{T} v=\zeta w+(1-\zeta) v \in \mathrm{H}_{0}^{2}(\Omega)$.
(3) We find $a(v, \mathrm{~T} v)=[\zeta+\sigma(1-\zeta)] \Delta v, \Delta v)_{\Omega}+(K v, v)_{\mathrm{H}_{0}^{2}(\Omega)}$ where $K: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ is compact.

$$
\sigma=1
$$

A bilaplacian problem with Dirichlet boundary conditions

Ideas of the proof: We have
Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.
(2) Let $\zeta \in \mathscr{C}_{0}^{\infty}(\Omega)$. Define $\mathrm{T} v=\zeta w+(1-\zeta) v \in \mathrm{H}_{0}^{2}(\Omega)$.
(3) We find $a(v, \mathrm{~T} v)=[[\zeta+\sigma(1-\zeta)] \Delta v, \Delta v)_{\Omega}+(K v, v)_{\mathrm{H}_{0}^{2}(\Omega)}$ where $K: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ is compact.

$$
\sigma=1
$$

A bilaplacian problem with Dirichlet boundary conditions

- In this section, $\mathrm{X}=\mathrm{H}_{0}^{2}(\Omega)$.

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
& \int_{\Omega} \sigma \Delta u \Delta v=l(v), \quad \forall v \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}\right.
$$

Message: The operators $\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot):$ $\mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$ have very different properties.

Theorem. The problem (\mathscr{P}) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.

A bilaplacian problem with Dirichlet boundary conditions

- In this section, $\mathrm{X}=\mathrm{H}_{0}^{2}(\Omega)$.

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
& \int_{\Omega} \sigma \Delta u \Delta v=l(v), \quad \forall v \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}\right.
$$

Message: The operators $\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot):$ $\mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$ have very different properties.
... but (\mathscr{P}) can be ill-posed (not Fredholm) when σ changes sign "on $\partial \Omega$ " \Rightarrow work with J. Firozaly.

Not always
Fredholm
(1) A bilaplacian problem with mixed boundary conditions I
(2) A bilaplacian problem with mixed boundary conditions II

3 A bilaplacian problem with Dirichlet boundary conditions

Conclusion

Find $v \in \mathrm{H}_{0}^{1}(\Omega)$ s.t., $\forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)$,

$$
\int_{\Omega} \sigma \nabla v \cdot \nabla v^{\prime}=\ell\left(v^{\prime}\right)
$$

© Smooth interface

Well-posed in the Fredholm sense iff

$$
\kappa_{\sigma}=\sigma_{2} / \sigma_{1} \neq-1
$$

© Interface with a corner

Well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin[-I ;-1 / I], I=(2 \pi-\vartheta) / \vartheta$.

$$
\begin{aligned}
& \text { Find } v \in \mathrm{X} \text { s.t., } \forall v^{\prime} \in \mathrm{X}, \\
& \int_{\Omega} \sigma \Delta v \Delta v^{\prime}=\ell\left(v^{\prime}\right)
\end{aligned}
$$

We assume $\sigma \in \mathrm{L}^{\infty}(\Omega), \sigma^{-1} \in \mathrm{~L}^{\infty}(\Omega)$.
↔ If $\mathrm{X}=\mathrm{H}_{0}^{1}(\Delta)$: Well-posed.
↔ If $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$:

- Well-posed when Ω is convex or of class \mathscr{C}^{2}.
- When Ω has one reentrant corner, it can occur a kernel of dimension 1.
^ If $\mathrm{X}=\mathrm{H}_{0}^{2}(\Omega)$:
- Well-posed in the Fredholm sense when σ does not change sign on a neighbourhood of $\partial \Omega$.
- When σ changes sign on $\partial \Omega$, Fredholmness can be lost.

Thank you for your attention!!!

