Investigation of some transmission problems with sign changing coefficients. Application to metamaterials.

Lucas Chesnel

Supervisors: A.-S. Bonnet-Ben Dhia and P. Ciarlet UMA Ensta ParisTech, POems team

Ensta ParisTech, Palaiseau, France, October 12, 2012

Introduction: objective

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Introduction: objective

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Do such negative materials occur in practice?

Introduction: objective

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Do such negative materials occur in practice?

- For metals at optical frequencies, $\varepsilon<0$ and $\mu>0$.

Introduction: objective

Scattering by a negative material in electromagnetism in 3D in
Drude model for a metal (high frequency):

$$
\varepsilon(\omega)=\varepsilon_{0}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)
$$

where ω_{p} is the plasma frequency.

Introduction: objective

Scattering by a negative material in electromagnetism in 3D in
Drude model for a metal (high frequency):

$$
\varepsilon(\omega)=\varepsilon_{0}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)
$$

where ω_{p} is the plasma frequency.

Introduction: objective

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Do such negative materials occur in practice?

- For metals at optical frequencies, $\varepsilon<0$ and $\mu>0$.

Introduction: objective

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Do such negative materials occur in practice?

- For metals at optical frequencies, $\varepsilon<0$ and $\mu>0$.
- Recently, artificial metamaterials have been realized which can be modelled (at some frequency of interest) by $\varepsilon<0$ and $\mu<0$.

Introduction: objective

Scattering by a negative material in electromagnetism in 3D in
Zoom on a metamaterial: practical realizations of metamaterials are achieved by a periodic assembly of small resonators.

Example of metamaterial (NASA)
Mathematical justification of the homogenized model (Bouchitté, Bourel, Felbacq 09).
modelled (at some frequency of interest) by $\varepsilon<0$ and $\mu<0$.

Introduction: objective

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Do such negative materials occur in practice?

- For metals at optical frequencies, $\varepsilon<0$ and $\mu>0$.
- Recently, artificial metamaterials have been realized which can be modelled (at some frequency of interest) by $\varepsilon<0$ and $\mu<0$.

Introduction: applications

- Surface Plasmons Polaritons that propagate at the interface between a metal and a dielectric can help reducing the size of computer chips.

Introduction: applications

- Surface Plasmons Polaritons that propagate at the interface between a metal and a dielectric can help reducing the size of computer chips.

S

- The negative refraction at the interface metamaterial/dielectric could allow the realization of perfect lenses (Pendry 00), photonic traps ...

Introduction: applications

- Surface Plasmons Polaritons that propagate at the interface between a metal and a dielectric can help reducing the size of computer chips.

S

- The negative refraction at the interface metamaterial/dielectric could allow the realization of perfect lenses (Pendry 00), photonic traps ...

Interfaces between negative materials and dielectrics occur in all (exciting) applications...

Introduction: in this talk

Problem set in a bounded domain $\Omega \subset \mathbb{R}^{3}$:

Introduction: in this talk

Problem set in a bounded domain $\Omega \subset \mathbb{R}^{3}$:

- Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ.

Introduction: in this talk

Problem set in a bounded domain $\Omega \subset \mathbb{R}^{3}$:

- Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ.
- Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon, \mu>0$.

Introduction: in this talk

Problem set in a bounded domain $\Omega \subset \mathbb{R}^{3}$:

- Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ.
- Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon, \mu>0$. But interesting phenomena occur for almost dissipationless materials.

Introduction: in this talk

Problem set in a bounded domain $\Omega \subset \mathbb{R}^{3}$:

- Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ.
- Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon, \mu>0$. But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected ?

Introduction: in this talk

Problem set in a bounded domain $\Omega \subset \mathbb{R}^{3}$:

- Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ.
- Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon, \mu>0$. But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected ?

- Does well-posedness still hold?
- What is the appropriate functional framework?
- What about the convergence of approximation methods?

Outline of the talk

(1) The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transformations to study $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathbf{H}_{0}^{1}(\Omega) \rightarrow \mathbf{H}^{-1}(\Omega)$ (improvement over Bonnet-Ben Dhia et al. 10, Zwölf 08).

Outline of the talk

(1) The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transformations to study $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathbf{H}_{0}^{1}(\Omega) \rightarrow \mathbf{H}^{-1}(\Omega)$ (improvement over Bonnet-Ben Dhia et al. 10, Zwölf 08).
(2) A new functional framework in the critical interval

We propose a new functional framework when $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathbf{X} \rightarrow \mathbf{Y}$ is not Fredholm for $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega)$ and $\mathrm{Y}=\mathrm{H}^{-1}(\Omega)$ (extension of Dauge, Texier 97, Ramdani 99).

Outline of the talk

(1) The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transformations to study $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathbf{H}_{0}^{1}(\Omega) \rightarrow \mathbf{H}^{-1}(\Omega)$ (improvement over Bonnet-Ben Dhia et al. 10, Zwölf 08).
(2) A new functional framework in the critical interval

We propose a new functional framework when $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathbf{X} \rightarrow \mathbf{Y}$ is not Fredholm for $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega)$ and $\mathrm{Y}=\mathrm{H}^{-1}(\Omega)$ (extension of Dauge, Texier 97, Ramdani 99).
(3) Study of Maxwell's equations

We develop a T-coercivity method based on potentials to study $\operatorname{curl}\left(\varepsilon^{-1} \operatorname{curl} \cdot\right): \mathrm{V}_{T}(\mu ; \Omega) \rightarrow \mathrm{V}_{T}(\mu ; \Omega)^{*}$.

Outline of the talk

(1) The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transformations to study $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathbf{H}_{0}^{1}(\Omega) \rightarrow \mathbf{H}^{-1}(\Omega)$ (improvement over Bonnet-Ben Dhia et al. 10, Zwölf 08).
(2) A new functional framework in the critical interval

We propose a new functional framework when $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathbf{X} \rightarrow \mathbf{Y}$ is not Fredholm for $\mathrm{X}=\mathrm{H}_{0}^{1}(\Omega)$ and $\mathrm{Y}=\mathrm{H}^{-1}(\Omega)$ (extension of Dauge, Texier 97, Ramdani 99).
(3) Study of Maxwell's equations

We develop a T-coercivity method based on potentials to study $\operatorname{curl}\left(\varepsilon^{-1} \operatorname{curl} \cdot\right): \mathrm{V}_{T}(\mu ; \Omega) \rightarrow \mathrm{V}_{T}(\mu ; \Omega)^{*}$.
(4) The T-coercivity method for the Interior Transmission Problem We study $\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)$.
(1) The coerciveness issue for the scalar case

(2) A new functional framework in the critical interval

3 Study of Maxwell's equations
(4) The T-coercivity method for the Interior Transmission Problem

A scalar model problem

Problem for E_{z} in 2D in case of an invariance with respect to z :

$$
\begin{aligned}
& \text { Find } E_{z} \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \operatorname{div}\left(\mu^{-1} \nabla E_{z}\right)+\omega^{2} \varepsilon E_{z}=-f \quad \text { in } \Omega .
\end{aligned}
$$

A scalar model problem

Problem for E_{z} in 2D in case of an invariance with respect to z :

$$
\begin{aligned}
& \text { Find } E_{z} \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \operatorname{div}\left(\mu^{-1} \nabla E_{z}\right)+\omega^{2} \varepsilon E_{z}=-f \quad \text { in } \Omega .
\end{aligned}
$$

- $\mathrm{H}_{0}^{1}(\Omega)=\left\{v \in \mathrm{~L}^{2}(\Omega)\left|\nabla v \in \mathrm{~L}^{2}(\Omega) ; v\right|_{\partial \Omega}=0\right\}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

A scalar model problem

Problem for E_{z} in 2D in case of an invariance with respect to z :

$$
\begin{aligned}
& \text { Find } E_{z} \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \operatorname{div}\left(\mu^{-1} \nabla E_{z}\right)+\omega^{2} \varepsilon E_{z}=-f \quad \text { in } \Omega .
\end{aligned}
$$

- $\mathrm{H}_{0}^{1}(\Omega)=\left\{v \in \mathrm{~L}^{2}(\Omega)\left|\nabla v \in \mathrm{~L}^{2}(\Omega) ; v\right|_{\partial \Omega}=0\right\}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

Since $\mathrm{H}_{0}^{1}(\Omega) \subset \subset \mathrm{L}^{2}(\Omega)$, we focus on the principal part.
(\mathscr{P})
Find $u \in \mathrm{H}_{0}^{1}(\Omega)$ s.t.:
$\operatorname{div}\left(\mu^{-1} \nabla u\right)=-f$ in Ω.

A scalar model problem

Problem for E_{z} in 2D in case of an invariance with respect to z :

$$
\begin{aligned}
& \text { Find } E_{z} \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \operatorname{div}\left(\mu^{-1} \nabla E_{z}\right)+\omega^{2} \varepsilon E_{z}=-f \quad \text { in } \Omega .
\end{aligned}
$$

- $\mathrm{H}_{0}^{1}(\Omega)=\left\{v \in \mathrm{~L}^{2}(\Omega)\left|\nabla v \in \mathrm{~L}^{2}(\Omega) ; v\right|_{\partial \Omega}=0\right\}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

Since $\mathrm{H}_{0}^{1}(\Omega) \subset \subset \mathrm{L}^{2}(\Omega)$, we focus on the principal part.
Find $u \in \mathrm{H}_{0}^{1}(\Omega)$ s.t.:
$\operatorname{div}\left(\mu^{-1} \nabla u\right)=-f$ in Ω.

A scalar model problem

Problem for E_{z} in 2D in case of an invariance with respect to z :

> Find $E_{z} \in \mathrm{H}_{0}^{1}(\Omega)$ such that: $\operatorname{div}\left(\mu^{-1} \nabla E_{z}\right)+\omega^{2} \varepsilon E_{z}=-f \quad$ in Ω.

- $\mathrm{H}_{0}^{1}(\Omega)=\left\{v \in \mathrm{~L}^{2}(\Omega)\left|\nabla v \in \mathrm{~L}^{2}(\Omega) ; v\right|_{\partial \Omega}=0\right\}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

Since $\mathrm{H}_{0}^{1}(\Omega) \subset \subset \mathrm{L}^{2}(\Omega)$, we focus on the principal part.
Find $u \in \mathrm{H}_{0}^{1}(\Omega)$ s.t.:
$\operatorname{div}\left(\mu^{-1} \nabla u\right)=-f$ in Ω.

A scalar model problem

Problem for E_{z} in 2D in case of an invariance with respect to z :

$$
\begin{aligned}
& \text { Find } E_{z} \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \operatorname{div}\left(\mu^{-1} \nabla E_{z}\right)+\omega^{2} \varepsilon E_{z}=-f \quad \text { in } \Omega .
\end{aligned}
$$

- $\mathrm{H}_{0}^{1}(\Omega)=\left\{v \in \mathrm{~L}^{2}(\Omega)\left|\nabla v \in \mathrm{~L}^{2}(\Omega) ; v\right|_{\partial \Omega}=0\right\}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

Since $\mathrm{H}_{0}^{1}(\Omega) \subset \subset \mathrm{L}^{2}(\Omega)$, we focus on the principal part.
(\mathscr{P})
Find $u \in \mathrm{H}_{0}^{1}(\Omega)$ s.t.:
$\operatorname{div}\left(\mu^{-1} \nabla u\right)=-f$ in Ω.

$$
\Leftrightarrow\left(\mathscr{P}_{V}\right) \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { s.t.: } \\
& a(u, v)=l(v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}
$$

with $a(u, v)=\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla v \quad$ and $\quad l(v)=\langle f, v\rangle_{\Omega}$.

A scalar model problem

Problem for E_{z} in 2D in case of an invariance with respect to z :

> Find $E_{z} \in \mathrm{H}_{0}^{1}(\Omega)$ such that: $\operatorname{div}\left(\mu^{-1} \nabla E_{z}\right)+\omega^{2} \varepsilon E_{z}=-f \quad$ in Ω.

- $\mathrm{H}_{0}^{1}(\Omega)=\left\{v \in \mathrm{~L}^{2}(\Omega)\left|\nabla v \in \mathrm{~L}^{2}(\Omega) ; v\right|_{\partial \Omega}=0\right\}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

Since $\mathrm{H}_{0}^{1}(\Omega) \subset \subset \mathrm{L}^{2}(\Omega)$, we focus on the principal part.

Definition. We will say that the problem (\mathscr{P}) is well-posed if the operator $A=\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{1}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$.

Mathematical difficulty

- Classical case $\mu>0$ everywhere:

$$
a(u, u)=\int_{\Omega} \mu^{-1}|\nabla u|^{2} \geq \min \left(\mu^{-1}\right)\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2} \quad \text { coercivity }
$$

Lax-Milgram theorem $\Rightarrow(\mathscr{P})$ well-posed.

Mathematical difficulty

- Classical case $\mu>0$ everywhere:

$$
a(u, u)=\int_{\Omega} \mu^{-1}|\nabla u|^{2} \geq \min \left(\mu^{-1}\right)\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2} \quad \text { coercivity }
$$

Lax-Milgram theorem $\Rightarrow(\mathscr{P})$ well-posed.

- The case μ changes sign:

loss of coercivity

Mathematical difficulty

- Classical case $\mu>0$ everywhere:

$$
a(u, u)=\int_{\Omega} \mu^{-1}|\nabla u|^{2} \geq \min \left(\mu^{-1}\right)\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2} \quad \text { coercivity }
$$

Lax-Milgram theorem $\Rightarrow(\mathscr{P})$ well-posed.

- The case μ changes sign:

loss of coercivity
- When $\mu_{2}=-\mu_{1},(\mathscr{P})$ is always ill-posed (Costabel-Stephan 85). For a symmetric domain (w.r.t. Σ) we can build a kernel of infinite dimension.

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}_{V}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\ & a(u, v)=l(v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) .\end{aligned}\right.$

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.
$(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\ & a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) .\end{aligned}\right.$

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathrm{~T} u) \geq C\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left.\left(\mathscr{P}_{V}\right)\right)$ is well-posed.

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathrm{~T} u) \geq C\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left.\left(\mathscr{P}_{V}\right)\right)$ is well-posed.
(1) Define $\mathrm{T}_{1} u=\left\lvert\, \begin{array}{ll}u_{1} & \text { in } \Omega_{1} \\ -u_{2}+\ldots & \text { in } \Omega_{2}\end{array}\right.$

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathrm{~T} u) \geq C\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left.\left(\mathscr{P}_{V}\right)\right)$ is well-posed.
(1) Define $\mathrm{T}_{1} u=\left\lvert\, \begin{array}{ll}u_{1} & \text { in } \Omega_{1} \\ -u_{2}+2 R_{1} u_{1} & \text { in } \Omega_{2}\end{array}\right., \quad$ with
R_{1} transfer/extension operator

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathrm{~T} u) \geq C\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left.\left(\mathscr{P}_{V}\right)\right)$ is well-posed.
(1) Define $\mathrm{T}_{1} u=\left\lvert\, \begin{array}{ll}u_{1} & \text { in } \Omega_{1} \\ -u_{2}+2 R_{1} u_{1} & \text { in } \Omega_{2}\end{array}\right., \quad$ with
R_{1} transfer/extension operator continuous from Ω_{1} to Ω_{2}

$$
\begin{array}{ll}
R_{1} u_{1}=u_{1} & \text { on } \Sigma \\
R_{1} u_{1}=0 & \text { on } \partial \Omega_{2} \backslash \Sigma
\end{array}
$$

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathrm{~T} u) \geq C\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left.\left(\mathscr{P}_{V}\right)\right)$ is well-posed.
(1) Define $\mathrm{T}_{1} u=\left\lvert\, \begin{array}{ll}u_{1} & \text { in } \Omega_{1} \\ -u_{2}+2 R_{1} u_{1} & \text { in } \Omega_{2}\end{array}\right., \quad$ with
R_{1} transfer/extension operator continuous from Ω_{1} to Ω_{2}

$$
\begin{array}{ll}
R_{1} u_{1}=u_{1} & \text { on } \Sigma \\
R_{1} u_{1}=0 & \text { on } \partial \Omega_{2} \backslash \Sigma
\end{array}
$$

On Σ, we have $-u_{2}+2 R_{1} u_{1}=-u_{2}+2 u_{1}=u_{1} \Rightarrow \mathrm{~T}_{1} u \in \mathrm{H}_{0}^{1}(\Omega)$.

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
(\mathscr{P}) \Leftrightarrow\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a(u, \mathrm{~T} v)=l(\mathrm{~T} v), \forall v \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathrm{~T} u) \geq C\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left.\left(\mathscr{P}_{V}\right)\right)$ is well-posed.
(1) Define $\mathrm{T}_{1} u=\left\lvert\, \begin{array}{ll}u_{1} & \text { in } \Omega_{1} \\ -u_{2}+2 R_{1} u_{1} & \text { in } \Omega_{2}\end{array}\right., \quad$ with
R_{1} transfer/extension operator continuous from Ω_{1} to Ω_{2}

$$
\begin{array}{ll}
R_{1} u_{1}=u_{1} & \text { on } \Sigma \\
R_{1} u_{1}=0 & \text { on } \partial \Omega_{2} \backslash \Sigma
\end{array}
$$

(2) $\mathrm{T}_{1} \circ \mathrm{~T}_{1}=I d$ so T_{1} is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(u, \mathrm{~T}_{1} u\right)=\int_{\Omega}|\mu|^{-1}|\nabla u|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla u \cdot \nabla\left(R_{1} u_{1}\right)$

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(u, \mathrm{~T}_{1} u\right)=\int_{\Omega}|\mu|^{-1}|\nabla u|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla u \cdot \nabla\left(R_{1} u_{1}\right)$

Young's inequality $\Rightarrow a$ is T-coercive when $\left|\mu_{2}\right|>\left\|R_{1}\right\|^{2} \mu_{1}$.

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(u, \mathrm{~T}_{1} u\right)=\int_{\Omega}|\mu|^{-1}|\nabla u|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla u \cdot \nabla\left(R_{1} u_{1}\right)$

Young's inequality $\Rightarrow a$ is T-coercive when $\left|\mu_{2}\right|>\left\|R_{1}\right\|^{2} \mu_{1}$.
(4) Working with $\mathrm{T}_{2} u=\left\lvert\, \begin{array}{ll}u_{1}-2 R_{2} u_{2} & \text { in } \Omega_{1} \\ -u_{2} & \text { in } \Omega_{2}\end{array}\right.$, where $R_{2}: \Omega_{2} \rightarrow \Omega_{1}$, one proves that a is T-coercive when $\mu_{1}>\left\|R_{2}\right\|^{2}\left|\mu_{2}\right|$.

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(u, \mathrm{~T}_{1} u\right)=\int_{\Omega}|\mu|^{-1}|\nabla u|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla u \cdot \nabla\left(R_{1} u_{1}\right)$

Young's inequality $\Rightarrow a$ is T-coercive when $\left|\mu_{2}\right|>\left\|R_{1}\right\|^{2} \mu_{1}$.
(4) Working with $\mathrm{T}_{2} u=\left\lvert\, \begin{array}{ll}u_{1}-2 R_{2} u_{2} & \text { in } \Omega_{1} \\ -u_{2} & \text { in } \Omega_{2}\end{array}\right.$, where $R_{2}: \Omega_{2} \rightarrow \Omega_{1}$, one proves that a is T-coercive when $\mu_{1}>\left\|R_{2}\right\|^{2}\left|\mu_{2}\right|$.
(5) Conclusion:

THEOREM. If the contrast $\kappa_{\mu}=\mu_{2} / \mu_{1} \notin\left[-\left\|R_{1}\right\|^{2} ;-1 /\left\|R_{2}\right\|^{2}\right]$, then the operator $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{1}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$.

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(u, \mathrm{~T}_{1} u\right)=\int_{\Omega}|\mu|^{-1}|\nabla u|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla u \cdot \nabla\left(R_{1} u_{1}\right)$

Young's inequality $\Rightarrow a$ is T-coercive when $\left|\mu_{2}\right|>\left\|R_{1}\right\|^{2} \mu_{1}$.
(4) Working with $\mathrm{T}_{2} u=\left\lvert\, \begin{array}{ll}u_{1}-2 R_{2} u_{2} & \text { in } \Omega_{1} \\ -u_{2} & \text { in } \Omega_{2}\end{array}\right.$, where $R_{2}: \Omega_{2} \rightarrow \Omega_{1}$, one proves that a is T-coercive when $\mu_{1}>\left\|R_{2}\right\|^{2}\left|\mu_{2}\right|$.
(5) Conclusion:

The interval depends on the norms of the transfer operators

Theorem. If the contrast $\kappa_{\mu}=\mu_{2} / \mu_{1} \notin\left[\left[-\left\|R_{1}\right\|^{2} ;-1 /\left\|R_{2}\right\|^{2}\right]\right.$ then the operator $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{+}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$.

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

- Interface with a 2D corner

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

- Interface with a 2D corner

Action of R_{1} :

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

- Interface with a 2D corner

Action of R_{1} :

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

- Interface with a 2D corner

Action of R_{1} : symmetry w.r.t θ

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

- Interface with a 2D corner

Action of R_{1} : symmetry + dilatation w.r.t θ

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

- Interface with a 2D corner

Action of R_{1} : symmetry + dilatation w.r.t θ

$$
\left\|R_{1}\right\|^{2} \quad=\mathcal{R}_{\sigma}:=(2 \pi-\sigma) / \sigma
$$

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

- Interface with a 2D corner

Action of R_{1} : symmetry + dilatation w.r.t θ Action of R_{2} : symmetry + dilatation w.r.t θ

$$
\left\|R_{1}\right\|^{2}=\left\|R_{2}\right\|^{2}=\mathcal{R}_{\sigma}:=(2 \pi-\sigma) / \sigma
$$

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

- Interface with a 2D corner

Action of R_{1} : symmetry + dilatation w.r.t θ Action of R_{2} : symmetry + dilatation w.r.t θ

$$
\begin{gathered}
\left\|R_{1}\right\|^{2}=\left\|R_{2}\right\|^{2}=\mathcal{R}_{\sigma}:=(2 \pi-\sigma) / \sigma \\
(\mathscr{P}) \text { well-posed } \Leftarrow \kappa_{\mu} \notin\left[-\mathcal{R}_{\sigma} ;-1 / \mathcal{R}_{\sigma}\right]
\end{gathered}
$$

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{gathered}
R_{1}=R_{2}=S_{\Sigma} \\
\text { so that }\left\|R_{1}\right\|=\left\|R_{2}\right\|=1 \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \neq-1
\end{gathered}
$$

- Interface with a 2D corner

Action of R_{1} : symmetry + dilatation w.r.t θ Action of R_{2} : symmetry + dilatation w.r.t θ

$$
\begin{gathered}
\left\|R_{1}\right\|^{2}=\left\|R_{2}\right\|^{2}=\mathcal{R}_{\sigma}:=(2 \pi-\sigma) / \sigma \\
(\mathscr{P}) \text { well-posed } \Leftrightarrow \kappa_{\mu} \notin\left[-\mathcal{R}_{\sigma} ;-1 / \mathcal{R}_{\sigma}\right]
\end{gathered}
$$

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

$$
\begin{aligned}
& R_{1}=R_{2}=S_{\Sigma} \\
& \neq-1
\end{aligned}
$$

Interface with

tation w.r.t θ tation w.r.t θ $2 \pi-\sigma) / \sigma$ $\left.Z_{\sigma} ;-1 / \mathcal{R}_{\sigma}\right]$

Choice of R_{1}, R_{2} ?

- A simple case: symmetric domain

- Interface with

- By localization techniques, we prove

Proposition. (\mathscr{P}) is well-posed in the Fredholm sense for a curvilinear polygonal interface iff $\kappa_{\mu} \notin\left[-\mathcal{R}_{\sigma} ;-1 / \mathcal{R}_{\sigma}\right]$ where σ is the smallest angle.
\Rightarrow When Σ is smooth, (\mathscr{P}) is well-posed in the Fredholm sense iff $\kappa_{\mu} \neq-1$.

Extensions for the scalar case

- The T-coercivity approach can be used to deal with non constant μ_{1}, μ_{2} and with the Neumann problem.

Extensions for the scalar case

- The T-coercivity approach can be used to deal with non constant μ_{1}, μ_{2} and with the Neumann problem.
- 3D geometries can be handled in the same way.

- The T-coercivity technique allows to justify convergence of standard finite element method for simple meshes (Bonnet-Ben Dhia et al. 10, Nicaise, Venel 11, Chesnel, Ciarlet 12).

Transition: from variational methods to Fourier/Mellin techniques

For the corner case, what happens when the contrast lies inside the criticial interval, i.e. when $\kappa_{\mu} \in\left[-\mathcal{R}_{\sigma} ;-1 / \mathcal{R}_{\sigma}\right] ? ? ?$

Transition: from variational methods to Fourier/Mellin techniques

For the corner case, what happens when the contrast lies inside the criticial interval, i.e. when $\kappa_{\mu} \in\left[-\mathcal{R}_{\sigma} ;-1 / \mathcal{R}_{\sigma}\right]$???

Idea: we will study precisely the regularity of the "solutions" using the Kondratiev's tools, i.e. the Fourier/Mellin transform (Dauge, Texier 97, Nazarov, Plamenevsky 94).

(1) The coerciveness issue for the scalar case

(2) A new functional framework in the critical interval \Rightarrow collaboration with X. Claeys (LJLL Paris VI).
(3) Study of Maxwell's equations

44 The T-coercivity method for the Interior Transmission Problem

Problem considered in this section

- We recall the problem under consideration

$$
\begin{array}{|l|l}
(\mathscr{P}) & \begin{array}{l}
\text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
\\
-\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega .
\end{array}
\end{array}
$$

- To simplify the presentation, we work on a particular configuration.

Problem considered in this section

- We recall the problem under consideration

(\mathscr{P})	Find $u \in \mathrm{H}_{0}^{1}(\Omega)$ such that: $-\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad$ in Ω.

- To simplify the presentation, we work on a particular configuration.

Problem considered in this section

- We recall the problem under consideration

$$
\begin{array}{|l|l}
(\mathscr{P}) & \begin{array}{l}
\text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
\\
-\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega
\end{array} .
\end{array}
$$

- To simplify the presentation, we work on a particular configuration.

Problem considered in this section

- We recall the problem under consideration

$$
\begin{array}{|l|l}
(\mathscr{P}) & \begin{array}{l}
\text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
\\
-\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega
\end{array}
\end{array}
$$

- To simplify the presentation, we work on a particular configuration.

- Using the variational method of the previous section, we prove the

Proposition. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\mu}=$ μ_{2} / μ_{1} satisfies $\kappa_{\mu} \notin[-3 ;-1]$.

Problem considered in this section

- We recall the problem under consideration

$$
\begin{array}{|l|l}
(\mathscr{P}) & \begin{array}{l}
\text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
\\
-\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega
\end{array}
\end{array}
$$

- To simplify the presentation, we work on a particular configuration.

- Using the variational method of the previous section, we prove the

Proposition. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\mu}=$ μ_{2} / μ_{1} satisfies $\kappa_{\mu} \notin[-3 ;-1]$.

What happens when $\kappa_{\mu} \in[-3 ;-1)$?

Analogy with a waveguide problem

- Bounded sector Ω

- Equation:

$$
\underbrace{-\operatorname{div}\left(\mu^{-1} \nabla u\right)}_{-r^{-2}\left(\mu^{-1}\left(r \partial_{r}\right)^{2}+\partial_{\theta} \mu^{-1} \partial_{\theta}\right) u}=f
$$

Analogy with a waveguide problem

- Bounded sector Ω

- Equation:

$$
\underbrace{-\operatorname{div}\left(\mu^{-1} \nabla u\right)}_{-r^{-2}\left(\mu^{-1}\left(r \partial_{r}\right)^{2}+\partial_{\theta} \mu^{-1} \partial_{\theta}\right) u}=f
$$

- Singularities in the sector
$s(r, \theta)=r^{\lambda} \varphi(\theta)$

Analogy with a waveguide problem

We compute the singularities $s(r, \theta)=r^{\lambda} \varphi(\theta)$ and we observe two cases:

- Outside the critical interval

Analogy with a waveguide problem

We compute the singularities $s(r, \theta)=r^{\lambda} \varphi(\theta)$ and we observe two cases:

- Outside the critical interval

$\kappa_{\mu}=-4 \quad \stackrel{\vdots}{\square}$		
$-\lambda_{2} \quad-\lambda_{1}$	λ_{1}	λ_{2}
- - - -	+ - 1	-
-2 -1	1	2
not H^{1}	$\div-1$	H^{1}

- Inside the critical interval

Analogy with a waveguide problem

We compute the singularities $s(r, \theta)=r^{\lambda} \varphi(\theta)$ and we observe two cases:

- Outside the critical interval

$\kappa_{\mu}=-41 \stackrel{\dagger}{\dagger}$		
$\begin{array}{ll}-\lambda_{2} & -\lambda_{1}\end{array}$	λ_{1}	λ_{2}
- ${ }^{\text {a }}$ - + -	- 1	
$-2 \quad-1$	1	2
not H^{1}		H^{1}

- Inside the critical interval

How to deal with the propagative singularities inside the critical interval?

Analogy with a waveguide problem

- Bounded sector Ω

- Equation:

$$
\underbrace{-\operatorname{div}\left(\mu^{-1} \nabla u\right)}_{-r^{-2}\left(\mu^{-1}\left(r \partial_{r}\right)^{2}+\partial_{\theta} \mu^{-1} \partial_{\theta}\right) u}=f
$$

- Singularities in the sector
$s(r, \theta)=r^{\lambda} \varphi(\theta)$

Analogy with a waveguide problem

- Bounded sector Ω

- Equation:

- Singularities in the sector
$s(r, \theta)=r^{\lambda} \varphi(\theta)$

Analogy with a waveguide problem

- Bounded sector Ω
- Half-strip \mathcal{B}

- Equation:

$$
\underbrace{-\operatorname{div}\left(\mu^{-1} \nabla u\right)}_{-r^{-2}\left(\mu^{-1}\left(r \partial_{r}\right)^{2}+\partial_{\theta} \mu^{-1} \partial_{\theta}\right) u}=f
$$

- Singularities in the sector
$s(r, \theta)=r^{\lambda} \varphi(\theta)$
- Equation:

$$
\underbrace{-\operatorname{div}\left(\mu^{-1} \nabla u\right)}_{-\left(\mu^{-1} \partial_{z}^{2}+\partial_{\theta} \mu^{-1} \partial_{\theta}\right) u}=e^{-2 z} f
$$

Analogy with a waveguide problem

- Bounded sector Ω
- Half-strip \mathcal{B}

- Equation:

$$
\underbrace{-\operatorname{div}\left(\mu^{-1} \nabla u\right)}_{-r^{-2}\left(\mu^{-1}\left(r \partial_{r}\right)^{2}+\partial_{\theta} \mu^{-1} \partial_{\theta}\right) u}=f
$$

- Singularities in the sector
$s(r, \theta)=r^{\lambda} \varphi(\theta)$

- Equation:

$$
\underbrace{-\operatorname{div}\left(\mu^{-1} \nabla u\right)}_{-\left(\mu^{-1} \partial_{z}^{2}+\partial_{\theta} \mu^{-1} \partial_{\theta}\right) u}=e^{-2 z} f
$$

- Modes in the strip

$$
m(z, \theta)=e^{-\lambda z} \varphi(\theta)
$$

Analogy with a waveguide problem

- Bounded sector Ω

- Singularities in the sector
$s(r, \theta)=r^{\lambda} \varphi(\theta)$
- Half-strip \mathcal{B}

- Modes in the strip

$$
m(z, \theta)=e^{-\lambda z} \varphi(\theta)
$$

m is evanescent

Analogy with a waveguide problem

- Bounded sector Ω

- Singularities in the sector

$$
s(r, \theta)=r^{\lambda} \varphi(\theta)
$$

$$
=\lambda^{\alpha}(\cos b \ln r+i \sin b \ln r) \varphi(\theta) \quad=e^{-(\Re e \lambda=a, \leftrightarrow m \lambda=b)}(\cos b z-i \sin b z) \varphi(\theta)
$$

$$
\begin{array}{ll}
s \in \mathrm{H}^{1}(\Omega) & \Re e \lambda_{1}^{\prime}>0 \\
s \notin \mathrm{H}^{1}(\Omega) & \Re e \lambda_{1}^{\prime}=0
\end{array}
$$

m is propagative

Analogy with a waveguide problem

- Bounded sector Ω

- Equation:

$$
\underbrace{-\operatorname{div}\left(\mu^{-1} \nabla u\right)}_{2^{(}\left(\mu^{-1}\left(r \partial_{r}\right)^{2}+\partial_{\theta} \mu^{-1} \partial_{\theta}\right) u}=f
$$

- Singularities in the sector

$$
\begin{aligned}
s(r, \theta) & =r^{\lambda} \varphi(\theta) \\
& =\not \alpha^{\alpha}(\cos b \ln r+i \sin b \ln r) \varphi(\theta)
\end{aligned}
$$

- Half-strip \mathcal{B}

- Equation:

$$
\underbrace{-\operatorname{div}\left(\mu^{-1} \nabla u\right)}_{-\left(\mu^{-1} \partial_{z}^{2}+\partial_{\theta} \mu^{-1} \partial_{\theta}\right) u}=e^{-2 z} f
$$

- Modes in the strip

$$
m(z, \theta)=e^{-\lambda z} \varphi(\theta)
$$

$$
=\rho \stackrel{d z}{ }(\cos b z-i \sin b z) \varphi(\theta)
$$

$$
\begin{aligned}
& s \in \mathrm{H}^{1}(\Omega) \\
& s \notin \mathrm{H}^{1}(\Omega)
\end{aligned}
$$

$$
(\Re e \lambda=a, \operatorname{sis} n \lambda=b)
$$

Modal analysis in the waveguide

	Outside the critical interval. All the modes are exponentially growing or decaying. \rightarrow We look for an exponentially decaying solution. H^{1} framework

Modal analysis in the waveguide

	Outside the critical interval. All the modes are exponentially growing or decaying. \rightarrow We look for an exponentially decaying solution. H^{1} framework
	Inside the critical interval. There are exactly two propagative modes.

Modal analysis in the waveguide

	Outside the critical interval. All the modes are exponentially growing or decaying. \rightarrow We look for an exponentially decaying solution. H^{1} framework
	Inside the critical interval. There are exactly two propagative modes. \rightarrow The decomposition on the outgoing modes leads to look for a solution of the form $u=\underbrace{c_{1} \varphi_{1} e^{\lambda_{1} z}}_{\text {propagative part }}+\underbrace{u_{e} .}_{\text {evanescent part }}$ non H^{1} framework

Modal analysis in the waveguide

	Outside the critical interval. All the modes are exponentially growing or decaying. \rightarrow We look for an exponentially decaying solution. H^{1} framework
	Inside the critical interval. There are exactly two propagative modes. \rightarrow The decomposition on the outgoing modes leads to look for a solution of the form $u=\underbrace{c_{1} \varphi_{1} e^{\lambda_{1} z}}_{\text {propagative part }}+\underbrace{u_{e \cdot}}_{\text {evanescent part }}$ non H^{1} framework

The new functional framework

Consider $0<\beta<2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$
\mathrm{W}_{-\beta}=\left\{v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \quad \text { space of exponentially decaying functions }
$$

The new functional framework

Consider $0<\beta<2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$
\begin{aligned}
& \mathrm{W}_{-\beta}=\left\{v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \quad \text { space of exponentially decaying functions } \\
& \mathrm{W}_{\beta}=\left\{v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \quad \text { space of exponentially growing functions }
\end{aligned}
$$

The new functional framework

Consider $0<\beta<2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$
\begin{aligned}
\mathrm{W}_{-\beta} & =\left\{v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \\
\mathrm{W}^{+} & =\operatorname{span}\left(\zeta \varphi_{1} e^{\lambda_{1} z}\right) \oplus \mathrm{W}_{-\beta} \\
\mathrm{W}_{\beta} & =\left\{v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\}
\end{aligned}
$$

propagative part + evanescent part space of exponentially growing functions

The new functional framework

Consider $0<\beta<2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$
\begin{aligned}
\mathrm{W}_{-\beta} & =\left\{v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \\
\widehat{W}^{+} & =\operatorname{span}\left(\zeta \varphi_{1} e^{\lambda_{1} z}\right) \oplus \mathrm{W}_{-\beta} \\
\widehat{W}_{\beta} & =\left\{v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\}
\end{aligned}
$$

space of exponentially decaying functions
propagative part + evanescent part
space of exponentially growing functions

The new functional framework

Consider $0<\beta<2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$
\begin{aligned}
\widehat{W}_{-\beta} & =\left\{v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \\
\widehat{W}^{+} & =\operatorname{span}\left(\zeta \varphi_{1} e^{\lambda_{1} z}\right) \oplus \mathrm{W}_{-\beta} \\
\widehat{W}_{\beta} & =\left\{v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\}
\end{aligned}
$$

space of exponentially decaying functions
propagative part + evanescent part
space of exponentially growing functions

Theorem. Let $\kappa_{\mu} \in(-3 ;-1)$ and $0<\beta<2$. The operator A^{+}: $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from W^{+}to W_{β}^{*} is an isomorphism.

The new functional framework

Consider $0<\beta<2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$
\begin{aligned}
\mathrm{W}_{-\beta} & =\left\{v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \\
\widehat{W}^{+} & =\operatorname{span}\left(\zeta \varphi_{1} e^{\lambda_{1} z}\right) \oplus \mathrm{W}_{-\beta} \\
\hat{\mathrm{W}}_{\beta} & =\left\{v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\}
\end{aligned}
$$

space of exponentially decaying functions
propagative part + evanescent part
space of exponentially growing functions

Theorem. Let $\kappa_{\mu} \in(-3 ;-1)$ and $0<\beta<2$. The operator A^{+}: $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from W^{+}to W_{β}^{*} is an isomorphism.

IDEAS OF THE PROOF:
(1) $A_{-\beta}: \operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from $W_{-\beta}$ to W_{β}^{*} is injective but not surjective.

The new functional framework

Consider $0<\beta<2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$
\begin{aligned}
\widehat{\mathrm{W}}_{-\beta} & =\left\{v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \\
\widehat{W}^{+} & =\operatorname{span}\left(\zeta \varphi_{1} e^{\lambda_{1} z}\right) \oplus \mathrm{W}_{-\beta} \\
\hat{\mathrm{W}}_{\beta} & =\left\{v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\}
\end{aligned}
$$

space of exponentially decaying functions
space of exponentially decaying functions
propagative part + evanescent part
propagative part + evanescent part
space of exponentially growing functions

Theorem. Let $\kappa_{\mu} \in(-3 ;-1)$ and $0<\beta<2$. The operator A^{+}: $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from W^{+}to W_{β}^{*} is an isomorphism.

IDEAS OF THE PROOF:
(1) $A_{-\beta}: \operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from $W_{-\beta}$ to W_{β}^{*} is injective but not surjective.
(2) $A_{\beta}: \operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from W_{β} to $\mathrm{W}_{-\beta}^{*}$ is surjective but not injective.

The new functional framework

Consider $0<\beta<2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$
\begin{aligned}
\widehat{\mathrm{W}}_{-\beta} & =\left\{v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \\
\widehat{W}^{+} & =\operatorname{span}\left(\zeta \varphi_{1} e^{\lambda_{1} z}\right) \oplus \mathrm{W}_{-\beta} \\
\hat{\mathrm{W}}_{\beta} & =\left\{v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\}
\end{aligned}
$$

space of exponentially decaying functions
space of exponentially decaying functions
propagative part + evanescent part
propagative part + evanescent part
space of exponentially growing functions

Theorem. Let $\kappa_{\mu} \in(-3 ;-1)$ and $0<\beta<2$. The operator A^{+}: $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from W^{+}to W_{β}^{*} is an isomorphism.

IDEAS OF THE PROOF:
(1) $A_{-\beta}: \operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from $W_{-\beta}$ to W_{β}^{*} is injective but not surjective.
(2) $A_{\beta}: \operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from W_{β} to $\mathrm{W}_{-\beta}^{*}$ is surjective but not injective.
(3) The intermediate operator $A^{+}: \mathrm{W}^{+} \rightarrow \mathrm{W}_{\beta}^{*}$ is injective (energy integral) and surjective (residue theorem).

The new functional framework

Consider $0<\beta<2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$
\begin{aligned}
& \mathrm{W}_{-\beta}=\left\{v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B})\right\} \\
& \mathrm{W}^{+}=\operatorname{span}\left(\zeta \varphi_{1} e^{\lambda_{1} z}\right) \oplus \mathrm{W}_{-\beta}
\end{aligned}
$$

space of exponentially decaying functions
propagative part + evanescent part
space of exponentially growing functions

Theorem. Let $\kappa_{\mu} \in(-3 ;-1)$ and $0<\beta<2$. The operator A^{+}: $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from W^{+}to W_{β}^{*} is an isomorphism.

IDEAS OF THE PROOF:
(1) $A_{-\beta}: \operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from $W_{-\beta}$ to W_{β}^{*} is injective but not surjective.
(2) $A_{\beta}: \operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ from W_{β} to $\mathrm{W}_{-\beta}^{*}$ is surjective but not injective.
(3) The intermediate operator $A^{+}: \mathrm{W}^{+} \rightarrow \mathrm{W}_{\beta}^{*}$ is injective (energy integral) and surjective (residue theorem).
(9) Limiting absorption principle to select the outgoing mode.

A funny use of PMLs

- We use a PML (Perfectly Matched Layer) to bound the domain \mathcal{B} + finite elements in the truncated strip

$$
\text { Contrast } \kappa_{\mu}=-1.001 \in(-3 ;-1)
$$

A black hole phenomenon

- The same phenomenon occurs for the Helmholtz equation.

$$
(\boldsymbol{x}, t) \mapsto \Re e\left(u(\boldsymbol{x}) e^{-i \omega t}\right) \quad \text { for } \kappa_{\mu}=-1.3 \in(-3 ;-1)
$$

- Analogous phenomena occur in cuspidal domains in the theory of water-waves and in elasticity (Cardone, Nazarov, Taskinen).
- On going work for a general domain (C. Carvalho).

Summary of the results for the scalar problem

Problem
$(\mathscr{P}) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { s.t.: } \\ & -\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega .\end{aligned}\right.$

Summary of the results for the scalar problem

Problem
$(\mathscr{P}) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { s.t.: } \\ & -\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega .\end{aligned}\right.$

Results
For $\kappa_{\mu} \in \mathbb{C} \backslash \mathbb{R}_{-}$, (\mathscr{P}) well-posed in $\mathrm{H}_{0}^{1}(\Omega)$ (Lax-Milgram)

Summary of the results for the scalar problem

$(\mathscr{P}) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { s.t.: } \\ & -\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega .\end{aligned}\right.$

Results
\square For $\kappa_{\mu} \in \mathbb{C} \backslash \mathbb{R}_{-}$, ($\left.\mathscr{P}\right)$ well-posed in $\mathrm{H}_{0}^{1}(\Omega)$ (Lax-Milgram)

For $\kappa_{\mu} \in \mathbb{R}_{-}^{*} \backslash[-3 ;-1],(\mathscr{P})$ well-posed in $\mathrm{H}_{0}^{1}(\Omega)$ (T-coercivity)

Summary of the results for the scalar problem

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { s.t.: } \\
& -\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega .
\end{aligned}\right.
$$

Results

- For $\kappa_{\mu} \in \mathbb{C}\left(\mathbb{R}_{-},(\mathscr{P})\right.$ well-posed in $\mathrm{H}_{0}^{1}(\Omega)$ (Lax-Milgram)

For $\kappa_{\mu} \in \mathbb{R}_{-}^{*} \backslash[-3 ;-1]$, (\mathscr{P}) well-posed in $\mathrm{H}_{0}^{1}(\Omega)$ (T-coercivity)

For $\kappa_{\mu} \in(-3 ;-1),(\mathscr{P})$ is not wellposed in the Fredholm sense in $\mathrm{H}_{0}^{1}(\Omega)$ but well-posed in V^{+}(PMLs)

Summary of the results for the scalar problem

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
& \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { s.t.: } \\
& -\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega .
\end{aligned}\right.
$$

For $\kappa_{\mu} \in \mathbb{C} \backslash \mathbb{R}_{-},(\mathscr{P})$ well-posed in $\mathrm{H}_{0}^{1}(\Omega)$ (Lax-Milgram)

For $\kappa_{\mu} \in \mathbb{R}_{-}^{*} \backslash[-3 ;-1]$, (\mathscr{P}) well-posed in $\mathrm{H}_{0}^{1}(\Omega)$ (T-coercivity)

For $\kappa_{\mu} \in(-3 ;-1),(\mathscr{P})$ is not wellposed in the Fredholm sense in $\mathrm{H}_{0}^{1}(\Omega)$ but well-posed in V^{+}(PMLs)

- $\kappa_{\mu}=-1,(\mathscr{P})$ ill-posed in $\mathrm{H}_{0}^{1}(\Omega)$

(1) The coerciveness issue for the scalar case
(2) A new functional framework in the critical interval
(3) Study of Maxwell's equations
(4) The T-coercivity method for the Interior Transmission Problem

\mathbb{T}-coercivity in the vector case $1 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :
Find $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$ such that for all $\boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega)$:
$\underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}$,
with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.

\mathbb{T}-coercivity in the vector case $1 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

> Find $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$ such that for all $\boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega)$ $\underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}$,
with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\operatorname{curl} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

\mathbb{T}-coercivity in the vector case $1 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

> Find $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$ such that for all $\boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega)$ $\underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}$
with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\operatorname{curl} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Scalar approach

\mathbb{T}-coercivity in the vector case $1 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

$$
\begin{aligned}
& \text { Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega) \text { such that for all } \boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega) \\
& \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}
\end{aligned}
$$

with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Scalar approach
Let us try $\mathbb{T} \boldsymbol{H}=\left\lvert\, \begin{array}{ll}\boldsymbol{H}_{1} & \text { in } \Omega_{1} \\ -\boldsymbol{H}_{2}+2 R_{1} \boldsymbol{H}_{1} & \text { in } \Omega_{2}\end{array}\right.$,

\mathbb{T}-coercivity in the vector case $1 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

$$
\begin{aligned}
& \text { Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega) \text { such that for all } \boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega) \\
& \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}
\end{aligned}
$$

with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Scalar approach
Let us try $\mathbb{T} \boldsymbol{H}=\left\lvert\, \begin{array}{ll}\boldsymbol{H}_{1} & \text { in } \Omega_{1} \\ -\boldsymbol{H}_{2}+2 R_{1} \boldsymbol{H}_{1} & \text { in } \Omega_{2}\end{array}\right.$, with R_{1} such that
$\left\{\begin{array}{lll}\left(R_{1} \boldsymbol{H}_{1}\right) \times \boldsymbol{n} & =\boldsymbol{H}_{2} \times \boldsymbol{n} & \text { on } \Sigma \\ \mu_{1}\left(R_{1} \boldsymbol{H}_{1}\right) \cdot \boldsymbol{n} & =\mu_{2} \boldsymbol{H}_{2} \cdot \boldsymbol{n} & \text { on } \Sigma\end{array}\right.$

\mathbb{T}-coercivity in the vector case $1 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

$$
\begin{aligned}
& \text { Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega) \text { such that for all } \boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega) \\
& \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}
\end{aligned}
$$

with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Scalar approach
Let us try $\mathbb{T} \boldsymbol{H}=\left\lvert\, \begin{array}{ll}\boldsymbol{H}_{1} & \text { in } \Omega_{1} \\ -\boldsymbol{H}_{2}+2 R_{1} \boldsymbol{H}_{1} & \text { in } \Omega_{2}\end{array}\right.$, with R_{1} such that
$\begin{cases}\left(R_{1} \boldsymbol{H}_{1}\right) \times \boldsymbol{n}=\boldsymbol{H}_{2} \times n & \text { on } \Sigma \\ \mu_{1}\left(R_{1} \boldsymbol{H}_{1}\right) \cdot n=\mu_{2} \boldsymbol{H}_{2} \boldsymbol{n} & \text { on } \Sigma \\ \hline\end{cases}$

\mathbb{T}-coercivity in the vector case $2 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

$$
\begin{aligned}
& \text { Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega) \text { such that for all } \boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega) \\
& \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}
\end{aligned}
$$

with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \mathbf{c u r l} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Maxwell approach

\mathbb{T}-coercivity in the vector case $2 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

$$
\begin{aligned}
& \text { Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega) \text { such that for all } \boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega) \text { : } \\
& \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \mathbf{c u r l} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}
\end{aligned}
$$

with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Maxwell approach
Let us try to define $\mathbb{T} \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$ as "the function satisfying"

\mathbb{T}-coercivity in the vector case $2 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

$$
\begin{aligned}
& \text { Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega) \text { such that for all } \boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega) \text { : } \\
& \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \mathbf{c u r l} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}
\end{aligned}
$$

with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \mathbf{c u r l} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Maxwell approach

Let us try to define $\mathbb{T} \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$ as "the function satisfying"

$$
\operatorname{curl}(\mathbb{T} \boldsymbol{H})=\varepsilon \operatorname{curl} \boldsymbol{H} \quad \text { in } \Omega
$$

\mathbb{T}-coercivity in the vector case $2 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

$$
\begin{aligned}
& \text { Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega) \text { such that for all } \boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega) \\
& \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \mathbf{c u r l} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}
\end{aligned}
$$

with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Maxwell approach

Let us try to define $\mathbb{T} \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$ as "the function satisfying"

$$
\operatorname{curl}(\mathbb{T} \boldsymbol{H})=\varepsilon \operatorname{curl} \boldsymbol{H} \quad \text { in } \Omega \quad \text { so that } \quad a(\boldsymbol{H}, \mathbb{T} \boldsymbol{H})=\int_{\Omega}|\operatorname{curl} \boldsymbol{H}|^{2} .
$$

\mathbb{T}-coercivity in the vector case $2 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

$$
\begin{aligned}
& \text { Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega) \text { such that for all } \boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega): \\
& \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \mathbf{c u r l} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}
\end{aligned}
$$

with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Maxwell approach

Let us try to define $\mathbb{T} \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$ as "the function satisfying"

$$
\operatorname{curl}(\mathbb{T} \boldsymbol{H})=\varepsilon \operatorname{curl} \boldsymbol{H} \quad \text { in } \Omega \quad \text { so that } \quad a(\boldsymbol{H}, \mathbb{T} \boldsymbol{H})=\int_{\Omega}|\operatorname{curl} \boldsymbol{H}|^{2} .
$$

© Impossible because $\operatorname{div}(\varepsilon \operatorname{curl} \boldsymbol{H}) \neq 0$.

\mathbb{T}-coercivity in the vector case $2 / 3$

Let us consider the problem for the magnetic field \boldsymbol{H} :

$$
\begin{aligned}
& \text { Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega) \text { such that for all } \boldsymbol{H}^{\prime} \in \mathbf{V}_{T}(\mu ; \Omega) \\
& \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \mathbf{c u r l} \boldsymbol{H}^{\prime}}_{a\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}^{\prime}}_{c\left(\boldsymbol{H}, \boldsymbol{H}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}^{\prime}}_{l\left(\boldsymbol{H}^{\prime}\right)}
\end{aligned}
$$

with $\mathbf{V}_{T}(\mu ; \Omega):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0$ on $\partial \Omega\}$.
By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}\left(\mathbf{V}_{T}(\mu ; \Omega)\right)$ such that $a\left(\boldsymbol{H}, \mathbb{T} \boldsymbol{H}^{\prime}\right)=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}\left(\mathbb{T} \boldsymbol{H}^{\prime}\right)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega)$.

Maxwell approach

Let us try to define $\mathbb{T} \boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$ as "the function satisfying" $\operatorname{curl}(\mathbb{T} \boldsymbol{H})=\varepsilon \operatorname{curl} \boldsymbol{H} \quad$ in $\Omega \quad$ so that $\quad a(\boldsymbol{H}, \mathbb{T} \boldsymbol{H})=\int_{\Omega}|\operatorname{curl} \boldsymbol{H}|^{2}$.
A Impossible because $\operatorname{div}(\varepsilon \operatorname{curl} \boldsymbol{H}) \neq 0$. 㴆: Idea: add a gradient...

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.

\mathbb{T}-coercivity in the vector case $3 / 3$

> Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.
$\checkmark \mathrm{Ok} \quad$ if $\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime}$ is T-coercive on $\mathrm{H}_{0}^{1}(\Omega) . \quad\left(\mathcal{A}_{\varepsilon}\right)$

\mathbb{T}-coercivity in the vector case $3 / 3$

> Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.
$\checkmark \mathrm{Ok} \quad$ if $\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime}$ is T-coercive on $\mathrm{H}_{0}^{1}(\Omega)$.
(2) Introduce $u \in \mathbf{V}_{T}(1 ; \Omega)$ (Amrouche et al. 98) the function satisfying $\operatorname{curl} u=\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi) \quad$ in Ω.

\mathbb{T}-coercivity in the vector case $3 / 3$

> Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.

$$
\checkmark \mathrm{Ok} \quad \text { if }\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega) .
$$

(2) Introduce $u \in \mathbf{V}_{T}(1 ; \Omega)$ (Amrouche et al. 98) the function satisfying

$$
\operatorname{curl} u=\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi) \quad \text { in } \Omega .
$$

(3) Introduce $\psi \in \mathrm{H}^{1}(\Omega) / \mathbb{R}$ s.t. $u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)(\operatorname{div}(\mu(u-\nabla \psi))=0)$.

\mathbb{T}-coercivity in the vector case $3 / 3$

> Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.

$$
\checkmark \mathrm{Ok} \quad \text { if }\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega) .
$$

(2) Introduce $u \in \mathbf{V}_{T}(1 ; \Omega)$ (Amrouche et al. 98) the function satisfying

$$
\operatorname{curl} u=\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi) \quad \text { in } \Omega .
$$

(3) Introduce $\psi \in \mathrm{H}^{1}(\Omega) / \mathbb{R}$ s.t. $u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)(\operatorname{div}(\mu(u-\nabla \psi))=0)$.
\checkmark Ok if $\left(\psi, \psi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime}$ is T-coercive on $\mathrm{H}^{1}(\Omega) / \mathbb{R} . \quad\left(\mathcal{A}_{\mu}\right)$

\mathbb{T}-coercivity in the vector case $3 / 3$

> Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega)
$$

(2) Introduce $u \in \mathbf{V}_{T}(1 ; \Omega)$ (Amrouche et al. 98) the function satisfying

$$
\operatorname{curl} u=\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi) \quad \text { in } \Omega .
$$

(3) Introduce $\psi \in \mathrm{H}^{1}(\Omega) / \mathbb{R}$ s.t. $u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)(\operatorname{div}(\mu(u-\nabla \psi))=0)$.
\checkmark Ok if $\left(\psi, \psi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime}$ is T-coercive on $\mathrm{H}^{1}(\Omega) / \mathbb{R} . \quad\left(\mathcal{A}_{\mu}\right)$
(4) Finally, define $\mathbb{T} \boldsymbol{H}:=u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)$.

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega)
$$

(2) Introduce $u \in \mathbf{V}_{T}(1 ; \Omega)$ (Amrouche et al. 98) the function satisfying

$$
\operatorname{curl} u=\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi) \quad \text { in } \Omega .
$$

(3) Introduce $\psi \in \mathrm{H}^{1}(\Omega) / \mathbb{R}$ s.t. $u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)(\operatorname{div}(\mu(u-\nabla \psi))=0)$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\psi, \psi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} \text { is T-coercive on } \mathrm{H}^{1}(\Omega) / \mathbb{R} . \quad\left(\mathcal{A}_{\mu}\right)
$$

(4) Finally, define $\mathbb{T} \boldsymbol{H}:=u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)$. There holds:

$$
a(\boldsymbol{H}, \mathbb{T} \boldsymbol{H})=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}(\mathbb{T} \boldsymbol{H})
$$

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.

$$
\checkmark \mathrm{Ok} \quad \text { if }\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega) \text {. }
$$

(2) Introduce $u \in \mathbf{V}_{T}(1 ; \Omega)$ (Amrouche et al. 98) the function satisfying

$$
\operatorname{curl} u=\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi) \quad \text { in } \Omega .
$$

(3) Introduce $\psi \in \mathrm{H}^{1}(\Omega) / \mathbb{R}$ s.t. $u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)(\operatorname{div}(\mu(u-\nabla \psi))=0)$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\psi, \psi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} \text { is T-coercive on } \mathrm{H}^{1}(\Omega) / \mathbb{R} . \quad\left(\mathcal{A}_{\mu}\right)
$$

(4) Finally, define $\mathbb{T} \boldsymbol{H}:=u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)$. There holds:

$$
a(\boldsymbol{H}, \mathbb{T} \boldsymbol{H})=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} u
$$

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega)
$$

(2) Introduce $u \in \mathbf{V}_{T}(1 ; \Omega)$ (Amrouche et al. 98) the function satisfying

$$
\operatorname{curl} u=\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi) \quad \text { in } \Omega .
$$

(3) Introduce $\psi \in \mathrm{H}^{1}(\Omega) / \mathbb{R}$ s.t. $u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)(\operatorname{div}(\mu(u-\nabla \psi))=0)$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\psi, \psi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} \text { is T-coercive on } \mathrm{H}^{1}(\Omega) / \mathbb{R} . \quad\left(\mathcal{A}_{\mu}\right)
$$

(4) Finally, define $\mathbb{T} \boldsymbol{H}:=u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)$. There holds:

$$
a(\boldsymbol{H}, \mathbb{T} \boldsymbol{H})=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} u=\int_{\Omega} \operatorname{curl} \boldsymbol{H} \cdot(\operatorname{curl} \boldsymbol{H}-\nabla \varphi)
$$

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega)
$$

(2) Introduce $u \in \mathbf{V}_{T}(1 ; \Omega)$ (Amrouche et al. 98) the function satisfying

$$
\operatorname{curl} u=\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi) \quad \text { in } \Omega .
$$

(3) Introduce $\psi \in \mathrm{H}^{1}(\Omega) / \mathbb{R}$ s.t. $u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)(\operatorname{div}(\mu(u-\nabla \psi))=0)$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\psi, \psi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} \text { is T-coercive on } \mathrm{H}^{1}(\Omega) / \mathbb{R} . \quad\left(\mathcal{A}_{\mu}\right)
$$

(4) Finally, define $\mathbb{T} \boldsymbol{H}:=u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)$. There holds:

$$
a(\boldsymbol{H}, \mathbb{T} \boldsymbol{H})=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} u=\int_{\Omega}|\operatorname{curl} \boldsymbol{H}|^{2} .
$$

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_{T}(\mu ; \Omega)$.
(1) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ s.t. $\operatorname{div}(\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi))=0$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega)
$$

(2) Introduce $u \in \mathbf{V}_{T}(1 ; \Omega)$ (Amrouche et al. 98) the function satisfying

$$
\operatorname{curl} u=\varepsilon(\operatorname{curl} \boldsymbol{H}-\nabla \varphi) \quad \text { in } \Omega .
$$

(3) Introduce $\psi \in \mathrm{H}^{1}(\Omega) / \mathbb{R}$ s.t. $u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)(\operatorname{div}(\mu(u-\nabla \psi))=0)$.

$$
\checkmark \text { Ok } \quad \text { if }\left(\psi, \psi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} \text { is T-coercive on } \mathrm{H}^{1}(\Omega) / \mathbb{R} . \quad\left(\mathcal{A}_{\mu}\right)
$$

(4) Finally, define $\mathbb{T} \boldsymbol{H}:=u-\nabla \psi \in \mathbf{V}_{T}(\mu ; \Omega)$. There holds:

$$
a(\boldsymbol{H}, \mathbb{T} \boldsymbol{H})=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} u=\int_{\Omega}|\operatorname{curl} \boldsymbol{H}|^{2} .
$$

Use the results of the previous section to check $\left(\mathcal{A}_{\varepsilon}\right)$ and $\left(\mathcal{A}_{\mu}\right)$.

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

- Using this idea, we prove that the embedding of $\mathbf{V}_{T}(\mu ; \Omega)$ in $\mathbf{L}^{2}(\Omega)$ is compact when $\left(\mathcal{A}_{\mu}\right)$ is true (extension of Weber 80 's result).

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

- Using this idea, we prove that the embedding of $\mathbf{V}_{T}(\mu ; \Omega)$ in $\mathbf{L}^{2}(\Omega)$ is compact when $\left(\mathcal{A}_{\mu}\right)$ is true (extension of Weber 80 's result).
- We deduce that $a(\cdot, \mathbb{T} \cdot)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega) \times \mathbf{V}_{T}(\mu ; \Omega)$ when $\left(\mathcal{A}_{\varepsilon}\right)$ and $\left(\mathcal{A}_{\mu}\right)$ are true.

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

- Using this idea, we prove that the embedding of $\mathbf{V}_{T}(\mu ; \Omega)$ in $\mathbf{L}^{2}(\Omega)$ is compact when $\left(\mathcal{A}_{\mu}\right)$ is true (extension of Weber 80 's result).
- We deduce that $a(\cdot, \mathbb{T} \cdot)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega) \times \mathbf{V}_{T}(\mu ; \Omega)$ when $\left(\mathcal{A}_{\varepsilon}\right)$ and $\left(\mathcal{A}_{\mu}\right)$ are true.

1. Refinements are necessary when:

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

- Using this idea, we prove that the embedding of $\mathbf{V}_{T}(\mu ; \Omega)$ in $\mathbf{L}^{2}(\Omega)$ is compact when $\left(\mathcal{A}_{\mu}\right)$ is true (extension of Weber 80 's result).
- We deduce that $a(\cdot, \mathbb{T} \cdot)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega) \times \mathbf{V}_{T}(\mu ; \Omega)$ when $\left(\mathcal{A}_{\varepsilon}\right)$ and $\left(\mathcal{A}_{\mu}\right)$ are true.

1. Refinements are necessary when:

- The geometry is non trivial (Ω non simply connected and/or $\partial \Omega$ non connected).

\mathbb{T}-coercivity in the vector case $3 / 3$

Maxwell approach

- Using this idea, we prove that the embedding of $\mathbf{V}_{T}(\mu ; \Omega)$ in $\mathbf{L}^{2}(\Omega)$ is compact when $\left(\mathcal{A}_{\mu}\right)$ is true (extension of Weber 80 's result).
- We deduce that $a(\cdot, \mathbb{T} \cdot)$ is coercive on $\mathbf{V}_{T}(\mu ; \Omega) \times \mathbf{V}_{T}(\mu ; \Omega)$ when $\left(\mathcal{A}_{\varepsilon}\right)$ and $\left(\mathcal{A}_{\mu}\right)$ are true.
! Refinements are necessary when:
- The geometry is non trivial (Ω non simply connected and/or $\partial \Omega$ non connected).

- The scalar problems are Fredholm with a non trivial kernel.

The result for the magnetic field

Consider $\boldsymbol{F} \in \mathbf{L}^{2}(\Omega)$ such that $\operatorname{div} \boldsymbol{F} \in \mathbf{L}^{2}(\Omega)$.
Theorem. Suppose

$$
\begin{aligned}
& \left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega) ; \\
& \left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}^{1}(\Omega) / \mathbb{R} .
\end{aligned}
$$

Then, the problem for the magnetic field

$$
\begin{array}{ll}
\text { Find } \boldsymbol{H} \in \mathbf{H}(\operatorname{curl} ; \Omega) \text { such that: } & \\
\operatorname{curl}\left(\varepsilon^{-1} \operatorname{curl} \boldsymbol{H}\right)-\omega^{2} \mu \boldsymbol{H}=\boldsymbol{F} & \text { in } \Omega \\
\varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \times \boldsymbol{n}=0 & \text { on } \partial \Omega \\
\mu \boldsymbol{H} \cdot \boldsymbol{n}=0 & \text { on } \partial \Omega .
\end{array}
$$

is well-posed for all $\omega \in \mathbb{C} \backslash \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C}.

The result for the magnetic field

Consider $\boldsymbol{F} \in \mathbf{L}^{2}(\Omega)$ such that $\operatorname{div} \boldsymbol{F} \in \mathbf{L}^{2}(\Omega)$.
Theorem. Suppose

$$
\begin{align*}
& \left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega) ; \\
& \left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}^{1}(\Omega) / \mathbb{R} .
\end{align*}
$$

Then, the problem for the magnetic field

$$
\begin{array}{ll}
\text { Find } \boldsymbol{H} \in \mathbf{H}(\operatorname{curl} ; \Omega) \text { such that: } & \\
\operatorname{curl}\left(\varepsilon^{-1} \operatorname{curl} \boldsymbol{H}\right)-\omega^{2} \mu \boldsymbol{H}=\boldsymbol{F} & \text { in } \Omega \\
\varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \times \boldsymbol{n}=0 & \text { on } \partial \Omega \\
\mu \boldsymbol{H} \cdot \boldsymbol{n}=0 & \text { on } \partial \Omega .
\end{array}
$$

is well-posed for all $\omega \in \mathbb{C} \backslash \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C}.

- This result (with the same assumptions) is also true for the problem for the electric field.

Application to the Fichera's corner

Proposition. Suppose

$$
\kappa_{\varepsilon} \notin\left[-7 ;-\frac{1}{7}\right] \quad \text { and } \quad \kappa_{\mu} \notin\left[-7 ;-\frac{1}{7}\right]
$$

Then, the problems for the electric and magnetic fields are well-posed for all $\omega \in \mathbb{C} \backslash \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C}.

(1) The coerciveness issue for the scalar case

(2) A new functional framework in the critical interval

3 Study of Maxwell's equations

4 The T-coercivity method for the Interior Transmission Problem

The ITEP in three words

- We want to determine the support of an inclusion Ω embedded in a reference medium $\left(\mathbb{R}^{2}\right)$ using the Linear Sampling Method.

The ITEP in three words

- We want to determine the support of an inclusion Ω embedded in a reference medium $\left(\mathbb{R}^{2}\right)$ using the Linear Sampling Method.

The ITEP in three words

- We want to determine the support of an inclusion Ω embedded in a reference medium $\left(\mathbb{R}^{2}\right)$ using the Linear Sampling Method.
- We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

$$
\begin{aligned}
& \text { Find }(k, v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \backslash\{0\} \text { such that: } \\
& \int_{\Omega} \frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}
$$

The ITEP in three words

- We want to determine the support of an inclusion Ω embedded in a reference medium $\left(\mathbb{R}^{2}\right)$ using the Linear Sampling Method.
- We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

$$
\begin{aligned}
& \text { Find }(k, v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \backslash\{0\} \text { such that: } \\
& \int_{\Omega} \frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}
$$

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

The ITEP in three words

- We want to determine the support of an inclusion Ω embedded in a reference medium $\left(\mathbb{R}^{2}\right)$ using the Linear Sampling Method.
- We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

$$
\begin{aligned}
& \text { Find }(k, v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \backslash\{0\} \text { such that: } \\
& \int_{\Omega} \frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}
$$

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when $n>1$ on Ω or $n<1$ on Ω.

The ITEP in three words

- We want to determine the support of an inclusion Ω embedded in a reference medium $\left(\mathbb{R}^{2}\right)$ using the Linear Sampling Method.
- We can use the method when k is not an cioenvalue of the Interior Transmission Eigenvalue Problem:

$$
\int_{\Omega} \frac{1}{1-n^{2}}\left(\Delta v+k^{2} n^{2} v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega)
$$

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when $n>1$ on Ω or $n<1$ on Ω.

What happens when $1-n^{2}$ changes sign?

A bilaplacian with a sign-changing coefficient

- We define $\sigma=\left(1-n^{2}\right)^{-1}$ and we focus on the principal part:

$$
\begin{array}{|l|l|}
\hline\left(\mathscr{F}_{V}\right) & \begin{array}{l}
\text { Find } v \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
\underbrace{\int_{\Omega} \sigma \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}
\end{array}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{array}
$$

A bilaplacian with a sign-changing coefficient

- We define $\sigma=\left(1-n^{2}\right)^{-1}$ and we focus on the principal part:

$$
\left(\mathscr{F}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
& \underbrace{\int_{\Omega} \sigma \Delta v \Delta \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}\right.
$$

Message: The operators $\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot)$: $\mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$ have very different properties.

A bilaplacian with a sign-changing coefficient

- We define $\sigma=\left(1-n^{2}\right)^{-1}$ and we focus on the principal part:

$$
\left(\mathscr{F}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
& \underbrace{\int_{\Omega} \sigma \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}\right.
$$

Message: The operators $\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot)$: $\mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$ have very different properties.

Theorem. The problem $\left(\mathscr{F}_{V}\right)$ is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.

A bilaplacian with a sign-changing coefficient

DEAS OF THE PROOF: We have

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

$$
\sigma=1
$$

A bilaplacian with a sign-changing coefficient

Wh_d_ (1_2)-1 2)

Ideas of the proof: We have

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega} .
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$

$$
\sigma=1
$$

A bilaplacian with a sign-changing coefficient

IXU_ (1 2) -
Ideas of the proof: We have

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$
so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega} .
$$

$$
\sigma=1
$$

A bilaplacian with a sign-changing coefficient

Ideas of the proof: We have

Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$
so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

$$
\sigma=1
$$

A bilaplacian with a sign-changing coefficient

Wh_
Ideas of the proof: We have
Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.

$$
\sigma=1
$$

A bilaplacian with a sign-changing coefficient

Ideas of the proof: We have

Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.
(2) Let $\zeta \in \mathscr{C}_{0}^{\infty}(\Omega)$. Define $\mathrm{T} v=\zeta w+(1-\zeta) v \in \mathrm{H}_{0}^{2}(\Omega)$.

A bilaplacian with a sign-changing coefficient

IdEAS OF THE PROOF: We have

Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.
(2) Let $\zeta \in \mathscr{C}_{0}^{\infty}(\Omega)$. Define $\mathrm{T} v=\zeta w+(1-\zeta) v \in \mathrm{H}_{0}^{2}(\Omega)$.
(3) We find $a(v, \mathrm{~T} v)=([\zeta+\sigma(1-\zeta)] \Delta v, \Delta v)_{\Omega}+(K v, v)_{H_{0}^{2}(\Omega)}$ where $K: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ is compact.

$$
\sigma=1
$$

A bilaplacian with a sign-changing coefficient

Wh_r_
IdEAS OF THE PROOF: We have

Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.
(2) Let $\zeta \in \mathscr{C}_{0}^{\infty}(\Omega)$. Define $\mathrm{T} v=\zeta w+(1-\zeta) v \in \mathrm{H}_{0}^{2}(\Omega)$.
(3) We find $a(v, \mathrm{~T} v)=[\zeta+\sigma(1-\zeta)] \Delta v, \Delta v)_{\Omega}+(K v, v)_{\mathrm{H}_{0}^{2}(\Omega)}$ where $K: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ is compact.

$$
\sigma=1
$$

A bilaplacian with a sign-changing coefficient

IdEAS OF THE PROOF: We have

Not simple!

$$
a(v, v)=(\sigma \Delta v, \Delta v)_{\Omega}
$$

We would like to build $\mathrm{T}: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta(\mathrm{T} v)=\sigma^{-1} \Delta v$ so that

$$
a(v, \mathrm{~T} v)=(\sigma \Delta v, \Delta(\mathrm{~T} v))_{\Omega}=(\Delta v, \Delta v)_{\Omega}
$$

(1) Let $w \in \mathrm{H}_{0}^{1}(\Omega)$ such that $\Delta w=\sigma^{-1} \Delta v$.
(2) Let $\zeta \in \mathscr{C}_{0}^{\infty}(\Omega)$. Define $\mathrm{T} v=\zeta w+(1-\zeta) v \in \mathrm{H}_{0}^{2}(\Omega)$.
(3) We find $a(v, \mathrm{~T} v)=[[\zeta+\sigma(1-\zeta)] \Delta v, \Delta v)_{\Omega}+(K v, v)_{\mathrm{H}_{0}^{2}(\Omega)}$ where $K: \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}_{0}^{2}(\Omega)$ is compact.

$$
\sigma=1
$$

A bilaplacian with a sign-changing coefficient

- We define $\sigma=\left(1-n^{2}\right)^{-1}$ and we focus on the principal part:

$$
\left(\mathscr{F}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
& \underbrace{\int_{\Omega} \sigma \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}\right.
$$

Message: The operators $\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot)$: $\mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$ have very different properties.

Theorem. The problem $\left(\mathscr{F}_{V}\right)$ is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.

A bilaplacian with a sign-changing coefficient

- We define $\sigma=\left(1-n^{2}\right)^{-1}$ and we focus on the principal part:

$$
\left(\mathscr{F}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{2}(\Omega) \text { such that: } \\
& \underbrace{\int_{\Omega} \sigma \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(\Omega) .
\end{aligned}\right.
$$

Message: The operators $\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot)$: $\mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$ have very different properties.
... but ($\left.\mathscr{F}_{V}\right)$ can be ill-posed (not Fredholm) when σ changes sign "on $\partial \Omega$ " \Rightarrow work with J. Firozaly.

(1) The coerciveness issue for the scalar case
(2) A new functional framework in the critical interval
(3) Study of Maxwell's equations
(4) The T-coercivity method for the Interior Transmission Problem

Conclusions

Scalar problem outside the critical interval $\quad \operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$

© Concerning the approximation of the solution, in practice, usual methods converge. Only partial proofs are available.
© In 3D, are the interval obtained optimal?

Conclusions

Scalar problem outside the critical interval
 $$
\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)
$$

© Concerning the approximation of the solution, in practice, usual methods converge. Only partial proofs are available.
© In 3D, are the interval obtained optimal?
Scalar problem inside the critical interval $\quad \operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathrm{V}^{+}(\Omega) \rightarrow \mathrm{V}_{\beta}(\Omega)^{*}$
© Interesting questions of numerical analysis to approximate the solution. What happens in 3D (edge, conical tip,...)? $\Rightarrow \mathrm{PhD}$ thesis of C. Carvalho.

Conclusions

Scalar problem outside the critical interval
 $$
\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)
$$

© Concerning the approximation of the solution, in practice, usual methods converge. Only partial proofs are available.
© In 3D, are the interval obtained optimal?

$$
\text { Scalar problem inside the critical interval } \quad \operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathrm{V}^{+}(\Omega) \rightarrow \mathrm{V}_{\beta}(\Omega)^{*}
$$

© Interesting questions of numerical analysis to approximate the solution. What happens in 3D (edge, conical tip,...)? $\Rightarrow \mathrm{PhD}$ thesis of C. Carvalho.

$$
\text { Maxwell's equations } \quad \operatorname{curl}\left(\varepsilon^{-1} \operatorname{curl} \cdot\right): \mathbf{V}_{T}(\mu ; \Omega) \rightarrow \mathbf{V}_{T}(\mu ; \Omega)^{*}
$$

© Convergence of an edge element method has to be studied.
© Can we develop a new functional framework inside the critical interval?

Conclusions

Scalar problem outside the critical interval
 $$
\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)
$$

- Concerning the approximation of the solution, in practice, usual methods converge. Only partial proofs are available.
© In 3D, are the interval obtained optimal?

Scalar problem inside the critical interval

$$
\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathrm{V}^{+}(\Omega) \rightarrow \mathrm{V}_{\beta}(\Omega)^{*}
$$

- Interesting questions of numerical analysis to approximate the solution. What happens in 3D (edge, conical tip,...)? $\Rightarrow \mathrm{PhD}$ thesis of C. Carvalho.

$$
\text { Maxwell's equations } \quad \operatorname{curl}\left(\varepsilon^{-1} \operatorname{curl} \cdot\right): \mathbf{V}_{T}(\mu ; \Omega) \rightarrow \mathbf{V}_{T}(\mu ; \Omega)^{*}
$$

- Convergence of an edge element method has to be studied.
- Can we develop a new functional framework inside the critical interval?

Interior Transmission Eigenvalue Problem

$$
\Delta(\sigma \Delta \cdot): \mathrm{H}_{0}^{2}(\Omega) \rightarrow \mathrm{H}^{-2}(\Omega)
$$

中 Can we find a criterion on σ and on the geometry to ensure that $\Delta(\sigma \Delta \cdot)$ is Fredholm? Many questions remain open for the ITEP...

- Our new model in the critical interval raises a lot of questions, related to the physics of plasmonics and metamaterials.
Can we observe this black-hole effect in practice? For a rounded corner, "the solution" seems unstable with respect to the rounding parameter...
© The case $\kappa_{\sigma}=-1$ (the most interesting for applications) is not understood yet: singularities appear all over the interface.
\Rightarrow Is there a functional framework in which (\mathscr{P}) is well-posed?
- More generally, can we reconsider the homogenization process to take into account interfacial phenomena?
\Rightarrow METAMATH project (ANR) directed by S. Fliss and PhD thesis of V . Vinoles.
© What happens in time-domain regime? Is the limiting amplitude principle still valid?
$\Rightarrow \mathrm{PhD}$ thesis of M . Cassier.

Thank you for your attention!!!

Summary of the results for the 2D cavity

$(\mathscr{P}) \left\lvert\, \begin{aligned} & \text { Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text { s.t.: } \\ & -\operatorname{div}\left(\mu^{-1} \nabla u\right)=f \quad \text { in } \Omega .\end{aligned}\right.$

Ω_{1}	Σ	Ω_{2}
$\mu_{1}>0$		$\mu_{2}<0$

$-a \quad b$

Proposition. The operator $A=\operatorname{div}\left(\mu^{-1} \nabla \cdot\right): \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}^{-1}(\Omega)$ is an isomorphism if and only $\kappa_{\mu} \in \mathbb{C}^{*} \backslash \mathscr{S}$ with $\mathscr{S}=\left\{-\tanh (n \pi a) / \tanh (n \pi b), n \in \mathbb{N}^{*}\right\} \cup\{-1\}$. For $\kappa_{\mu}=-\tanh (n \pi a) / \tanh (n \pi b)$, we have $\operatorname{ker} A=\operatorname{span} \varphi_{n}$ with

$$
\varphi_{n}(x, y)= \begin{cases}\sinh (n \pi(x+a)) \sin (n \pi y) & \text { on } \Omega_{1} \\ -\frac{\sinh (n \pi a)}{\sinh (n \pi b)} \sinh (n \pi(x-b)) \sin (n \pi y) & \text { on } \Omega_{2}\end{cases}
$$ (Lax-Milgram)

For $\kappa_{\mu} \in \mathbb{R}_{-}^{*} \backslash \mathscr{S},(\mathscr{P})$ well-posed
For $\kappa_{\mu} \in \mathscr{S} \backslash\{-1\},(\mathscr{P})$ is well-posed in the Fredholm sense with a one dimension kernel

- $\kappa_{\mu}=-1,(\mathscr{P})$ ill-posed in $\mathrm{H}_{0}^{1}(\Omega)$

The blinking eigenvalue

- We approximate by a FEM "the solution" of the problem

Find $u_{\delta} \in \mathrm{H}_{0}^{1}\left(\Omega_{\delta}\right)$ s.t.:
$-\operatorname{div}\left(\mu_{\delta}^{-1} \nabla u_{\delta}\right)=f \quad$ in Ω_{δ}.

$$
\kappa_{\mu}=-0.9999 \quad \text { (outside the critical interval) }
$$

$$
\kappa_{\mu}=-1.0001 \quad \text { (inside the critical interval) }
$$

The result for the electric field

Consider $\boldsymbol{F} \in \mathbf{L}^{2}(\Omega)$ such that $\operatorname{div} \boldsymbol{F} \in \mathbf{L}^{2}(\Omega)$.
Theorem. Suppose

$$
\begin{aligned}
& \left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}_{0}^{1}(\Omega) ; \\
& \left(\varphi, \varphi^{\prime}\right) \mapsto \int_{\Omega} \mu \nabla \varphi \cdot \nabla \varphi^{\prime} \text { is T-coercive on } \mathrm{H}^{1}(\Omega) / \mathbb{R} .
\end{aligned}
$$

Then, the problem for the electric field

$$
\begin{array}{ll}
\text { Find } \boldsymbol{E} \in \mathbf{H}(\operatorname{curl} ; \Omega) \text { such that: } \\
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \varepsilon \boldsymbol{E}=\boldsymbol{F} & \text { in } \Omega \\
\boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .
\end{array}
$$

is well-posed for all $\omega \in \mathbb{C} \backslash \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C}.

What is the ITEP?

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

What is the ITEP?

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem:

What is the ITEP?

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem: u is the total field in D
$\operatorname{div}(A \nabla u)+k^{2} n u=0 \quad$ in D

What is the ITEP?

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem: u is the total field in D
w is the incident field in D

$$
\begin{array}{ll}
\operatorname{div}(A \nabla u)+k^{2} n u & =0 \quad \text { in } D \\
\Delta w+k^{2} w & =0 \quad \text { in } D
\end{array}
$$

What is the ITEP?

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem: u is the total field in D
(w is the incident field in D

$\operatorname{div}(A \nabla u)+k^{2} n u$	$=0$	in D
$\Delta w+k^{2} w$	$=0$	in D
$u-w$	$=0$	on ∂D
$\nu \cdot A \nabla u-\nu \cdot \nabla w$	$=0$	on ∂D.

What is the ITEP?

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem: u is the total field in D
(w is the incident field in D

Find $(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D)$ such that:
$\operatorname{div}(A \nabla u)+k^{2} n u=0 \quad$ in D

| $\Delta w+k^{2} w$ | $=0$ | in D |
| :--- | :--- | :--- | :--- |
| $\begin{array}{lll}u-w & = & \text { on } \partial D \\ \nu \cdot A \nabla u-\nu \cdot \nabla w & = & 0\end{array}$ on ∂D. | | |

What is the ITEP?

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem: u is the total field in D
w is the incident field in D

Definition. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

What is the ITEP?

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem: u is the total field in D is the incident field in D

Definition. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

Variational formulation for the ITEP

- $\quad k$ is a transmission eigenvalue if and only if there exists $(u, w) \in X \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}=k^{2} \int_{\Omega}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

Variational formulation for the ITEP

- k is a transmission eigenvalue if and only if there exists $(u, w) \in X \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}=k^{2} \int_{\Omega}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

Variational formulation for the ITEP

- $\quad k$ is a transmission eigenvalue if and only if there exists $(u, w) \in X \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}=k^{2} \int_{\Omega}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- This is a non standard eigenvalue problem.

Variational formulation for the ITEP

- $\quad k$ is a transmission eigenvalue if and only if there exists $(u, w) \in X \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}=k^{2} \quad \int_{\Omega}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

$$
\text { not coercive on } \mathrm{X}
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- This is a non standard eigenvalue problem.

Variational formulation for the ITEP

- $\quad k$ is a transmission eigenvalue if and only if there exists $(u, w) \in X \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}=k^{2} \int_{\Omega}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

not coercive on X not an inner product on X with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- This is a non standard eigenvalue problem.

Variational formulation for the ITEP

- k is a transmission eigenvalue if and only if there exists $(u, w) \in X \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}=k^{2} \int_{\Omega}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right)
$$

not coercive on $\mathrm{X} \quad$ not an inner product on X
with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- This is a non standard eigenvalue problem.
- We want to highlight an

Idea: Analogy with the transmission problem between a dielectric and a double negative metamaterial...

Dielectric/Metamaterial Transmission Eigenvalue Problem (DMTEP)

- Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^{2} :

Dielectric/Metamaterial Transmission Eigenvalue Problem (DMTEP)

- Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^{2} :
$\varepsilon_{1}:=\left.\varepsilon\right|_{\Omega_{1}}>0$
$\mu_{1}:=\left.\mu\right|_{\Omega_{1}}>0$$\left|\longrightarrow \begin{array}{c|c|}\hline \Omega_{1} & \Sigma \\ \text { Dielectric }\end{array} \quad \begin{array}{cc}\nu \quad \Omega_{2} \\ \text { Metamaterial }\end{array} \quad\right| \begin{aligned} & \varepsilon_{2}:=\left.\varepsilon\right|_{\Omega_{2}<0} \\ & \mu_{2}:=\left.\mu\right|_{\Omega_{2}}<0\end{aligned}$

Dielectric/Metamaterial Transmission Eigenvalue Problem (DMTEP)

- Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^{2} :

- Eigenvalue problem for E_{z} in 2D:

$$
\begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \backslash\{0\} \text { such that: } \\
& \operatorname{div}\left(\mu^{-1} \nabla v\right)+k^{2} \varepsilon v=0 \quad \text { in } \Omega .
\end{aligned}
$$

Dielectric/Metamaterial Transmission Eigenvalue Problem (DMTEP)

- Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^{2} :

$$
\begin{aligned}
\varepsilon_{1} & :=\left.\varepsilon\right|_{\Omega_{1}}>0 \\
\mu_{1} & :=\left.\mu\right|_{\Omega_{1}}>0
\end{aligned}
$$

$\left.\longrightarrow$	Ω_{1}
Dielectric	\quad
:---:	:---:
Metamaterial	$\quad \right\rvert\,$
:---	
$\mu_{2}:=\left.\mu\right\|_{\Omega_{2}}<0$	

- Eigenvalue problem for E_{z} in 2D:

$$
\begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \backslash\{0\} \text { such that: } \\
& \operatorname{div}\left(\mu^{-1} \nabla v\right)+k^{2} \varepsilon v=0 \quad \text { in } \Omega .
\end{aligned}
$$

- k is a transmission eigenvalue if and only if there exists $v \in \mathrm{H}_{0}^{1}(\Omega) \backslash\{0\}$ such that, for all $v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)$,

$$
\int_{\Omega_{1}} \mu_{1}^{-1} \nabla v \cdot \overline{\nabla v^{\prime}}-\int_{\Omega_{2}}\left|\mu_{2}\right|^{-1} \nabla v \cdot \overline{\nabla v^{\prime}}=k^{2}\left(\int_{\Omega_{1}} \varepsilon_{1} v \overline{v^{\prime}}-\int_{\Omega_{2}}\left|\varepsilon_{2}\right| v \overline{v^{\prime}}\right) .
$$

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

$$
\text { Symmetry with respect to the interface } \Sigma
$$

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

$$
\text { Symmetry with respect to the interface } \Sigma
$$

- We obtain a problem analogous to the ITEP in Ω_{1} :

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

$$
\text { Symmetry with respect to the interface } \Sigma
$$

- We obtain a problem analogous to the ITEP in Ω_{1} :

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

$$
\text { Symmetry with respect to the interface } \Sigma
$$

- We obtain a problem analogous to the ITEP in Ω_{1} :

- The interface Σ in the DMTEP plays the role of the boundary $\partial \Omega$ in the ITEP.

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right)
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right)
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- Introduce the isomorphism $\mathrm{T}(u, w)=(u-2 w,-w)$.

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right)
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- Introduce the isomorphism $\mathrm{T}(u, w)=(u-2 w,-w)$.
- For $k \in \mathbb{R} i \backslash\{0\}, A>I d$ and $n>1$, one finds

$$
\Re e a((u, w), \mathrm{T}(u, w)) \geq C\left(\|u\|_{\mathrm{H}^{1}(\Omega)}^{2}+\|w\|_{\mathrm{H}^{1}(\Omega)}^{2}\right), \quad \forall(u, w) \in \mathrm{X} .
$$

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- Introduce the isomorphism $\mathrm{T}(u, w)=(u-2 w,-w)$.
- For $k \in \mathbb{R} i \backslash\{0\}, A>I d$ and $n>1$, one finds

$$
\Re e a((u, w), \mathrm{T}(u, w)) \geq C\left(\|u\|_{\mathrm{H}^{1}(\Omega)}^{2}+\|w\|_{\mathrm{H}^{1}(\Omega)}^{2}\right), \quad \forall(u, w) \in \mathrm{X} .
$$

- Using the analytic Fredholm theorem, one deduces the

Proposition. Suppose that $A>I d$ and $n>1$. Then the set of transmission eigenvalues is discrete and countable.

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- Introduce the isomorphism $\mathrm{T}(u, w)=(u-2 w,-w)$.
- For $k \in \mathbb{R} i \backslash\{0\}, A>I d$ and $n>1$, one finds

$$
\Re e a((u, w), \mathrm{T}(u, w)) \geq C\left(\|u\|_{\mathrm{H}^{1}(\Omega)}^{2}+\|w\|_{\mathrm{H}^{1}(\Omega)}^{2}\right), \quad \forall(u, w) \in \mathrm{X} .
$$

- Using the analytic Fredholm theorem, one deduces the

Proposition. Suppose that $A>I d$ and $n>1$. Then the set of transmission eigenvalues is discrete and countable.

- This result can be extended to situations where $A-I d$ and $n-1$ change sign in Ω working with $\mathrm{T}(u, w)=(u-2 \chi w,-w)$.

