Investigation of some transmission problems with sign changing coefficients. Application to metamaterials.

Lucas Chesnel

Supervisors: A.-S. Bonnet-Ben Dhia and P. Ciarlet UMA Ensta ParisTech, POems team

ENSTA PARISTECH, PALAISEAU, FRANCE, OCTOBER 12, 2012

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Positive material
 $\varepsilon > 0$
and $\mu > 0$ Negative material
 $\varepsilon < 0$
and/or $\mu < 0$

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Do such negative materials occur in practice?

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Do such negative materials occur in practice?

For metals at optical frequencies, $\varepsilon < 0$ and $\mu > 0$.

Scattering by a negative material in electromagnetism in 3D in

Drude model for a metal (high frequency):

$$\varepsilon(\omega) = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right),$$

where ω_p is the plasma frequency.

Do such negative materials occur in practice?

For metals at optical frequencies, $\varepsilon < 0$ and $\mu > 0$.

Scattering by a negative material in electromagnetism in 3D in

Drude model for a metal (high frequency):

$$\varepsilon(\omega) = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right),$$

where ω_p is the plasma frequency.

For metals at optica frequencies, $\varepsilon < 0$ and $\mu > 0$.

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Do such negative materials occur in practice?

For metals at optical frequencies, $\varepsilon < 0$ and $\mu > 0$.

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Positive material $\varepsilon > 0$ and $\mu > 0$ Negative material $\varepsilon < 0$ and/or $\mu < 0$

Do such negative materials occur in practice?

• For metals at optical frequencies, $\varepsilon < 0$ and $\mu > 0$.

▶ Recently, artificial metamaterials have been realized which can be modelled (at some frequency of interest) by $\varepsilon < 0$ and $\mu < 0$.

Scattering by a negative material in electromagnetism in 3D in

Zoom on a metamaterial: practical realizations of metamaterials are achieved by a periodic assembly of small resonators.

Scattering by a negative material in electromagnetism in 3D in time-harmonic regime (at a given frequency):

Positive material $\varepsilon > 0$ and $\mu > 0$ Negative material $\varepsilon < 0$ and/or $\mu < 0$

Do such negative materials occur in practice?

• For metals at optical frequencies, $\varepsilon < 0$ and $\mu > 0$.

▶ Recently, artificial metamaterials have been realized which can be modelled (at some frequency of interest) by $\varepsilon < 0$ and $\mu < 0$.

Introduction: applications

• Surface Plasmons Polaritons that propagate at the interface between a metal and a dielectric can help reducing the size of computer chips.

Introduction: applications

▶ Surface Plasmons Polaritons that propagate at the interface between a metal and a dielectric can help reducing the size of computer chips.

▶ The negative refraction at the interface metamaterial/dielectric could allow the realization of perfect lenses (Pendry 00), photonic traps ...

Introduction: applications

▶ Surface Plasmons Polaritons that propagate at the interface between a metal and a dielectric can help reducing the size of computer chips.

▶ The negative refraction at the interface metamaterial/dielectric could allow the realization of perfect lenses (Pendry 00), photonic traps ...

Interfaces between negative materials and dielectrics occur in all (exciting) applications...

Problem set in a bounded domain $\Omega \subset \mathbb{R}^3$:

Problem set in a bounded domain $\Omega \subset \mathbb{R}^3$:

• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

Problem set in a **bounded** domain $\Omega \subset \mathbb{R}^3$:

• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

• Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon$, $\mu > 0$.

Problem set in a **bounded** domain $\Omega \subset \mathbb{R}^3$:

• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

• Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon$, $\mu > 0$. But interesting phenomena occur for almost dissipationless materials.

Problem set in a **bounded** domain $\Omega \subset \mathbb{R}^3$:

• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

• Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon$, $\mu > 0$. But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected ?

Problem set in a **bounded** domain $\Omega \subset \mathbb{R}^3$:

• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

• Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon$, $\mu > 0$. But interesting phenomena occur for almost dissipationless materials.

The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transformations to study $\operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$ (improvement over Bonnet-Ben Dhia *et al.*10, Zwölf 08).

The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transformations to study $\operatorname{div}(\mu^{-1}\nabla \cdot): \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$ (improvement over Bonnet-Ben Dhia *et al.*10, Zwölf 08).

A new functional framework in the critical interval

We propose a new functional framework when $\operatorname{div}(\mu^{-1}\nabla \cdot) : \mathbf{X} \to \mathbf{Y}$ is not Fredholm for $\mathbf{X} = \mathrm{H}_0^1(\Omega)$ and $\mathbf{Y} = \mathrm{H}^{-1}(\Omega)$ (extension of Dauge, Texier 97, Ramdani 99).

The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transformations to study $\operatorname{div}(\mu^{-1}\nabla \cdot): \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$ (improvement over Bonnet-Ben Dhia *et al.*10, Zwölf 08).

A new functional framework in the critical interval

We propose a new functional framework when $\operatorname{div}(\mu^{-1}\nabla \cdot) : \mathbf{X} \to \mathbf{Y}$ is not Fredholm for $\mathbf{X} = \mathrm{H}_0^1(\Omega)$ and $\mathbf{Y} = \mathrm{H}^{-1}(\Omega)$ (extension of Dauge, Texier 97, Ramdani 99).

Study of Maxwell's equations

We develop a T-coercivity method based on potentials to study $\operatorname{curl}(\varepsilon^{-1}\operatorname{curl}\cdot): \operatorname{V}_{T}(\mu; \Omega) \to \operatorname{V}_{T}(\mu; \Omega)^{*}$.

The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transformations to study $\operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$ (improvement over Bonnet-Ben Dhia *et al.*10, Zwölf 08).

A new functional framework in the critical interval

We propose a new functional framework when $\operatorname{div}(\mu^{-1}\nabla \cdot) : \mathbf{X} \to \mathbf{Y}$ is not Fredholm for $\mathbf{X} = \mathrm{H}_0^1(\Omega)$ and $\mathbf{Y} = \mathrm{H}^{-1}(\Omega)$ (extension of Dauge, Texier 97, Ramdani 99).

Study of Maxwell's equations

We develop a T-coercivity method based on potentials to study $\operatorname{curl}(\varepsilon^{-1}\operatorname{curl}\cdot): \operatorname{V}_T(\mu; \Omega) \to \operatorname{V}_T(\mu; \Omega)^*$.

The T-coercivity method for the Interior Transmission Problem

We study $\Delta(\sigma \Delta \cdot) : \mathrm{H}^{2}_{0}(\Omega) \to \mathrm{H}^{-2}(\Omega).$

2 A new functional framework in the critical interval

3 Study of Maxwell's equations

Interior Transmission Problem

Problem for E_z in 2D in case of an invariance with respect to z:

 $\left| \begin{array}{l} \text{Find } E_z \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ \operatorname{div}(\mu^{-1} \nabla E_z) + \omega^2 \varepsilon E_z = -f \quad \text{ in } \Omega. \end{array} \right.$

Problem for E_z in 2D in case of an invariance with respect to z:

Find $E_z \in \mathrm{H}^1_0(\Omega)$ such that: $\operatorname{div}(\mu^{-1} \nabla E_z) + \omega^2 \varepsilon E_z = -f$ in Ω .

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

Problem for E_z in 2D in case of an invariance with respect to z:

Find $E_z \in \mathrm{H}^1_0(\Omega)$ such that: $\operatorname{div}(\mu^{-1} \nabla E_z) + \omega^2 \varepsilon E_z = -f$ in Ω .

- $\mathrm{H}_0^1(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \mid \nabla v \in \mathrm{L}^2(\Omega); \ v|_{\partial\Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

 $(\mathscr{P}) \mid \operatorname{Find} u \in \operatorname{H}^{1}_{0}(\Omega) \text{ s.t.:} \\ \operatorname{div}(\mu^{-1} \nabla u) = -f \text{ in } \Omega.$

Problem for E_z in 2D in case of an invariance with respect to z:

Find $E_z \in \mathrm{H}^1_0(\Omega)$ such that: $\operatorname{div}(\mu^{-1} \nabla E_z) + \omega^2 \varepsilon E_z = -f$ in Ω .

- $\mathrm{H}_{0}^{1}(\Omega) = \{ v \in \mathrm{L}^{2}(\Omega) \mid \nabla v \in \mathrm{L}^{2}(\Omega); v \mid_{\partial \Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

 $(\mathscr{P}) \mid \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ s.t.:} \\ \operatorname{div}(\mu^{-1} \nabla u) = -f \text{ in } \Omega.$

Problem for E_z in 2D in case of an invariance with respect to z:

Find $E_z \in H_0^1(\Omega)$ such that: $\operatorname{div}(\mu^{-1} \nabla E_z) + \omega^2 \varepsilon E_z = -f$ in Ω .

•
$$\mathrm{H}_{0}^{1}(\Omega) = \{ v \in \mathrm{L}^{2}(\Omega) \mid \nabla v \in \mathrm{L}^{2}(\Omega); v \mid_{\partial \Omega} = 0 \}$$

• f is the source term in $\mathrm{H}^{-1}(\Omega)$

$$\begin{array}{c} \Sigma\\ \Omega_{1}\\ \mu_{1} = \mu|_{\Omega_{1}} > 0\\ \mu_{2} = \mu|_{\Omega_{2}} < 0\\ (\text{constant}) \end{array}$$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

 $(\mathscr{P}) \ \left| \begin{array}{l} \operatorname{Find} \ u \in \mathrm{H}^{1}_{0}(\Omega) \ \mathrm{s.t.:} \\ \operatorname{div}(\mu^{-1} \nabla u) = -f \ \mathrm{in} \ \Omega. \end{array} \right|$

Problem for E_z in 2D in case of an invariance with respect to z:

Find $E_z \in \mathrm{H}^1_0(\Omega)$ such that: $\operatorname{div}(\mu^{-1} \nabla E_z) + \omega^2 \varepsilon E_z = -f$ in Ω .

•
$$\mathrm{H}_{0}^{1}(\Omega) = \{ v \in \mathrm{L}^{2}(\Omega) \mid \nabla v \in \mathrm{L}^{2}(\Omega); v \mid_{\partial \Omega} = 0 \}$$

• f is the source term in $\mathrm{H}^{-1}(\Omega)$

$$\begin{array}{c} \Sigma\\ \Omega_{1}\\ \mu_{1} = \mu|_{\Omega_{1}} > 0\\ \mu_{2} = \mu|_{\Omega_{2}} < 0\\ (\text{constant}) \end{array}$$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ \operatorname{div}(\mu^{-1} \nabla u) = -f \text{ in } \Omega. \end{array} \right| \Leftrightarrow \left(\mathscr{P}_{V} \right) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ a(u,v) = l(v), \, \forall v \in \mathrm{H}_{0}^{1}(\Omega). \end{array} \right|$$

with $a(u, v) = \int_{\Omega} \mu^{-1} \nabla u \cdot \nabla v$ and $l(v) = \langle f, v \rangle_{\Omega}$.

Problem for E_z in 2D in case of an invariance with respect to z:

 $\begin{aligned} & \text{Find } E_z \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ & \mathrm{div}(\mu^{-1}\,\nabla E_z) + \omega^2 \varepsilon E_z = -f \quad \text{ in } \Omega. \end{aligned}$

•
$$\mathrm{H}_{0}^{1}(\Omega) = \{ v \in \mathrm{L}^{2}(\Omega) \mid \nabla v \in \mathrm{L}^{2}(\Omega); v \mid_{\partial \Omega} = 0 \}$$

• f is the source term in $\mathrm{H}^{-1}(\Omega)$

$$\begin{array}{c} \Sigma\\ \Omega_{1}\\ \mu_{1} = \mu|_{\Omega_{1}} > 0\\ \mu_{2} = \mu|_{\Omega_{2}} < 0\\ (\text{constant}) \end{array}$$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}_0^1(\Omega) \ \mathrm{s.t.:} \\ \operatorname{div}(\mu^{-1} \nabla u) = -f \ \mathrm{in} \ \Omega. \end{array} \right| \Leftrightarrow \left(\mathscr{P}_V \right) \left| \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}_0^1(\Omega) \ \mathrm{s.t.:} \\ a(u,v) = l(v), \ \forall v \in \mathrm{H}_0^1(\Omega). \end{array} \right|$$

with
$$a(u, v) = \int_{\Omega} \mu^{-1} \nabla u \cdot \nabla v$$
 and $l(v) = \langle f, v \rangle_{\Omega}$.

DEFINITION. We will say that the problem (\mathscr{P}) is well-posed if the operator $A = \operatorname{div}(\mu^{-1}\nabla \cdot)$ is an isomorphism from $\operatorname{H}_0^1(\Omega)$ to $\operatorname{H}^{-1}(\Omega)$.

Mathematical difficulty

• Classical case $\mu > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \mu^{-1} |\nabla u|^2 \ge \min(\mu^{-1}) ||u||^2_{\mathrm{H}^1_0(\Omega)}$$
 coercivity

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

Mathematical difficulty

• Classical case $\mu > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \mu^{-1} |\nabla u|^2 \ge \min(\mu^{-1}) ||u||^2_{\mathrm{H}^1_0(\Omega)}$$
 coercivity

----- VS. -----

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

• The case μ changes sign:

$$a(u, u) = \int_{\Omega} \frac{\mu^{-1} |\nabla u|^2}{|\nabla u|^2} \ge C ||u||^2_{\mathrm{H}^1_0(\Omega)} \quad \text{loss of coercivity}$$

Mathematical difficulty

• Classical case $\mu > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \mu^{-1} |\nabla u|^2 \ge \min(\mu^{-1}) ||u||^2_{\mathrm{H}^{1}_{0}(\Omega)} \quad \text{coercivity}$$

----- VS. -----

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

• The case μ changes sign:

When μ₂ = −μ₁, (𝒫) is always ill-posed (Costabel-Stephan 85). For a symmetric domain (w.r.t. Σ) we can build a kernel of infinite dimension.

Idea of the T-coercivity 1/2

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \ \Big| \ \underset{a(u,v) = l(v), \ \forall v \in \mathrm{H}^1_0(\Omega)}{\mathrm{Find}} \ \underset{u(u,v) = l(v), \ \forall v \in \mathrm{H}^1_0(\Omega)}{\mathrm{Find}} \ .$$

Idea of the T-coercivity 1/2

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T} v) = l(\mathsf{T} v), \ \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$
Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathbf{T}u) \geq C \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathrm{T}})$ (and so (\mathscr{P}_{V})) is well-posed.

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{c} \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T} v) = l(\mathsf{T} v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathbf{T}u) \geq C \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathsf{T}})$ (and so (\mathscr{P}_{V})) is well-posed.

1 Define $T_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + \dots & \text{in } \Omega_2 \end{vmatrix}$

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{c} \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T} v) = l(\mathsf{T} v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathbf{T}u) \ge C \|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathsf{T}})$ (and so (\mathscr{P}_{V})) is well-posed.

1 Define $T_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + 2R_1 u_1 & \text{in } \Omega_2 \end{vmatrix}$, with

 R_1 transfer/extension operator

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = l(\mathsf{T}v), \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathbf{T}u) \geq C \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathbf{T}})$ (and so (\mathscr{P}_{V})) is well-posed.

1 Define $T_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + 2R_1 u_1 & \text{in } \Omega_2 \end{vmatrix}$, with *P* transfer (actorician operator continuous from Ω_1 to Ω_2)

 R_1 transfer/extension operator continuous from Ω_1 to Ω_2

$$\Omega_1$$
 Σ Ω_2

$$\begin{array}{rcl}
R_1 u_1 &= u_1 & \text{on } \Sigma \\
R_1 u_1 &= 0 & \text{on } \partial\Omega_2 \setminus \Sigma
\end{array}$$

Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{c} \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T} v) = l(\mathsf{T} v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathbf{T}u) \ge C \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

1 Define
$$T_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + 2R_1 u_1 & \text{in } \Omega_2 \end{vmatrix}$$
, with
 R_1 transfer/extension operator continuous from Ω_1 to Ω_2
 R_1
 $R_1 u_1 = u_1$ on Σ

$$\Omega_1 \qquad \Sigma \qquad \Omega_2 \qquad \begin{vmatrix} R_1 u_1 = u_1 & \text{on } \Sigma \\ R_1 u_1 = 0 & \text{on } \partial \Omega_2 \setminus \Sigma \end{vmatrix}$$

On Σ , we have $-u_2 + 2R_1u_1 = -u_2 + 2u_1 = u_1 \Rightarrow \mathsf{T}_1u \in \mathrm{H}_0^1(\Omega)$.

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{c} \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T} v) = l(\mathsf{T} v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \mu^{-1} \nabla u \cdot \nabla(\mathbf{T}u) \geq C \|u\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathbf{T}})$ (and so (\mathscr{P}_{V})) is well-posed.

1 Define
$$T_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + 2R_1 u_1 & \text{in } \Omega_2 \end{vmatrix}$$
, with

 R_1 transfer/extension operator continuous from Ω_1 to Ω_2

$$\begin{array}{c|c} R_1 \\ \hline \Omega_1 \\ \hline \Sigma \\ \hline \Omega_2 \end{array} \qquad \begin{array}{c|c} R_1 u_1 = u_1 & \text{on } \Sigma \\ \hline R_1 u_1 = 0 & \text{on } \partial \Omega_2 \setminus \Sigma \end{array}$$

2 $T_1 \circ T_1 = Id$ so T_1 is an isomorphism of $H_0^1(\Omega)$

3 One has
$$a(u, \mathtt{T}_1 u) = \int_{\Omega} |\mu|^{-1} |\nabla u|^2 - 2 \int_{\Omega_2} \mu_2^{-1} \nabla u \cdot \nabla (R_1 u_1)$$

3 One has
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\mu|^{-1} |\nabla u|^2 - 2 \int_{\Omega_2} \mu_2^{-1} \nabla u \cdot \nabla (R_1 u_1)$$

Young's inequality \Rightarrow a is **T-coercive** when $|\mu_2| > ||R_1||^2 \mu_1$.

3 One has
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\mu|^{-1} |\nabla u|^2 - 2 \int_{\Omega_2} \mu_2^{-1} \nabla u \cdot \nabla (R_1 u_1)$$

Young's inequality $\Rightarrow a$ is **T-coercive** when $|\mu_2| > ||R_1||^2 \mu_1$.

4 Working with
$$T_2 u = \begin{vmatrix} u_1 - 2R_2 u_2 & \text{in } \Omega_1 \\ -u_2 & \text{in } \Omega_2 \end{vmatrix}$$
, where $R_2 : \Omega_2 \to \Omega_1$, one proves that *a* is **T-coercive** when $\mu_1 > ||R_2||^2 ||\mu_2|$.

3 One has
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\mu|^{-1} |\nabla u|^2 - 2 \int_{\Omega_2} \mu_2^{-1} \nabla u \cdot \nabla (R_1 u_1)$$

Young's inequality $\Rightarrow a$ is **T-coercive** when $|\mu_2| > ||R_1||^2 \mu_1$.

4 Working with
$$T_2 u = \begin{vmatrix} u_1 - 2R_2 u_2 & \text{in } \Omega_1 \\ -u_2 & \text{in } \Omega_2 \end{vmatrix}$$
, where $R_2 : \Omega_2 \to \Omega_1$, one proves that *a* is **T-coercive** when $\mu_1 > ||R_2||^2 ||\mu_2|$.

Conclusion:

THEOREM. If the contrast $\kappa_{\mu} = \mu_2/\mu_1 \notin [-\|R_1\|^2; -1/\|R_2\|^2]$, then the operator div $(\mu^{-1} \nabla \cdot)$ is an isomorphism from $H_0^1(\Omega)$ to $H^{-1}(\Omega)$.

3 One has
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\mu|^{-1} |\nabla u|^2 - 2 \int_{\Omega_2} \mu_2^{-1} \nabla u \cdot \nabla (R_1 u_1)$$

Young's inequality $\Rightarrow a$ is **T-coercive** when $|\mu_2| > ||R_1||^2 \mu_1$.

4 Working with
$$T_2 u = \begin{vmatrix} u_1 - 2R_2 u_2 & \text{in } \Omega_1 \\ -u_2 & \text{in } \Omega_2 \end{vmatrix}$$
, where $R_2 : \Omega_2 \to \Omega_1$, one proves that *a* is **T-coercive** when $\mu_1 > ||R_2||^2 ||\mu_2|$.

6 Conclusion: The interval depends on the norms of the transfer operators THEOREM. If the contrast $\kappa_{\mu} = \mu_2/\mu_1 \notin [-\|R_1\|^2; -1/\|R_2\|^2]$ then the operator div $(\mu^{-1} \nabla \cdot)$ is an isomorphism from $H_0^{-}(\Omega)$ to $H^{-1}(\Omega)$.

► A simple case: symmetric domain

► A simple case: symmetric domain

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{aligned}$$

► A simple case: symmetric domain

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{aligned}$$

▶ Interface with a 2D corner

► A simple case: symmetric domain

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{aligned}$$

► Interface with a 2D corner

Action of R_1 :

► A simple case: symmetric domain

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{aligned}$$

• Interface with a 2D corner

Action of R_1 :

► A simple case: symmetric domain

$$\begin{split} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{split}$$

• Interface with a 2D corner

Action of R_1 : symmetry w.r.t θ

► A simple case: symmetric domain

$$\begin{split} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{split}$$

• Interface with a 2D corner

Action of R_1 : symmetry + dilatation w.r.t θ

► A simple case: symmetric domain

$$\begin{split} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{split}$$

• Interface with a 2D corner

Action of R_1 : symmetry + dilatation w.r.t θ

$$||R_1||^2 \qquad = \mathcal{R}_{\sigma} := (2\pi - \sigma)/\sigma$$

• A simple case: symmetric domain

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{aligned}$$

▶ Interface with a 2D corner

Action of R_1 : symmetry + dilatation w.r.t θ Action of R_2 : symmetry + dilatation w.r.t θ $\|R_1\|^2 = \|R_2\|^2 = \mathcal{R}_{\sigma} := (2\pi - \sigma)/\sigma$

• A simple case: symmetric domain

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{aligned}$$

• Interface with a 2D corner

Action of R_1 : symmetry + dilatation w.r.t θ Action of R_2 : symmetry + dilatation w.r.t θ $\|R_1\|^2 = \|R_2\|^2 = \mathcal{R}_{\sigma} := (2\pi - \sigma)/\sigma$ (\mathscr{P}) well-posed $\Leftarrow \kappa_{\mu} \notin [-\mathcal{R}_{\sigma}; -1/\mathcal{R}_{\sigma}]$

► A simple case: symmetric domain

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{so that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed } \Leftrightarrow \kappa_{\mu} \neq -1 \end{aligned}$$

▶ Interface with a 2D corner

Action of
$$R_1$$
: symmetry + dilatation w.r.t θ
Action of R_2 : symmetry + dilatation w.r.t θ
 $\|R_1\|^2 = \|R_2\|^2 = \mathcal{R}_{\sigma} := (2\pi - \sigma)/\sigma$
 (\mathscr{P}) well-posed $\Leftrightarrow \kappa_{\mu} \notin [-\mathcal{R}_{\sigma}; -1/\mathcal{R}_{\sigma}]$

► A simple case: symmetric domain

A simple case: symmetric domain

• By localization techniques, we prove

PROPOSITION. (\mathscr{P}) is well-posed in the Fredholm sense for a curvilinear polygonal interface iff $\kappa_{\mu} \notin [-\mathcal{R}_{\sigma}; -1/\mathcal{R}_{\sigma}]$ where σ is the smallest angle.

 \Rightarrow When Σ is smooth, (\mathscr{P}) is well-posed in the Fredholm sense iff $\kappa_{\mu} \neq -1$.

Extensions for the scalar case

▶ The T-coercivity approach can be used to deal with non constant μ_1 , μ_2 and with the Neumann problem.

Extensions for the scalar case

▶ The T-coercivity approach can be used to deal with non constant μ_1 , μ_2 and with the Neumann problem.

► 3D geometries can be handled in the same way.

Transition: from variational methods to Fourier/Mellin techniques

For the corner case, what happens when the contrast lies inside the criticial interval, *i.e.* when $\kappa_{\mu} \in [-\mathcal{R}_{\sigma}; -1/\mathcal{R}_{\sigma}]$??

Transition: from variational methods to Fourier/Mellin techniques

For the corner case, what happens when the contrast lies inside the criticial interval, *i.e.* when $\kappa_{\mu} \in [-\mathcal{R}_{\sigma}; -1/\mathcal{R}_{\sigma}]$??

Idea: we will study precisely the regularity of the "solutions" using the Kondratiev's tools, *i.e.* the Fourier/Mellin transform (Dauge, Texier 97, Nazarov, Plamenevsky 94).

- 2 A new functional framework in the critical interval \Rightarrow collaboration with X. Claeys (LJLL Paris VI).
- 3 Study of Maxwell's equations

1 The T-coercivity method for the Interior Transmission Problem

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\mu^{-1} \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\mu^{-1} \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

▶ To simplify the presentation, we work on a particular configuration.

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\mu^{-1} \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

▶ To simplify the presentation, we work on a particular configuration.

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\mu^{-1} \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

To simplify the presentation, we work on a particular configuration.

Using the variational method of the previous section, we prove the

PROPOSITION. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\mu} = \mu_2/\mu_1$ satisfies $\kappa_{\mu} \notin [-3; -1]$.

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\mu^{-1} \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

To simplify the presentation, we work on a particular configuration.

Using the variational method of the previous section, we prove the

PROPOSITION. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\mu} = \mu_2/\mu_1$ satisfies $\kappa_{\mu} \notin [-3; -1]$.

What happens when $\kappa_{\mu} \in [-3; -1)$?

Analogy with a waveguide problem

• Bounded sector Ω

• Equation:

$$\underbrace{-\operatorname{div}(\mu^{-1}\nabla u)}_{-r^{-2}(\mu^{-1}(r\partial_r)^2 + \partial_\theta \mu^{-1}\partial_\theta)u} = f$$

Analogy with a waveguide problem

• Bounded sector Ω

- Equation: $\underbrace{-\operatorname{div}(\mu^{-1}\nabla u)}_{-r^{-2}(\mu^{-1}(r\partial_r)^2 + \partial_\theta \mu^{-1}\partial_\theta)u} = f$
- Singularities in the sector

 $s(r,\theta)=r^\lambda\varphi(\theta)$
We compute the singularities $s(r, \theta) = r^{\lambda} \varphi(\theta)$ and we observe two cases:

We compute the singularities $s(r, \theta) = r^{\lambda} \varphi(\theta)$ and we observe two cases: Outside the critical interval $r \mapsto r^{\lambda_1}$ $1 \uparrow$ $\kappa_{\mu} = -4$ 1 $-\lambda_2 \quad -\lambda_1 \quad \lambda_1 \quad \lambda_2$ -2 -1 1 2 0 not $H^1 \stackrel{-}{=} -1$ H^1 Inside the critical interval $r \mapsto \Re e \, r^{\lambda_1}$ $\kappa_{\mu} = -2 \quad 1 \quad \bullet \quad \lambda_1$ λ_2 -2 -1 λ_1 -12 0 not H^1 not H^1 H^1

• Bounded sector Ω

- Equation: $\underbrace{-\operatorname{div}(\mu^{-1}\nabla u)}_{-r^{-2}(\mu^{-1}(r\partial_r)^2 + \partial_\theta \mu^{-1}\partial_\theta)u} = f$
- Singularities in the sector

 $s(r,\theta)=r^\lambda\varphi(\theta)$

= f

• Bounded sector Ω

• Half-strip \mathcal{B}

- Equation: $\underbrace{-\operatorname{div}(\mu^{-1}\nabla u)}_{-r^{-2}(\mu^{-1}(r\partial_r)^2 + \partial_\theta \mu^{-1}\partial_\theta)u}$
- Singularities in the sector

 $s(r,\theta)=r^\lambda\varphi(\theta)$

- Bounded sector Ω Half-strip \mathcal{B} $(z,\theta) = (-\ln r,\theta)$ $\pi/4$ \mathcal{B}_1 Σ Ω_1 Ω_2 $\theta = \pi/4$ \mathcal{B}_2 $(r,\theta) = (e^{-z},\theta)$ 2 0 (r, θ) Equation: Equation: $-\operatorname{div}(\mu^{-1}\nabla u) = e^{-2z}f$ $-\operatorname{div}(\mu^{-1}\nabla u)$ = f $-r^{-2}(\mu^{-1}(r\partial_r)^2+\partial_{\theta}\mu^{-1}\partial_{\theta})u$ $-(\mu^{-1}\partial_z^2 + \partial_\theta\mu^{-1}\partial_\theta)u$
- Singularities in the sector

 $s(r,\theta)=r^\lambda\varphi(\theta)$

• Bounded sector Ω

• Half-strip \mathcal{B}

- Equation: $\underbrace{-\operatorname{div}(\mu^{-1}\nabla u)}_{-r^{-2}(\mu^{-1}(r\partial_r)^2 + \partial_\theta \mu^{-1}\partial_\theta)u} = f$
- Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

- Equation: $\underbrace{-\operatorname{div}(\mu^{-1}\nabla u)}_{-(\mu^{-1}\partial_z^2 + \partial_\theta \mu^{-1}\partial_\theta)u} = e^{-2z}f$
- Modes in the strip $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$

• Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

• Modes in the strip $m(z, \theta) = e^{-\lambda z} \varphi(\theta)$

 $s \in \mathrm{H}^1(\Omega)$ $\Re e \, \lambda'_{\scriptscriptstyle \mathsf{I}} > 0$ m is evanescent

16 / 34

... but the modal decomposition is not easy to justify because two signchanging appear in the transverse problem: $\partial_{\theta}\sigma\partial_{\theta}\varphi = -\sigma\lambda^{2}\varphi$.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $W_{-\beta} = \{ v \mid e^{\beta z} v \in H^1_0(\mathcal{B}) \}$ space of exponentially decaying functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $\mathbf{W}_{-\beta} = \{ v \, | \, e^{\beta z} v \in \mathbf{H}^1_0(\mathcal{B}) \} \qquad \text{ space of exponentially decaying functions }$

 $W_{\beta} = \{ v \mid e^{-\beta z} v \in H_0^1(\mathcal{B}) \}$ space of exponentially growing functions

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} \mathbf{W}_{-\beta} &= \{ v \mid e^{\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \\ \mathbf{W}^{+} &= \mathrm{span}(\zeta \varphi_{1} \; e^{\lambda_{1} z}) \oplus \mathbf{W}_{-\beta} \\ \mathbf{W}_{\beta} &= \{ v \mid e^{-\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

Consider $0<\beta<2,\,\zeta$ a cut-off function (equal to 1 in $+\infty)$ and define

$$\begin{split} \mathbf{W}_{-\beta} &= \{ v \mid e^{\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \\ \mathbf{W}^{+} &= \operatorname{span}(\zeta \varphi_{1} \; e^{\lambda_{1} z}) \oplus \mathbf{W}_{-\beta} \\ \mathbf{W}_{\beta} &= \{ v \mid e^{-\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} & \underset{\bigcap}{\mathsf{W}}_{-\beta} = \{ v \mid e^{\beta z} v \in \mathsf{H}_{0}^{1}(\mathcal{B}) \} & \text{space of exponentially decaying function} \\ & \underset{\bigcap}{\mathsf{W}}^{+} = \operatorname{span}(\zeta \varphi_{1} e^{\lambda_{1} z}) \oplus \mathsf{W}_{-\beta} & \text{propagative part } + \text{ evanescent part} \\ & \underset{\bigcap}{\mathsf{W}}_{\beta} = \{ v \mid e^{-\beta z} v \in \mathsf{H}_{0}^{1}(\mathcal{B}) \} & \text{space of exponentially growing function} \\ \end{split}$$
space of exponentially decaying functions space of exponentially growing functions

THEOREM. Let $\kappa_{\mu} \in (-3; -1)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\mu^{-1}\nabla \cdot)$ from W^+ to W^*_{β} is an isomorphism.

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\mu} \in (-3; -1)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\mu^{-1}\nabla \cdot)$ from W^+ to W^*_{β} is an isomorphism.

IDEAS OF THE PROOF:

• $A_{-\beta}$: div $(\mu^{-1}\nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} \mathbf{W}_{-\beta} &= \{ v \mid e^{\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \\ \mathbf{W}^{+} &= \operatorname{span}(\zeta \varphi_{1} e^{\lambda_{1} z}) \oplus \mathbf{W}_{-\beta} \\ \mathbf{W}_{\beta} &= \{ v \mid e^{-\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\mu} \in (-3; -1)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\mu^{-1}\nabla \cdot)$ from W^+ to W^*_{β} is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\mu^{-1}\nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- 2 A_{β} : div $(\mu^{-1}\nabla \cdot)$ from W_{β} to $W^*_{-\beta}$ is surjective but not injective.

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\mu} \in (-3; -1)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\mu^{-1}\nabla \cdot)$ from W^+ to W^*_{β} is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\mu^{-1}\nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- **2** A_{β} : div $(\mu^{-1}\nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.
- **③** The intermediate operator A^+ : W⁺ → W^{*}_β is injective (energy integral) and surjective (residue theorem).

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\mu} \in (-3; -1)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\mu^{-1}\nabla \cdot)$ from W^+ to W^*_{β} is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\mu^{-1}\nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- **2** A_{β} : div $(\mu^{-1}\nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.
- **③** The intermediate operator A^+ : W⁺ → W^{*}_β is injective (energy integral) and surjective (residue theorem).
- **1** Limiting absorption principle to select the outgoing mode.

A funny use of PMLs

• We use a PML (*Perfectly Matched Layer*) to bound the domain \mathcal{B} + finite elements in the truncated strip

A black hole phenomenon

• The same phenomenon occurs for the Helmholtz equation.

 $(\boldsymbol{x}, t) \mapsto \Re e\left(u(\boldsymbol{x})e^{-i\omega t}\right) \text{ for } \kappa_{\mu} = -1.3 \in (-3; -1)$

(...) (...)

► Analogous phenomena occur in cuspidal domains in the theory of water-waves and in elasticity (Cardone, Nazarov, Taskinen).

On going work for a general domain (C. Carvalho).

Problem

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}_0^1(\Omega) \text{ s.t.:}$$

 $-\mathrm{div} (\mu^{-1} \nabla u) = f \text{ in } \Omega.$

For $\kappa_{\mu} \in \mathbb{R}^*_{-} \setminus [-3; -1], (\mathscr{P})$ well-posed in $\mathrm{H}^1_0(\Omega)$ (T-coercivity)

Problem
(
$$\mathscr{P}$$
) | Find $u \in \mathrm{H}_0^1(\Omega)$ s.t.:
 $-\mathrm{div}(\mu^{-1}\nabla u) = f$ in Ω .

 $\begin{array}{c} \mathbb{R}^{\text{esult5}}\\ \hline \\ \text{For } \kappa_{\mu} \in \mathbb{C} \backslash \mathbb{R}_{-}, \ (\mathscr{P}) \text{ well-posed in }\\ \mathrm{H}^{1}_{0}(\Omega) \ (\text{Lax-Milgram}) \end{array}$

For $\kappa_{\mu} \in \mathbb{R}^*_{-} \setminus [-3; -1], (\mathscr{P})$ well-posed in $\mathrm{H}^1_0(\Omega)$ (T-coercivity)

For $\kappa_{\mu} \in (-3; -1)$, (\mathscr{P}) is not wellposed in the Fredholm sense in $\mathrm{H}^{1}_{0}(\Omega)$ but well-posed in V^{+} (PMLs)

Problem
(
$$\mathscr{P}$$
) | Find $u \in \mathrm{H}_0^1(\Omega)$ s.t.:
 $-\mathrm{div} (\mu^{-1} \nabla u) = f$ in Ω .

 $\begin{array}{c} \mathbb{R}^{\text{estult5}} \\ \hline \\ \mathbb{P} \\ \mathbb{P} \\ \text{For } \kappa_{\mu} \in \mathbb{C} \backslash \mathbb{R}_{-}, \ (\mathscr{P}) \text{ well-posed in } \\ \mathbb{H}^{1}_{0}(\Omega) \ (\text{Lax-Milgram}) \end{array}$

For $\kappa_{\mu} \in \mathbb{R}^*_{-} \setminus [-3; -1], (\mathscr{P})$ well-posed in $\mathrm{H}^1_0(\Omega)$ (T-coercivity)

For $\kappa_{\mu} \in (-3; -1)$, (\mathscr{P}) is not wellposed in the Fredholm sense in $\mathrm{H}^{1}_{0}(\Omega)$ but well-posed in V^{+} (PMLs)

•
$$\kappa_{\mu} = -1, (\mathscr{P}) \text{ ill-posed in } \mathrm{H}_{0}^{1}(\Omega)$$

2 A new functional framework in the critical interval

3 Study of Maxwell's equations

1 The T-coercivity method for the Interior Transmission Problem

Let us consider the problem for the magnetic field H:

$$\left| \begin{array}{l} \text{Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu; \, \Omega) \text{ such that for all } \boldsymbol{H}' \in \mathbf{V}_{T}(\mu; \, \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}')} = \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}')} = \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}')} = \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}'')} = \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}'')} = \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{cu$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

Let us consider the problem for the magnetic field H:

$$\left| \begin{array}{c} \text{Find } \boldsymbol{H} \in \boldsymbol{V}_{T}(\mu; \, \Omega) \text{ such that for all } \boldsymbol{H}' \in \boldsymbol{V}_{T}(\mu; \, \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{H} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{H} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{H} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{H} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{l(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{H} \cdot \boldsymbol{$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl}(\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$.

Let us consider the problem for the magnetic field H:

$$\left| \begin{array}{c} \text{Find } \boldsymbol{H} \in \boldsymbol{V}_{T}(\mu; \Omega) \text{ such that for all } \boldsymbol{H}' \in \boldsymbol{V}_{T}(\mu; \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl } \boldsymbol{H} \cdot \mathbf{curl } \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{array} \right.$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl}(\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$.

Scalar approach

Let us consider the problem for the magnetic field H:

$$\left| \begin{array}{c} \text{Find } \boldsymbol{H} \in \boldsymbol{V}_{T}(\mu; \Omega) \text{ such that for all } \boldsymbol{H}' \in \boldsymbol{V}_{T}(\mu; \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl } \boldsymbol{H} \cdot \mathbf{curl } \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{array} \right.$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl}(\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$. Scalar approach Let us try $\mathbb{T}\mathbf{H} = \begin{vmatrix} \mathbf{H}_1 & \operatorname{in} \Omega_1 \\ -\mathbf{H}_2 + 2R_1\mathbf{H}_1 & \operatorname{in} \Omega_2 \end{vmatrix}$,

Let us consider the problem for the magnetic field H:

$$\left| \begin{array}{c} \text{Find } \boldsymbol{H} \in \boldsymbol{V}_{T}(\mu; \Omega) \text{ such that for all } \boldsymbol{H}' \in \boldsymbol{V}_{T}(\mu; \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl } \boldsymbol{H} \cdot \mathbf{curl } \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{array} \right.$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl}(\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$. Scalar approach Let us try $\mathbb{T}\mathbf{H} = \begin{vmatrix} \mathbf{H}_1 & \inf \Omega_1 \\ -\mathbf{H}_2 + 2R_1\mathbf{H}_1 & \inf \Omega_2 \end{vmatrix}$, with R_1 such that $\begin{cases} (R_1\mathbf{H}_1) \times \mathbf{n} &= \mathbf{H}_2 \times \mathbf{n} & \operatorname{on} \Sigma \\ \mu_1(R_1\mathbf{H}_1) \cdot \mathbf{n} &= \mu_2\mathbf{H}_2 \cdot \mathbf{n} & \operatorname{on} \Sigma \end{cases}$
Let us consider the problem for the magnetic field H:

$$\left| \begin{array}{l} \text{Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu; \, \Omega) \text{ such that for all } \boldsymbol{H}' \in \mathbf{V}_{T}(\mu; \, \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{array} \right.$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl}(\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$. Scalar approach Let us try $\mathbb{T}\mathbf{H} = \begin{vmatrix} \mathbf{H}_1 & \operatorname{in} \Omega_1 \\ -\mathbf{H}_2 + 2R_1\mathbf{H}_1 & \operatorname{in} \Omega_2 \end{vmatrix}$, with R_1 such that $\overbrace{(R_1\mathbf{H}_1) \times \mathbf{n}}^{(R_1\mathbf{H}_1) \times \mathbf{n}} = \underbrace{\mathbf{H}_2 \times \mathbf{n}}_{\mu_2\mathbf{H}_2 - \mathbf{n}} \operatorname{on} \Sigma$ Not possible!

Let us consider the problem for the magnetic field H:

$$\left| \begin{array}{l} \text{Find } \boldsymbol{H} \in \mathbf{V}_{T}(\mu; \, \Omega) \text{ such that for all } \boldsymbol{H}' \in \mathbf{V}_{T}(\mu; \, \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{array} \right.$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\boldsymbol{H}, \mathbb{T}\boldsymbol{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl}(\mathbb{T}\boldsymbol{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$.

Maxwell approach

Let us consider the problem for the magnetic field H:

$$\left| \begin{array}{c} \text{Find } \boldsymbol{H} \in \boldsymbol{V}_{T}(\mu; \Omega) \text{ such that for all } \boldsymbol{H}' \in \boldsymbol{V}_{T}(\mu; \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \mathbf{curl } \boldsymbol{H} \cdot \mathbf{curl } \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{array} \right.$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl}(\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$. Maxwell approach

Let us try to define $\mathbb{T}\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$ as "the function satisfying"

Let us consider the problem for the magnetic field H:

$$\begin{vmatrix} \operatorname{Find} \boldsymbol{H} \in \mathbf{V}_{T}(\mu; \Omega) \text{ such that for all } \boldsymbol{H}' \in \mathbf{V}_{T}(\mu; \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{aligned}$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl}(\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$. Maxwell approach

Let us try to define $\mathbb{T}\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$ as "the function satisfying"

 $\operatorname{\mathbf{curl}}(\mathbb{T}\boldsymbol{H}) = \varepsilon \operatorname{\mathbf{curl}} \boldsymbol{H} \quad \text{ in } \Omega$

Let us consider the problem for the magnetic field H:

$$\begin{vmatrix} \operatorname{Find} \boldsymbol{H} \in \mathbf{V}_{T}(\mu; \Omega) \text{ such that for all } \boldsymbol{H}' \in \mathbf{V}_{T}(\mu; \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{aligned}$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl} (\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$. Maxwell approach

Let us try to define $\mathbb{T}\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$ as "the function satisfying"

 $\operatorname{\mathbf{curl}}\left(\mathbb{T}\boldsymbol{H}\right)=\varepsilon\operatorname{\mathbf{curl}}\boldsymbol{H}\quad\text{in }\Omega\qquad\text{so that}\quad a(\boldsymbol{H},\mathbb{T}\boldsymbol{H})=\int_{\Omega}|\operatorname{\mathbf{curl}}\boldsymbol{H}|^{2}.$

Let us consider the problem for the magnetic field H:

$$\begin{vmatrix} \operatorname{Find} \boldsymbol{H} \in \mathbf{V}_{T}(\mu; \Omega) \text{ such that for all } \boldsymbol{H}' \in \mathbf{V}_{T}(\mu; \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{aligned}$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl} (\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$. Maxwell approach

Let us try to define $\mathbb{T}\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$ as "the function satisfying"

 $\operatorname{\mathbf{curl}}(\mathbb{T}\boldsymbol{H}) = \varepsilon \operatorname{\mathbf{curl}}\boldsymbol{H} \quad \text{in } \Omega \qquad \text{so that} \quad a(\boldsymbol{H},\mathbb{T}\boldsymbol{H}) = \int_{\Omega} |\operatorname{\mathbf{curl}}\boldsymbol{H}|^2.$

• Impossible because div $(\varepsilon \operatorname{\mathbf{curl}} H) \neq 0$.

Let us consider the problem for the magnetic field H:

$$\begin{vmatrix} \operatorname{Find} \boldsymbol{H} \in \mathbf{V}_{T}(\mu; \Omega) \text{ such that for all } \boldsymbol{H}' \in \mathbf{V}_{T}(\mu; \Omega) : \\ \underbrace{\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{H}'}_{a(\boldsymbol{H}, \boldsymbol{H}')} - \omega^{2} \underbrace{\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{H}'}_{c(\boldsymbol{H}, \boldsymbol{H}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{H}'}_{l(\boldsymbol{H}')}, \end{aligned}$$

with $\mathbf{V}_T(\mu; \Omega) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}; \Omega) | \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

By analogy with the scalar case, we look for $\mathbb{T} \in \mathcal{L}(\mathbf{V}_T(\mu; \Omega))$ such that $a(\mathbf{H}, \mathbb{T}\mathbf{H}') = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl} (\mathbb{T}\mathbf{H}')$ is coercive on $\mathbf{V}_T(\mu; \Omega)$. Maxwell approach

Let us try to define $\mathbb{T}\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$ as "the function satisfying"

 $\operatorname{curl}(\mathbb{T}H) = \varepsilon \operatorname{curl} H \quad \text{in } \Omega \quad \text{so that} \quad a(H, \mathbb{T}H) = \int_{\Omega} |\operatorname{curl} H|^2.$ $\stackrel{\bullet}{\longrightarrow} \operatorname{Impossible because div}(\varepsilon \operatorname{curl} H) \neq 0. \quad \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longleftarrow} \quad \operatorname{Idea: add a gradient...}$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in H_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{curl} H - \nabla \varphi)) = 0$.

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in H_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{curl} H - \nabla \varphi)) = 0$.

$$\checkmark \text{ Ok} \quad \text{if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega). \quad (\mathcal{A}_{\varepsilon})$$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in \mathrm{H}_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{\mathbf{curl}} H - \nabla \varphi)) = 0$.

$$\checkmark \text{ Ok} \quad \text{ if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega). \quad (\mathcal{A}_{\varepsilon})$$

2 Introduce $u \in V_T(1; \Omega)$ (Amrouche *et al.* 98) the function satisfying

 $\operatorname{\mathbf{curl}} \boldsymbol{u} = \varepsilon \left(\operatorname{\mathbf{curl}} \boldsymbol{H} - \nabla \boldsymbol{\varphi} \right) \quad \text{ in } \Omega.$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in \mathrm{H}_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{\mathbf{curl}} H - \nabla \varphi)) = 0.$

 $\checkmark \text{ Ok} \quad \text{if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega). \quad (\mathcal{A}_{\varepsilon})$

2 Introduce $u \in V_T(1; \Omega)$ (Amrouche *et al.* 98) the function satisfying

 $\operatorname{\mathbf{curl}} \boldsymbol{u} = \varepsilon \left(\operatorname{\mathbf{curl}} \boldsymbol{H} - \nabla \boldsymbol{\varphi} \right) \quad \text{in } \Omega.$

3 Introduce $\psi \in \mathrm{H}^1(\Omega)/\mathbb{R}$ s.t. $\boldsymbol{u} - \nabla \psi \in \mathbf{V}_T(\mu; \Omega) (\operatorname{div}(\boldsymbol{\mu}(\boldsymbol{u} - \nabla \psi)) = 0).$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in \mathrm{H}_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{\mathbf{curl}} H - \nabla \varphi)) = 0.$

$$\checkmark \text{ Ok} \quad \text{ if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega). \quad (\mathcal{A}_{\varepsilon})$$

2 Introduce $u \in V_T(1; \Omega)$ (Amrouche *et al.* 98) the function satisfying

$$\operatorname{\mathbf{curl}} \boldsymbol{u} = \varepsilon \left(\operatorname{\mathbf{curl}} \boldsymbol{H} - \nabla \boldsymbol{\varphi} \right) \quad \text{in } \Omega.$$

3 Introduce $\psi \in \mathrm{H}^{1}(\Omega)/\mathbb{R}$ s.t. $\boldsymbol{u} - \nabla \psi \in \mathbf{V}_{T}(\mu; \Omega) (\operatorname{div}(\mu(\boldsymbol{u} - \nabla \psi)) = 0).$ **V** Ok if $(\psi, \psi') \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi'$ is T-coercive on $\mathrm{H}^{1}(\Omega)/\mathbb{R}$. (\mathcal{A}_{μ})

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in \mathrm{H}_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{\mathbf{curl}} H - \nabla \varphi)) = 0.$

$$\checkmark \text{ Ok} \quad \text{if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega). \quad (\mathcal{A}_{\varepsilon})$$

2 Introduce $u \in V_T(1; \Omega)$ (Amrouche *et al.* 98) the function satisfying

$$\operatorname{\mathbf{curl}} \boldsymbol{u} = \varepsilon \left(\operatorname{\mathbf{curl}} \boldsymbol{H} - \nabla \boldsymbol{\varphi} \right) \quad \text{ in } \Omega.$$

3 Introduce $\psi \in \mathrm{H}^{1}(\Omega)/\mathbb{R}$ s.t. $\boldsymbol{u} - \nabla \psi \in \mathbf{V}_{T}(\mu; \Omega) (\operatorname{div}(\mu(\boldsymbol{u} - \nabla \psi)) = 0).$ $\checkmark \operatorname{Ok}$ if $(\psi, \psi') \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi'$ is T-coercive on $\mathrm{H}^{1}(\Omega)/\mathbb{R}$. (\mathcal{A}_{μ})

4 Finally, define $\mathbb{T}H := \boldsymbol{u} - \nabla \boldsymbol{\psi} \in \mathbf{V}_T(\mu; \Omega).$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in \mathrm{H}_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{\mathbf{curl}} H - \nabla \varphi)) = 0.$

$$\checkmark \text{ Ok} \quad \text{if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}_{0}^{1}(\Omega). \quad (\mathcal{A}_{\varepsilon})$$
2 Introduce $\boldsymbol{u} \in \mathbf{V}_{T}(1; \Omega)$ (Amrouche *et al.* 98) the function satisfying

$$\operatorname{\mathbf{curl}} \boldsymbol{u} = \varepsilon \left(\operatorname{\mathbf{curl}} \boldsymbol{H} - \nabla \boldsymbol{\varphi} \right) \quad \text{ in } \Omega.$$

3 Introduce $\psi \in \mathrm{H}^{1}(\Omega)/\mathbb{R}$ s.t. $\boldsymbol{u} - \nabla \psi \in \mathbf{V}_{T}(\mu; \Omega)$ (div $(\mu(\boldsymbol{u} - \nabla \psi)) = 0$). \checkmark Ok if $(\psi, \psi') \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi'$ is T-coercive on $\mathrm{H}^{1}(\Omega)/\mathbb{R}$. (\mathcal{A}_{μ})

4 Finally, define $\mathbb{T}H := \boldsymbol{u} - \nabla \psi \in \mathbf{V}_T(\mu; \Omega)$. There holds:

$$a(\boldsymbol{H},\mathbb{T}\boldsymbol{H}) = \int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, (\mathbb{T}\boldsymbol{H})$$

Maxwell approach

Consider $\boldsymbol{H} \in \boldsymbol{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in \mathrm{H}_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{\mathbf{curl}} H - \nabla \varphi)) = 0.$

$$\checkmark \text{ Ok} \quad \text{if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega). \quad (\mathcal{A}_{\varepsilon})$$
2 Introduce $\boldsymbol{u} \in \mathbf{V}_{T}(1; \Omega)$ (Amrouche *et al.* 98) the function satisfying

$$\operatorname{\mathbf{curl}} \boldsymbol{u} = \varepsilon \left(\operatorname{\mathbf{curl}} \boldsymbol{H} - \nabla \boldsymbol{\varphi} \right) \quad \text{ in } \Omega.$$

3 Introduce $\psi \in \mathrm{H}^{1}(\Omega)/\mathbb{R}$ s.t. $\boldsymbol{u} - \nabla \psi \in \mathbf{V}_{T}(\mu; \Omega)$ (div $(\mu(\boldsymbol{u} - \nabla \psi)) = 0$). \checkmark Ok if $(\psi, \psi') \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi'$ is T-coercive on $\mathrm{H}^{1}(\Omega)/\mathbb{R}$. (\mathcal{A}_{μ})

4 Finally, define $\mathbb{T}H := \boldsymbol{u} - \nabla \psi \in \mathbf{V}_T(\mu; \Omega)$. There holds:

$$a(\boldsymbol{H},\mathbb{T}\boldsymbol{H})=\int_{\Omega}arepsilon^{-1}\mathbf{curl}\,\boldsymbol{H}\cdot\mathbf{curl}\,\boldsymbol{u}$$

Maxwell approach

Consider $\boldsymbol{H} \in \boldsymbol{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in \mathrm{H}_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{\mathbf{curl}} H - \nabla \varphi)) = 0.$

$$\checkmark \text{ Ok} \quad \text{if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega). \quad (\mathcal{A}_{\varepsilon})$$
2 Introduce $\boldsymbol{u} \in \mathbf{V}_{T}(1; \Omega)$ (Amrouche *et al.* 98) the function satisfying

$$\operatorname{\mathbf{curl}} \boldsymbol{u} = \varepsilon \left(\operatorname{\mathbf{curl}} \boldsymbol{H} - \nabla \boldsymbol{\varphi} \right) \quad \text{ in } \Omega.$$

3 Introduce $\psi \in \mathrm{H}^{1}(\Omega)/\mathbb{R}$ s.t. $\boldsymbol{u} - \nabla \psi \in \mathbf{V}_{T}(\mu; \Omega)$ (div $(\mu(\boldsymbol{u} - \nabla \psi)) = 0$). **V** Ok if $(\psi, \psi') \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi'$ is T-coercive on $\mathrm{H}^{1}(\Omega)/\mathbb{R}$. (\mathcal{A}_{μ})

4 Finally, define $\mathbb{T}H := \mathbf{u} - \nabla \psi \in \mathbf{V}_T(\mu; \Omega)$. There holds:

$$a(\boldsymbol{H}, \mathbb{T}\boldsymbol{H}) = \int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{u} = \int_{\Omega} \mathbf{curl} \, \boldsymbol{H} \cdot (\mathbf{curl} \, \boldsymbol{H} - \nabla \varphi)$$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in \mathrm{H}_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{\mathbf{curl}} H - \nabla \varphi)) = 0.$

$$\checkmark \text{ Ok} \quad \text{if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega). \quad (\mathcal{A}_{\varepsilon})$$
2 Introduce $\boldsymbol{u} \in \mathbf{V}_{T}(1; \Omega)$ (Amrouche *et al.* 98) the function satisfying

$$\operatorname{\mathbf{curl}} \boldsymbol{u} = \varepsilon \left(\operatorname{\mathbf{curl}} \boldsymbol{H} - \nabla \boldsymbol{\varphi} \right) \quad \text{in } \Omega.$$

3 Introduce $\psi \in \mathrm{H}^{1}(\Omega)/\mathbb{R}$ s.t. $\boldsymbol{u} - \nabla \psi \in \mathbf{V}_{T}(\mu; \Omega)$ (div $(\mu(\boldsymbol{u} - \nabla \psi)) = 0$). **V** Ok if $(\psi, \psi') \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi'$ is T-coercive on $\mathrm{H}^{1}(\Omega)/\mathbb{R}$. (\mathcal{A}_{μ})

4 Finally, define $\mathbb{T}H := \mathbf{u} - \nabla \psi \in \mathbf{V}_T(\mu; \Omega)$. There holds:

$$a(\boldsymbol{H},\mathbb{T}\boldsymbol{H})=\int_{\Omega}arepsilon^{-1}\mathbf{curl}\,\boldsymbol{H}\cdot\mathbf{curl}\,\boldsymbol{u}=\int_{\Omega}|\mathbf{curl}\,\boldsymbol{H}|^{2}.$$

Maxwell approach

Consider $\boldsymbol{H} \in \mathbf{V}_T(\mu; \Omega)$.

1 Introduce $\varphi \in H_0^1(\Omega)$ s.t. div $(\varepsilon(\operatorname{curl} H - \nabla \varphi)) = 0$.

$$\checkmark \text{ Ok} \quad \text{if } (\varphi, \varphi') \mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega). \quad (\mathcal{A}_{\varepsilon})$$
2 Introduce $\boldsymbol{u} \in \mathbf{V}_{T}(1; \Omega)$ (Amrouche *et al.* 98) the function satisfying

$$\operatorname{\mathbf{curl}} \boldsymbol{u} = \varepsilon \left(\operatorname{\mathbf{curl}} \boldsymbol{H} - \nabla \boldsymbol{\varphi} \right) \quad \text{ in } \Omega.$$

3 Introduce $\psi \in \mathrm{H}^{1}(\Omega)/\mathbb{R}$ s.t. $\boldsymbol{u} - \nabla \psi \in \mathbf{V}_{T}(\mu; \Omega)$ (div $(\mu(\boldsymbol{u} - \nabla \psi)) = 0$). \checkmark Ok if $(\psi, \psi') \mapsto \int_{\Omega} \mu \nabla \psi \cdot \nabla \psi'$ is T-coercive on $\mathrm{H}^{1}(\Omega)/\mathbb{R}$. (\mathcal{A}_{μ})

4 Finally, define $\mathbb{T}H := \mathbf{u} - \nabla \psi \in \mathbf{V}_T(\mu; \Omega)$. There holds:

$$a(\boldsymbol{H},\mathbb{T}\boldsymbol{H}) = \int_{\Omega} \varepsilon^{-1} \mathbf{curl} \, \boldsymbol{H} \cdot \mathbf{curl} \, \boldsymbol{u} = \int_{\Omega} |\mathbf{curl} \, \boldsymbol{H}|^{2}.$$

• Use the results of the previous section to check $(\mathcal{A}_{\varepsilon})$ and (\mathcal{A}_{μ}) .

Maxwell approach

• Using this idea, we prove that the embedding of $\mathbf{V}_T(\mu; \Omega)$ in $\mathbf{L}^2(\Omega)$ is compact when (\mathcal{A}_{μ}) is true (extension of Weber 80's result).

Maxwell approach

- Using this idea, we prove that the embedding of $\mathbf{V}_T(\mu; \Omega)$ in $\mathbf{L}^2(\Omega)$ is compact when (\mathcal{A}_{μ}) is true (extension of Weber 80's result).
- We deduce that $a(\cdot, \mathbb{T}\cdot)$ is coercive on $\mathbf{V}_T(\mu; \Omega) \times \mathbf{V}_T(\mu; \Omega)$ when (\mathcal{A}_{ϵ}) and (\mathcal{A}_{μ}) are true.

Maxwell approach

- Using this idea, we prove that the embedding of $\mathbf{V}_T(\mu; \Omega)$ in $\mathbf{L}^2(\Omega)$ is compact when (\mathcal{A}_{μ}) is true (extension of Weber 80's result).
- We deduce that $a(\cdot, \mathbb{T}\cdot)$ is coercive on $\mathbf{V}_T(\mu; \Omega) \times \mathbf{V}_T(\mu; \Omega)$ when $(\mathcal{A}_{\varepsilon})$ and (\mathcal{A}_{μ}) are true.

Refinements are necessary when:

\mathbb{T} -coercivity in the vector case 3/3

Maxwell approach

- Using this idea, we prove that the embedding of $\mathbf{V}_T(\mu; \Omega)$ in $\mathbf{L}^2(\Omega)$ is compact when (\mathcal{A}_{μ}) is true (extension of Weber 80's result).
- We deduce that $a(\cdot, \mathbb{T}\cdot)$ is coercive on $\mathbf{V}_T(\mu; \Omega) \times \mathbf{V}_T(\mu; \Omega)$ when $(\mathcal{A}_{\varepsilon})$ and (\mathcal{A}_{μ}) are true.

Refinements are necessary when:

► The geometry is non trivial (Ω non simply connected and/or $\partial \Omega$ non connected).

\mathbb{T} -coercivity in the vector case 3/3

Maxwell approach

- Using this idea, we prove that the embedding of $\mathbf{V}_T(\mu; \Omega)$ in $\mathbf{L}^2(\Omega)$ is compact when (\mathcal{A}_{μ}) is true (extension of Weber 80's result).
- We deduce that $a(\cdot, \mathbb{T}\cdot)$ is coercive on $\mathbf{V}_T(\mu; \Omega) \times \mathbf{V}_T(\mu; \Omega)$ when $(\mathcal{A}_{\varepsilon})$ and (\mathcal{A}_{μ}) are true.

Refinements are necessary when:

► The geometry is non trivial (Ω non simply connected and/or $\partial \Omega$ non connected).

▶ The scalar problems are Fredholm with a non trivial kernel.

The result for the magnetic field

Consider $\boldsymbol{F} \in \mathbf{L}^2(\Omega)$ such that div $\boldsymbol{F} \in \mathbf{L}^2(\Omega)$.

THEOREM. Suppose

$$\begin{aligned} (\varphi,\varphi') &\mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega); \qquad (\mathcal{A}_{\varepsilon}) \\ (\varphi,\varphi') &\mapsto \int_{\Omega} \mu \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}(\Omega)/\mathbb{R}. \qquad (\mathcal{A}_{\mu}) \end{aligned}$$

Then, the problem for the magnetic field

Find $\boldsymbol{H} \in \mathbf{H}(\mathbf{curl}; \Omega)$ such that: $\mathbf{curl} (\varepsilon^{-1}\mathbf{curl} \boldsymbol{H}) - \omega^2 \mu \boldsymbol{H} = \boldsymbol{F}$ in Ω $\varepsilon^{-1}\mathbf{curl} \boldsymbol{H} \times \boldsymbol{n} = 0$ on $\partial \Omega$ $\mu \boldsymbol{H} \cdot \boldsymbol{n} = 0$ on $\partial \Omega$.

is well-posed for all $\omega \in \mathbb{C} \setminus \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C} .

The result for the magnetic field

Consider $\boldsymbol{F} \in \mathbf{L}^2(\Omega)$ such that div $\boldsymbol{F} \in \mathbf{L}^2(\Omega)$.

THEOREM. Suppose

$$\begin{aligned} (\varphi,\varphi') &\mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega); \qquad (\mathcal{A}_{\varepsilon}) \\ (\varphi,\varphi') &\mapsto \int_{\Omega} \mu \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}(\Omega)/\mathbb{R}. \quad (\mathcal{A}_{\mu}) \end{aligned}$$

Then, the problem for the magnetic field

Find $\boldsymbol{H} \in \mathbf{H}(\mathbf{curl}; \Omega)$ such that: $\mathbf{curl}(\varepsilon^{-1}\mathbf{curl}\,\boldsymbol{H}) - \omega^{2}\mu\boldsymbol{H} = \boldsymbol{F}$ in Ω $\varepsilon^{-1}\mathbf{curl}\,\boldsymbol{H} \times \boldsymbol{n} = 0$ on $\partial\Omega$ $\mu\boldsymbol{H} \cdot \boldsymbol{n} = 0$ on $\partial\Omega$.

is well-posed for all $\omega \in \mathbb{C} \setminus \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C} .

This result (with the same assumptions) is also true for the problem for the electric field.

Application to the Fichera's corner

PROPOSITION. Suppose

$$\kappa_{\varepsilon} \notin [-7; -\frac{1}{7}]$$
 and $\kappa_{\mu} \notin [-7; -\frac{1}{7}]$.

Then, the problems for the electric and magnetic fields are well-posed for all $\omega \in \mathbb{C} \setminus \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C} .

* Note that 7 is the ratio of the blue volume over the red volume...

2 A new functional framework in the critical interval

3 Study of Maxwell's equations

4 The T-coercivity method for the Interior Transmission Problem

• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

• We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

$$\begin{vmatrix} \operatorname{Find} (k,v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \setminus \{0\} \text{ such that:} \\ \int_{\Omega} \frac{1}{1-n^{2}} (\Delta v + k^{2}n^{2}v)(\Delta v' + k^{2}v') = 0, \quad \forall v' \in \mathrm{H}_{0}^{2}(\Omega). \end{aligned}$$

• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

• We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

$$\begin{vmatrix} \operatorname{Find} (k,v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \setminus \{0\} \text{ such that:} \\ \int_{\Omega} \frac{1}{1-n^{2}} (\Delta v + k^{2}n^{2}v)(\Delta v' + k^{2}v') = 0, \quad \forall v' \in \mathrm{H}_{0}^{2}(\Omega). \end{vmatrix}$$

• One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

• We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

$$\left| \begin{array}{l} \text{Find } (k,v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \setminus \{0\} \text{ such that:} \\ \int_{\Omega} \frac{1}{1-n^{2}} (\Delta v + k^{2}n^{2}v)(\Delta v' + k^{2}v') = 0, \quad \forall v' \in \mathrm{H}_{0}^{2}(\Omega). \end{array} \right.$$

• One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

▶ This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when n > 1 on Ω or n < 1 on Ω .

• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

• We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

Find
$$(k, v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \setminus \{0\}$$
 such that:

$$\int_{\Omega} \frac{1}{1 - n^{2}} (\Delta v + k^{2} n^{2} v) (\Delta v' + k^{2} v') = 0, \quad \forall v' \in \mathrm{H}_{0}^{2}(\Omega).$$

• One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

▶ This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when n > 1 on Ω or n < 1 on Ω .

What happens when $1 - n^2$ changes sign?

A bilaplacian with a sign-changing coefficient

• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{l(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{l(v')}$$

A bilaplacian with a sign-changing coefficient

• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{l(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{l(v')}$$

Message: The operators $\Delta(\sigma \Delta \cdot) : H_0^2(\Omega) \to H^{-2}(\Omega)$ and div $(\sigma \nabla \cdot) : H_0^1(\Omega) \to H^{-1}(\Omega)$ have very different properties.
• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{l(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{l(v')}$$

 \succ

Message: The operators $\Delta(\sigma\Delta\cdot)$: $H_0^2(\Omega) \to H^{-2}(\Omega)$ and $\operatorname{div}(\sigma\nabla\cdot)$: $H_0^1(\Omega) \to H^{-1}(\Omega)$ have very different properties.

THEOREM. The problem (\mathscr{F}_V) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial\Omega$.

Fredholm

$$\sigma = -1$$

 $\sigma = 1$

We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part.

IDEAS OF THE PROOF: We have

$$a(v,v) = (\sigma \Delta v, \Delta v)_{\Omega}.$$

We would like to build $T: H_0^2(\Omega) \to H_0^2(\Omega)$ such that $\Delta(Tv) = \sigma^{-1} \Delta v$

Message: The operators $\Delta(\sigma \Delta \cdot) : \mathrm{H}^{2}_{0}(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and div $(\sigma \nabla \cdot) : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

THEOREM. The problem (\mathscr{F}_V) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial\Omega$.

 $\sigma = 1$

• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{l(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{l(v')}$$

 \succ

Message: The operators $\Delta(\sigma \Delta \cdot) : \mathrm{H}_0^2(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot) : \mathrm{H}_0^1(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

THEOREM. The problem (\mathscr{F}_V) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial\Omega$.

Fredholm

• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{l(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{l(v')}$$

 \succ

Message: The operators $\Delta(\sigma \Delta \cdot) : \mathrm{H}_{0}^{2}(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma \nabla \cdot) : \mathrm{H}_{0}^{1}(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

... but (\mathscr{F}_V) can be ill-posed (not Fredholm) when σ changes sign "on $\partial\Omega$ " \Rightarrow work with J. Firozaly.

Fredholm

Not always Fredholm

 $\sigma < 0$

2 A new functional framework in the critical interval

3 Study of Maxwell's equations

1 The T-coercivity method for the Interior Transmission Problem

Scalar problem outside the critical interval

$\operatorname{div}(\mu^{-1}\nabla\cdot): \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{-1}(\Omega)$

- ♠ Concerning the approximation of the solution, in practice, usual methods converge. Only partial proofs are available.
- ♠ In 3D, are the interval obtained optimal?

happens in 3D (edge, conical tip,...)? \Rightarrow PhD thesis of C. Carvalho.

Maxwell's equations

 $\operatorname{\mathbf{curl}}(\varepsilon^{-1}\operatorname{\mathbf{curl}}\cdot): \mathbf{V}_T(\mu; \Omega) \to \mathbf{V}_T(\mu; \Omega)^*$

• Convergence of an edge element method has to be studied.

Can we develop a new functional framework inside the critical interval?

Maxwell's equations

 $\operatorname{curl}(\varepsilon^{-1}\operatorname{curl}\cdot): \mathbf{V}_T(\mu; \Omega) \to \mathbf{V}_T(\mu; \Omega)^*$

• Convergence of an edge element method has to be studied.

• Can we develop a new functional framework inside the critical interval?

Interior Transmission Eigenvalue Problem

 $\Delta(\sigma\Delta\cdot): \mathrm{H}^{2}_{0}(\Omega) \to \mathrm{H}^{-2}(\Omega)$

• Can we find a criterion on σ and on the geometry to ensure that $\Delta(\sigma\Delta \cdot)$ is Fredholm? Many questions remain open for the ITEP...

Our new model in the critical interval raises a lot of questions, related to the physics of plasmonics and metamaterials.

Can we observe this black-hole effect in practice? For a rounded corner, "the solution" seems unstable with respect to the rounding parameter...

 \Rightarrow Is there a functional framework in which (\mathscr{P}) is well-posed?

More generally, can we reconsider the homogenization process to take into account interfacial phenomena?

 $\Rightarrow METAMATH \ project \ (ANR) \ directed \ by S. Fliss and PhD thesis of V. Vinoles.$

 \Rightarrow PhD thesis of M. Cassier.

Thank you for your attention!!!

Summary of the results for the 2D cavity

$$\mathscr{P}) \mid \begin{array}{c} \text{Find } u \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ -\mathrm{div}\left(\mu^{-1}\nabla u\right) = f \quad \text{in } \Omega. \end{array} \qquad \qquad \boxed{\begin{array}{c} \Omega_{1} & \Sigma & \Omega_{2} \\ \mu_{1} > 0 & \mu_{2} < 0 \\ -a & b \end{array}}$$

PROPOSITION. The operator $A = \operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}_{0}^{1}(\Omega) \to \operatorname{H}^{-1}(\Omega)$ is an isomorphism if and only $\kappa_{\mu} \in \mathbb{C}^{*} \setminus \mathscr{S}$ with $\mathscr{S} = \{-\tanh(n\pi a)/\tanh(n\pi b), n \in \mathbb{N}^{*}\} \cup \{-1\}$. For $\kappa_{\mu} = -\tanh(n\pi a)/\tanh(n\pi b)$, we have ker $A = \operatorname{span} \varphi_{n}$ with

$$\varphi_n(x,y) = \begin{cases} \sinh(n\pi(x+a))\sin(n\pi y) & \text{on } \Omega_1 \\ -\frac{\sinh(n\pi a)}{\sinh(n\pi b)}\sinh(n\pi(x-b))\sin(n\pi y) & \text{on } \Omega_2 \end{cases}$$

Results

Problem

For $\kappa_{\mu} \in \mathbb{R}^{-} \setminus \mathscr{S}$, (\mathscr{P}) well-posed For $\kappa_{\mu} \in \mathscr{S} \setminus \{-1\}$, (\mathscr{P}) is well-posed in the Fredholm sense with a one dimension kernel

•
$$\kappa_{\mu} = -1, (\mathscr{P})$$
 ill-posed in $\mathrm{H}_{0}^{1}(\Omega)$

The blinking eigenvalue

The result for the electric field

Consider $\boldsymbol{F} \in \mathbf{L}^2(\Omega)$ such that div $\boldsymbol{F} \in \mathbf{L}^2(\Omega)$.

THEOREM. Suppose

$$\begin{aligned} (\varphi,\varphi') &\mapsto \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}_{0}(\Omega); \qquad (\mathcal{A}_{\varepsilon}) \\ (\varphi,\varphi') &\mapsto \int_{\Omega} \mu \nabla \varphi \cdot \nabla \varphi' \text{ is } \mathbf{T}\text{-coercive on } \mathrm{H}^{1}(\Omega)/\mathbb{R}. \quad (\mathcal{A}_{\mu}) \end{aligned}$$

Then, the problem for the electric field

Find
$$\boldsymbol{E} \in \mathbf{H}(\mathbf{curl}; \Omega)$$
 such that:
 $\mathbf{curl} (\mu^{-1}\mathbf{curl} \boldsymbol{E}) - \omega^2 \varepsilon \boldsymbol{E} = \boldsymbol{F}$ in Ω
 $\boldsymbol{E} \times \boldsymbol{n} = 0$ on $\partial \Omega$.

is well-posed for all $\omega \in \mathbb{C} \setminus \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C} .

Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

► This leads to study the Interior Transmission Eigenvalue Problem:

Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

This leads to study the Interior Transmission Eigenvalue Problem:
 u is the total field in *D*

 $\operatorname{div}\left(A\nabla u\right) + k^2 n u = 0 \quad \text{in } D$

Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

This leads to study the Interior Transmission Eigenvalue Problem:
 • u is the total field in *D • w* is the incident field in *D*

Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

This leads to study the Interior Transmission Eigenvalue Problem:
 w is the total field in *D w* is the incident field in *D*

$$\begin{array}{ccccc} \operatorname{div}\left(A\nabla u\right)+k^{2}nu &=& 0 & \operatorname{in} D\\ \Delta w+k^{2}w &=& 0 & \operatorname{in} D\\ u-w &=& 0 & \operatorname{on} \partial D\\ \nu\cdot A\nabla u-\nu\cdot\nabla w &=& 0 & \operatorname{on} \partial D. \end{array} \right) \\ TRANSMISSION CONDITIONS ON \partial D \end{array}$$

 ν

Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

This leads to study the Interior Transmission Eigenvalue Problem:
 w is the total field in *D w* is the incident field in *D*

Find
$$(u, w) \in \mathrm{H}^1(D) \times \mathrm{H}^1(D)$$
 such that:
 $\operatorname{div}(A \nabla u) + k^2 n u = 0$ in D
 $\Delta w + k^2 w = 0$ in D
 $u - w = 0$ on ∂D
 $\nu \cdot A \nabla u - \nu \cdot \nabla w = 0$ on ∂D .
The

Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

This leads to study the Interior Transmission Eigenvalue Problem:
 w is the total field in *D w* is the incident field in *D*

Find
$$(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D)$$
 such that:
 $\operatorname{div}(A\nabla u) + k^{2}nu = 0 \text{ in } D$
 $\Delta w + k^{2}w = 0 \text{ in } D$
 $u - w = 0 \text{ on } \partial D$
 $\nu \cdot A\nabla u - \nu \cdot \nabla w = 0 \text{ on } \partial D.$
TRANSMISSION CONDITIONS ON ∂D

DEFINITION. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^2 : we look for an incident wave that does not scatter.

This leads to study the Interior Transmission Eigenvalue Problem:
 w is the total field in *D w* is the incident field in *D*

Find
$$(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D)$$
 such that:
 $\operatorname{div}(A\nabla u) + k^{2}nu = 0 \text{ in } D$
 $\Delta w + k^{2}w = 0 \text{ in } D$
 $u - w = 0 \text{ on } \partial D$
 $\nu \cdot A\nabla u - \nu \cdot \nabla w = 0 \text{ on } \partial D.$
TRANSMISSION CONDITIONS ON ∂D

DEFINITION. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

• One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\Omega} A \nabla u \cdot \overline{\nabla u'} - \nabla w \cdot \overline{\nabla w'} = k^2 \int_{\Omega} (n u \overline{u'} - w \overline{w'}),$$

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\Omega} A \nabla u \cdot \overline{\nabla u'} - \nabla w \cdot \overline{\nabla w'} = k^2 \int_{\Omega} (n u \overline{u'} - w \overline{w'}),$$

with $\mathbf{X} = \{(u,w) \in \mathbf{H}^1(\Omega) \times \mathbf{H}^1(\Omega) \, | \, u - w \in \mathbf{H}^1_0(\Omega) \}.$

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\Omega} A \nabla u \cdot \overline{\nabla u'} - \nabla w \cdot \overline{\nabla w'} = k^2 \int_{\Omega} (n u \overline{u'} - w \overline{w'}),$$

with $\mathbf{X} = \{(u, w) \in \mathbf{H}^1(\Omega) \times \mathbf{H}^1(\Omega) \mid u - w \in \mathbf{H}^1_0(\Omega)\}.$

▶ This is a non standard eigenvalue problem.

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\Omega} A \nabla u \cdot \overline{\nabla u'} - \nabla w \cdot \overline{\nabla w'} = k^2 \int_{\Omega} (n u \overline{u'} - w \overline{w'}),$$

 $\begin{array}{l} \text{not coercive on X} \\ \text{with X} = \{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \, | \, u - w \in \mathrm{H}^{1}_{0}(\Omega) \}. \end{array}$

▶ This is a non standard eigenvalue problem.

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\Omega} A \nabla u \cdot \overline{\nabla u'} \cdot \nabla w \cdot \overline{\nabla w'} = k^2 \left(\int_{\Omega} (n u \overline{u'} \cdot w \overline{w'}), \right)$$

 $\begin{array}{c} \text{not coercive on X} & \text{not an inner product on X} \\ \text{with X} = \{(u,w) \in \mathrm{H}^1(\Omega) \times \mathrm{H}^1(\Omega) \, | \, u - w \in \mathrm{H}^1_0(\Omega) \}. \end{array}$

▶ This is a non standard eigenvalue problem.

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\Omega} A \nabla u \cdot \overline{\nabla u'} \cdot \nabla w \cdot \overline{\nabla w'} = k^2 \left(\int_{\Omega} (n u \overline{u'} \cdot w \overline{w'}), \right)$$

 $\begin{array}{c} \text{not coercive on X} & \text{not an inner product on X} \\ \text{with X} = \{(u,w) \in \mathrm{H}^1(\Omega) \times \mathrm{H}^1(\Omega) \, | \, u - w \in \mathrm{H}^1_0(\Omega) \}. \end{array}$

- ▶ This is a non standard eigenvalue problem.
- We want to highlight an

Idea: Analogy with the transmission problem between a dielectric and a double negative metamaterial...
• Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^2 :

• Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^2 :

$$\begin{array}{c|c} \varepsilon_1 := \varepsilon|_{\Omega_1} > 0 \\ \mu_1 := \mu|_{\Omega_1} > 0 \end{array} \end{array} \xrightarrow{\Sigma} \begin{array}{c} \nu & \Omega_2 \\ \hline \text{Dielectric} \end{array} \xrightarrow{\Sigma} \nu & \Omega_2 \\ \hline \text{Metamaterial} \end{array} \xrightarrow{} \left| \begin{array}{c} \varepsilon_2 := \varepsilon|_{\Omega_2} < 0 \\ \mu_2 := \mu|_{\Omega_2} < 0 \end{array} \right|$$

• Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^2 :

$$\begin{array}{c|c} \varepsilon_1 := \varepsilon|_{\Omega_1} > 0 \\ \mu_1 := \mu|_{\Omega_1} > 0 \end{array} \end{array} \xrightarrow{\Sigma} \begin{array}{c} \nu & \Omega_2 \\ \hline \text{Dielectric} \end{array} \xrightarrow{\Sigma} \nu & \Omega_2 \\ \hline \text{Metamaterial} \end{array} \xrightarrow{} \left| \begin{array}{c} \varepsilon_2 := \varepsilon|_{\Omega_2} < 0 \\ \mu_2 := \mu|_{\Omega_2} < 0 \end{array} \right|$$

• Eigenvalue problem for E_z in 2D:

Find
$$v \in \mathrm{H}_{0}^{1}(\Omega) \setminus \{0\}$$
 such that:
 $\operatorname{div}(\mu^{-1} \nabla v) + k^{2} \varepsilon v = 0$ in Ω .

• Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^2 :

$$\begin{array}{c|c} \varepsilon_1 := \varepsilon|_{\Omega_1} > 0 \\ \mu_1 := \mu|_{\Omega_1} > 0 \end{array} \end{array} \xrightarrow{\Sigma} \begin{array}{c} \nu & \Omega_2 \\ \hline \text{Dielectric} \end{array} \xrightarrow{\Sigma} \mu & \Omega_2 \\ \hline \text{Metamaterial} \end{array} \xrightarrow{} \left| \begin{array}{c} \varepsilon_2 := \varepsilon|_{\Omega_2} < 0 \\ \mu_2 := \mu|_{\Omega_2} < 0 \end{array} \right|$$

• Eigenvalue problem for E_z in 2D:

Find
$$v \in \mathrm{H}_0^1(\Omega) \setminus \{0\}$$
 such that:
 $\operatorname{div}(\mu^{-1} \nabla v) + k^2 \varepsilon v = 0$ in Ω .

► k is a transmission eigenvalue if and only if there exists $v \in H_0^1(\Omega) \setminus \{0\}$ such that, for all $v' \in H_0^1(\Omega)$,

$$\int_{\Omega_1} \mu_1^{-1} \nabla v \cdot \overline{\nabla v'} - \int_{\Omega_2} |\mu_2|^{-1} \nabla v \cdot \overline{\nabla v'} = k^2 \left(\int_{\Omega_1} \varepsilon_1 v \overline{v'} - \int_{\Omega_2} |\varepsilon_2| v \overline{v'} \right).$$

DMTEP in the domain Ω :

$$\varepsilon_1 = n \\ \mu_1 = A$$
 \longrightarrow $\Omega_1 \\ Dielectric$ \longrightarrow $\nu \\ \Omega_2 \\ Metamaterial$ \leftarrow $|$ $\varepsilon_2 = -1 \\ \mu_2 = -1$

• **DMTEP** in the domain Ω :

• **DMTEP** in the domain Ω :

• **DMTEP** in the domain Ω :

• We obtain a problem analogous to the ITEP in Ω_1 :

$$\begin{array}{c} \Sigma \\ & \bullet \nu \end{array}$$

• **DMTEP** in the domain Ω :

• We obtain a problem analogous to the ITEP in Ω_1 :

• **DMTEP** in the domain Ω :

• We obtain a problem analogous to the ITEP in Ω_1 :

► The interface Σ in the DMTEP plays the role of the boundary $\partial \Omega$ in the ITEP.

 $\blacktriangleright \quad \text{Define on } X \times X \text{ the sesquilinear form}$

$$a((u,w),(u',w')) = \int_{\Omega} A\nabla u \cdot \overline{\nabla u'} \nabla w \cdot \overline{\nabla w'} - k^2 (n u \overline{u'} \nabla w \overline{w'}),$$

with $\mathbf{X} = \{(u, w) \in \mathbf{H}^1(\Omega) \times \mathbf{H}^1(\Omega) \mid u - w \in \mathbf{H}^1_0(\Omega)\}.$

 $\blacktriangleright \quad \text{Define on } X \times X \text{ the sesquilinear form}$

$$a((u,w),(u',w')) = \int_{\Omega} A\nabla u \cdot \overline{\nabla u'} \nabla w \cdot \overline{\nabla w'} - k^2 (nu\overline{u'} \nabla w\overline{w'}),$$

with $\mathbf{X} = \{(u,w) \in \mathbf{H}^1(\Omega) \times \mathbf{H}^1(\Omega) \, | \, u - w \in \mathbf{H}^1_0(\Omega) \}.$

• Introduce the isomorphism T(u, w) = (u - 2w, -w).

• Define on $X \times X$ the sesquilinear form

$$a((u,w),(u',w')) = \int_{\Omega} A\nabla u \cdot \overline{\nabla u'} \nabla w \cdot \overline{\nabla w'} - k^2 (nu\overline{u'} \nabla w\overline{w'}),$$

with $\mathbf{X} = \{(u, w) \in \mathbf{H}^1(\Omega) \times \mathbf{H}^1(\Omega) \mid u - w \in \mathbf{H}^1_0(\Omega)\}.$

- Introduce the isomorphism T(u, w) = (u 2w, -w).
- ► For $k \in \mathbb{R}i \setminus \{0\}$, A > Id and n > 1, one finds $\Re e a((u, w), \mathsf{T}(u, w)) \ge C (\|u\|_{\mathrm{H}^1(\Omega)}^2 + \|w\|_{\mathrm{H}^1(\Omega)}^2), \quad \forall (u, w) \in \mathbf{X}.$

• Define on $X \times X$ the sesquilinear form

$$a((u,w),(u',w')) = \int_{\Omega} A\nabla u \cdot \overline{\nabla u'} \nabla w \cdot \overline{\nabla w'} - k^2 (nu\overline{u'} \nabla w \overline{w'}),$$

with $\mathbf{X} = \{(u, w) \in \mathbf{H}^1(\Omega) \times \mathbf{H}^1(\Omega) \mid u - w \in \mathbf{H}^1_0(\Omega)\}.$

- Introduce the isomorphism T(u, w) = (u 2w, -w).
- ► For $k \in \mathbb{R}i \setminus \{0\}$, A > Id and n > 1, one finds $\Re e a((u, w), \mathsf{T}(u, w)) \ge C (\|u\|_{\mathrm{H}^1(\Omega)}^2 + \|w\|_{\mathrm{H}^1(\Omega)}^2), \quad \forall (u, w) \in \mathbf{X}.$
 - Using the analytic Fredholm theorem, one deduces the

PROPOSITION. Suppose that A > Id and n > 1. Then the set of transmission eigenvalues is discrete and countable.

• Define on $X \times X$ the sesquilinear form

$$a((u,w),(u',w')) = \int_{\Omega} A\nabla u \cdot \overline{\nabla u'} \nabla w \cdot \overline{\nabla w'} - k^2 (n u \overline{u'} \nabla w \overline{w'}),$$

with $\mathbf{X} = \{(u, w) \in \mathbf{H}^1(\Omega) \times \mathbf{H}^1(\Omega) \mid u - w \in \mathbf{H}^1_0(\Omega)\}.$

- Introduce the isomorphism T(u, w) = (u 2w, -w).
- ► For $k \in \mathbb{R}i \setminus \{0\}$, A > Id and n > 1, one finds $\Re e a((u, w), \mathsf{T}(u, w)) \ge C (\|u\|_{\mathrm{H}^1(\Omega)}^2 + \|w\|_{\mathrm{H}^1(\Omega)}^2), \quad \forall (u, w) \in \mathbf{X}.$
 - Using the analytic Fredholm theorem, one deduces the

PROPOSITION. Suppose that A > Id and n > 1. Then the set of transmission eigenvalues is discrete and countable.

► This result can be extended to situations where A - Id and n - 1 change sign in Ω working with $T(u, w) = (u - 2\chi w, -w)$.