Radiation condition for a non-smooth interface between a dielectric and a metamaterial

L. Chesnel with A.S. Bonnet-Ben Dhia, P. Ciarlet Jr. and X. Claeys POEMS, UMR 7231 CNRS-ENSTA-INRIA, École Polytechnique, Paris

H

 SZ_1

Dielectric

 $\varepsilon_1 > 0$

 Ω_2

Metamaterial

 $\varepsilon_2 < 0$

 \blacktriangleright Time harmonic problem in a heterogeneous medium Ω . Difficulty concentrated in the electrostatic case.

► Define the space of finite energy fields:

$${}_{0}^{1}(\Omega) = \{ v \in L^{2}(\Omega) \mid \int_{\Omega} |\nabla v|^{2} d\Omega < \infty; v|_{\partial\Omega} = 0 \}.$$

$$(\mathcal{P}) \mid \text{Find } u \in H_0^1(\Omega) \text{ such that:} \\ -\operatorname{div}(\varepsilon \nabla u) = f \text{ in } \Omega.$$

 \triangleright (\mathcal{P}) is equivalent to the variational problem:

Find $u \in H_0^1(\Omega)$ such that: $\varepsilon \nabla u \cdot \nabla v \, d\Omega = \int f v \, d\Omega \,, \forall v \in H^1_0(\Omega).$ (\mathcal{P}_V)

Difficulties :

- Loss of coercivity: there is no constant C such that
- $\int_{\Omega} \varepsilon |\nabla u|^2 d\Omega > C \int_{\Omega} |\nabla u|^2 d\Omega, \, \forall u \in H^1_0(\Omega).$ • Add some dissipation (modeled by η) is not sufficient:

$$\left|\int_{\Omega} \varepsilon^{\eta} |\nabla u^{\eta}|^2 d\Omega \right| > \frac{C}{\eta} \int_{\Omega} |\nabla u^{\eta}|^2 d\Omega.$$

Questions :

- \triangleright Is problem (\mathcal{P}) well-posed ?
- ▷ How to compute a numerical approximation of the solution ?

 \triangleright New model when (\mathcal{P}) is ill-posed?

(1) Consider
$$\mathbf{T}_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + 2R_1 u_1 & \text{in } \Omega_2 \end{vmatrix}$$
, where R_1 is such that $\mathbf{T}_1 u \in H_0^1(\Omega)$.

(2)
$$\int_{\Omega} \varepsilon \, \nabla u \cdot \nabla (\mathsf{T}_1 \, u) \, d\Omega \ge C \int_{\Omega} |\nabla u|^2 \, d\Omega \text{ for } \varepsilon_1 \ge ||R_1||^2 \, |\varepsilon_2|.$$

(3) Since \mathbf{T}_1 is an isomorphism of $H_0^1(\Omega)$ (notice that $\mathbf{T}_1^{-1} = \mathbf{T}_1$), (\mathcal{P}_V) , and so (\mathcal{P}) , is well-posed when $\varepsilon_1 \geq ||R_1||^2 |\varepsilon_2|$.

(4) One proceeds in the same way with \mathbf{T}_2 built from $R_2: \Omega_2 \to \Omega_1$.

THEOREM. If the contrast $\kappa_{\varepsilon} = \varepsilon_2/\varepsilon_1 \notin I_{\Sigma} = [-\|R_2\|^2; -1/\|R_1\|^2]$ (critical interval) then problem (\mathcal{P}) is well-posed.

The T-coercivity approach

► This technique can be used to justify the classical finite element methods and to study the Maxwell's problem (A.S. Bonnet-Ben Dhia's talk).

Symmetrical domain $R_1 = S_{\Sigma}$ and $R_2 = S_{\Sigma}$ (symmetry).

2D CORNER

 R_1 and R_2 obtained from symmetry/dilatation w.r.t. θ .

$$\Sigma = \left[-\frac{2\pi - \alpha}{\alpha}; -\frac{\alpha}{2\pi - \alpha}\right].$$

 $I_{\Sigma} = [-7; -1/7].$

FICHERA'S CORNER

 R_1 and R_2 obtained from the symmetries S_{Ox} , S_{Oy} , S_{Oz} .

▶ If Σ is smooth, (\mathcal{P}) is well-posed for $\kappa_{\varepsilon} \neq -1$.

 $I_{\Sigma} = \{-1\}.$

► If Σ has a corner, (\mathcal{P}) is well-posed for $\kappa_{\varepsilon} \notin I_{\Sigma}$ (open interval). But one observes a field of strong intensity in a neighbourhood of the corner. \Rightarrow What happens in the critical interval I_{Σ} ?

For $\kappa_{\varepsilon} \in (-1; -1/3)$, propagative singularities appear:

- $s_1^{\mp}(r,\theta) = \varphi_1(\theta) e^{\pm i\eta \ln r}$ where η is a real number which depends on κ_{ε} .
- ▶ Radiation condition in O to select the good singularity.
- \blacktriangleright Use of PMLs in O to approach the solution which is not of finite energy.

- For $\kappa_{\varepsilon} \in (-1; -1/3)$, propagative modes appear:
 - $m_1^{\pm}(z,\theta) = \varphi_1(\theta) e^{\pm i\eta z}$ where η is a real number which depends on κ_{ε} .
- \triangleright Radiation condition in $+\infty$ to select the outgoing mode.
- \blacktriangleright Use of PMLs in $+\infty$ to truncate the domain and to use classical finite element methods.

NELIA 2011, Santiago de Compostela, October 25 - 28, 2011

chesnel@ensta-paristech.fr