Radiation condition for a non-smooth interface between a dielectric and a metamaterial

ENSTAParisTech

L. Chesnel with A.S. Bonnet-Ben Dhia, P. Ciarlet Jr. and X. Claeys POEMS, UMR 7231 CNRS-ENSTA-INRIA, École Polytechnique, Paris

Studied problem

 \triangleright Time harmonic problem in a heterogeneous medium Ω . Difficulty concentrated in the electrostatic case.

▶ Define the space of finite energy fields:

$$H_0^1(\Omega) = \{ v \in L^2(\Omega) \mid \int_{\Omega} |\nabla v|^2 d\Omega < \infty; \ v|_{\partial\Omega} = 0 \}.$$

$$(\mathcal{P})$$
 Find $u \in H_0^1(\Omega)$ such that:
 $-\operatorname{div}(\varepsilon \nabla u) = f \text{ in } \Omega.$

 \triangleright (\mathcal{P}) is equivalent to the variational problem:

Find
$$u \in H_0^1(\Omega)$$
 such that:

$$\int_{\Omega} \varepsilon \, \nabla u \cdot \nabla v \, d\Omega = \int_{\Omega} f v \, d\Omega \,, \forall v \in H_0^1(\Omega).$$

Difficulties:

• Loss of coercivity: there is no constant C such that

$$\int_{\Omega} \varepsilon |\nabla u|^2 d\Omega > C \int_{\Omega} |\nabla u|^2 d\Omega, \ \forall u \in H_0^1(\Omega).$$

• Add some dissipation (modeled by η) is not sufficient:

$$\left| \int_{\Omega} \varepsilon^{\eta} |\nabla u^{\eta}|^2 d\Omega \right| > \frac{C}{\eta} \int_{\Omega} |\nabla u^{\eta}|^2 d\Omega.$$

Questions:

- \triangleright Is problem (\mathcal{P}) well-posed?
- ▶ How to compute a numerical approximation of the solution?
- \triangleright New model when (\mathcal{P}) is ill-posed?

① Consider
$$\mathbf{T}_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + 2R_1 u_1 & \text{in } \Omega_2 \end{vmatrix}$$
, where R_1 is such that $\mathbf{T}_1 u \in H_0^1(\Omega)$.

(2)
$$\int_{\Omega} \varepsilon \, \nabla u \cdot \nabla (\mathsf{T}_1 \, u) \, d\Omega \ge C \int_{\Omega} |\nabla u|^2 \, d\Omega \text{ for } \varepsilon_1 \ge ||R_1||^2 \, |\varepsilon_2|.$$

- (3) Since T_1 is an isomorphism of $H_0^1(\Omega)$ (notice that $T_1^{-1} = T_1$), (\mathcal{P}_V) , and so (\mathcal{P}) , is well-posed when $\varepsilon_1 \geq ||R_1||^2 |\varepsilon_2|$.
- (4) One proceeds in the same way with T_2 built from $R_2: \Omega_2 \to \Omega_1$.

THEOREM. If the contrast $\kappa_{\varepsilon} = \varepsilon_2/\varepsilon_1 \notin I_{\Sigma} = [-\|R_2\|^2; -1/\|R_1\|^2]$ (critical interval) then problem (\mathcal{P}) is well-posed.

The T-coercivity approach

➤ This technique can be used to justify the classical finite element methods and to study the Maxwell's problem.

Symmetrical domain

$$R_1 = S_{\Sigma} \text{ and } R_2 = S_{\Sigma}$$
 (symmetry).

$$I_{\Sigma} = \{-1\}.$$

2D CORNER

 R_1 and R_2 obtained from symmetry/dilatation w.r.t. θ .

$$I_{\Sigma} = \left[-\frac{2\pi - \alpha}{\alpha}; -\frac{\alpha}{2\pi - \alpha} \right].$$

FICHERA'S CORNER

 R_1 and R_2 obtained from the symmetries S_{Ox} , S_{Oy} , S_{Oz} .

$$I_{\Sigma} = [-7; -1/7].$$

- ▶ If Σ is smooth, (\mathcal{P}) is well-posed for $\kappa_{\varepsilon} \neq -1$.
- ▶ If Σ has a corner, (\mathcal{P}) is well-posed for $\kappa_{\varepsilon} \notin I_{\Sigma}$ (open interval). But one observes a field of strong intensity in a neighbourhood of the corner.
 - \Rightarrow What happens in the critical interval I_{Σ} ?

Singularity problem

A black hole phenomena

Waveguide problem

Helmholtz equation in the bounded sector Ω

$$-\operatorname{div}(\varepsilon \nabla u) = -r^{-2}(\varepsilon(r\partial_r)^2 + \partial_\theta \varepsilon \partial_\theta)u = f.$$

 $(z,\theta) = (-\ln r, \theta)$ $(r,\theta) = (e^{-z},\theta)$

Helmholtz equation in the strip \mathcal{S}

$$-\operatorname{div}(\varepsilon \nabla u) = -(\varepsilon \partial_z^2 + \partial_\theta \varepsilon \partial_\theta) u = e^{-2z} f.$$

- ▶ For $\kappa_{\varepsilon} \in (-1; -1/3)$, propagative singularities appear:
 - $s_1^{\mp}(r,\theta) = \varphi_1(\theta)e^{\mp i\eta \ln r}$ where η is a real number which depends on κ_{ε} .
- ► Radiation condition in O to select the good singularity.
- ➤ We use PMLs in a neighbourhood of O to approach the solution which is not of finite energy.

- ▶ For $\kappa_{\varepsilon} \in (-1; -1/3)$, propagative modes appear:
 - $m_1^{\pm}(z,\theta) = \varphi_1(\theta)e^{\pm i\eta z}$ where η is a real number which depends on κ_{ε} .
- \triangleright Radiation condition in $+\infty$ to select the outgoing mode.
- ▶ We use PMLs to bound the domain and to implement classical finite element methods in the truncated strip.

