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Presentation of the ITEP

I Scattering in time-harmonic regime by an inclusion D (coe�cients A
and n) in R2: we look for an incident wave that does not scatter.

I This leads to study the Interior Transmission Eigenvalue Problem (cf. F.
Cakoni's talk):
 u is the total �eld in D  w is the incident �eld in D

div (A∇u) + k2nu = 0 in D
ν

ν

D
A 6= Id, n 6= 1

Transmission conditions on ∂D

Definition. Values of k ∈ C for which this problem has a nontrivial solution
(u,w) are called transmission eigenvalues.

I The goal in this talk is to prove that the set of transmission eigenvalues
is at most discrete.
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Variational formulation for the ITEP

I k is a transmission eigenvalue if and only if there exists (u,w) ∈ X\{0}
such that, for all (u′, w′) ∈ X,∫

D

A∇u · ∇u′ - ∇w · ∇w′ = k2

∫
D

(nuu′ - ww′),

not coercive on X

not an inner product on X

with X = {(u,w) ∈ H1(D)×H1(D) |u− w ∈ H1
0(D)}.

I This is a non standard eigenvalue problem.

I This problem has been widely studied since 1986-1988 (Bellis, Cakoni,
Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Sylvester, Païvärinta,

Rynne, Sleeman...)

I In this talk, we want to highlight an

Idea 1: Analogy with another non standard transmission problem ...
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Dielectric/Metamaterial Transmission
Eigenvalue Problem (DMTEP)

I Time-harmonic problem in electromagnetism (at a given frequency) set
in a heterogeneous bounded domain Ω of R2:

Ω1

Dielectric
Ω2

Metamaterial

Σ

I Eigenvalue problem for Ez in 2D:

Find v ∈ H1
0(Ω) such that:

div(µ−1∇v) + k2εv = 0 in Ω.

I k is a transmission eigenvalue if and only if there exists v ∈ H1
0(Ω)\{0}

such that, for all v′ ∈ H1
0(Ω),∫

Ω1

µ−1
1 ∇v · ∇v′ -

∫
Ω2

|µ2|−1∇v · ∇v′ = k2

(∫
Ω1

ε1vv′ -
∫

Ω2

|ε2|vv′
)
.
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Equivalence DMTEP/ITEP

I DMTEP in the domain Ω:

Ω1

Dielectric
Ω2

Metamaterial

Σ νε1 = n
µ1 = A

ε2 = −1
µ2 = −1

Transmission conditions on Σ

Symmetry with respect to the interface Σ

I We obtain a problem analogous to the ITEP in Ω1:

Ω1

Σ ν

Transmission conditions on Σ

I The interface Σ in the DMTEP plays the role of the boundary ∂D in the
ITEP.
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Outline of the talk: three steps

1 An analogy between two transmission problems

2 The T-coercivity method for the Dielectric/Metamaterial
Transmission Problem

3 The T-coercivity method for the Interior Transmission Problem
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Study of the DMTP

I Problem for Ez in a symmetric 2D domain:

Ω2Ω1

Σ

I We focus on the principal part:

(PV )

Find v ∈ H1
0(Ω) such that:∫

Ω

µ−1∇v · ∇v′︸ ︷︷ ︸
a(v,v′)

= 〈f, v′〉Ω︸ ︷︷ ︸
l(v′)

, ∀v′ ∈ H1
0(Ω).

Definition. We will say that the problem (PV ) is well-posed if the operator
div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

The form a is not coercive.

For µ2 = −µ1, we can build a kernel of in�nite dimension to (PV ).

Idea 2: Use the T-coercivity approach to deal with problem (PV ).

8 / 15
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For µ2 = −µ1, we can build a kernel of in�nite dimension to (PV ).

Idea 2: Use the T-coercivity approach to deal with problem (PV ).
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0(Ω).

(PV )
Find v ∈ H1

0(Ω) such that:
a(v, v′) = l(v′), ∀v′ ∈ H1

0(Ω).

Goal: Find T such that a is T-coercive:
∫

Ω

µ−1∇v · ∇(Tv) ≥ C ‖v‖2H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne

Ω1 Ω2

Σ

SΣ

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)
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Idea of the T-coercivity 2/2

3 One has a(v, T1v) =

∫
Ω

|µ|−1|∇v|2 − 2

∫
Ω2

µ−1
2 ∇v · ∇(SΣ v1)

Young's inequality + ‖SΣ‖ = 1⇒ a is T-coercive when |µ2| > µ1 .

4 With T2v =
v1 − 2SΣv2 in Ω1

−v2 in Ω2
, a is T-coercive when µ1 > |µ2| .

5 Conclusion:

Theorem. The operator div (µ−1∇·) is an isomorphism from H1
0(Ω) to

H−1(Ω) if and only if the contrast κµ = µ1/µ2 satis�es κµ 6= −1.

I By a localization process, when µ1 and µ2 are not constant, we can
prove that div (µ−1∇·) is of Fredholm type when

inf
Ω1∩V

µ1/ inf
Ω2∩V

µ2 < −1 or sup
Ω1∩V

µ1/ sup
Ω2∩V

µ2 > −1

where V is a neighbourhood of Σ.

I This technique also allows to deal with non symmetric con�gurations.
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1 An analogy between two transmission problems

2 The T-coercivity method for the Dielectric/Metamaterial
Transmission Problem

3 The T-coercivity method for the Interior Transmission Problem
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Study of the ITEP

I De�ne on X×X the sesquilinear form

a((u,w), (u′, w′)) =

∫
Ω

A∇u · ∇u′ - ∇w · ∇w′ − k2(nuu′ - ww′),

with X = {(u,w) ∈ H1(Ω)×H1(Ω) |u− w ∈ H1
0(Ω)}.

I Introduce the isomorphism T(u,w) = (u− 2w,−w).

I For k ∈ Ri\{0}, A > Id and n > 1, one �nds

<e a((u,w), T(u,w)) ≥ C (‖u‖2H1(Ω) + ‖w‖2H1(Ω)), ∀(u,w) ∈ X.

I Using the analytic Fredholm theorem, one deduces the

Proposition. Suppose that A > Id and n > 1. Then the set of transmis-
sion eigenvalues is discrete and countable.

I This result can be extended to situations where A− Id and n− 1

change sign in Ω working with T(u,w) = (u− 2χw,w)).
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ITEP when A = Id

I When A = Id, the ITP is not of Fredholm type in X likewise the DMTP
is not of Fredholm type in H1

0(Ω) when µ1 = −µ2.

I We focus on the principal part:

(FV )

Find v ∈ H2
0(D) such that:∫

D

1

1− n
∆v∆v′︸ ︷︷ ︸

a(v,v′)

= 〈f, v′〉D︸ ︷︷ ︸
l(v′)

, ∀v′ ∈ H2
0(D).

Transmission problem with a

possible sign-changing coefficient

Idea 3: This transmission problem is very di�erent from DMTP.

Theorem. The problem (FV ) is well-posed in the Fredholm sense as soon
as 1− n does not change sign in a neighbourhood of ∂D.

I Proof: T-coercivity or see J. Sylvester's work for a more precise study.
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Generalizations

" T-coercivity approach can be used for non-constant coe�cients (L∞)
and other problems (Maxwell's equations, elasticity, ...).

" It allows to justify the convergence of standard �nite element methods.

♠ What happens when A− Id change sign in a neighbourhood of the
boundary?

 For the equivalent DMTP, strong singularities appear at the
interface and H1 is no longer the appropriate functional framework. We
observe a black hole phenomenon (joint work with X. Claeys).

♠ We are not able to use the T-coercivity technique to prove existence of
transmission eigenvalues.
⇒ T-coercivity gives positivity but operators are no longer symmetric.
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