Transmission eigenvalue problems with sign-changing coefficients

PICOF 2012

A.-S. Bonnet-Ben Dhia ${ }^{\dagger}$, L. Chesnel ${ }^{\dagger}$, P. Ciarlet ${ }^{\dagger}$, H. Haddar ${ }^{\ddagger}$
${ }^{\dagger}$ POems team, Ensta, Paris, France
${ }^{\ddagger}$ DeFI team, École Polytechnique, Palaiseau, France

École Polytechnique, Palaiseau, France, April 2-4, 2012

Presentation of the ITEP

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.

Presentation of the ITEP

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem (cf. F. Cakoni's talk):

Presentation of the ITEP

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem (cf. F. Cakoni's talk):
- u is the total field in D

$$
\operatorname{div}(A \nabla u)+k^{2} n u=0 \quad \text { in } D
$$

Presentation of the ITEP

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem (cf. F. Cakoni's talk):
u is the total field in D
(w is the incident field in D

$$
\operatorname{div}(A \nabla u)+k^{2} n u=0 \quad \text { in } D
$$

$\Delta w+k^{2} w=0 \quad$ in D

Presentation of the ITEP

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem (cf. F. Cakoni's talk):
- u is the total field in D
(w is the incident field in D

$\operatorname{div}(A \nabla u)+k^{2} n u$	$=0$	in D
$\Delta w+k^{2} w$	$=0$	in D
$u-w$ $=$ on ∂D $\nu \cdot A \nabla u-\nu \cdot \nabla w$ $=0$ on ∂D.		

Transmission conditions on ∂D

Presentation of the ITEP

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem (cf. F. Cakoni's talk):
u is the total field in D
(w is the incident field in D

Find $(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D)$ such that:
$\operatorname{div}(A \nabla u)+k^{2} n u=0$ in D
$\Delta w+k^{2} w=0 \quad$ in D
$u-w \quad=0 \quad$ on ∂D

$\nu \cdot A \nabla u-\nu \cdot \nabla w=0 \quad$ on ∂D.
Transmission conditions on ∂D

Presentation of the ITEP

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem (cf. F. Cakoni's talk):
(u is the total field in D
(w is the incident field in D

Find $(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D)$ such that:
$\operatorname{div}(A \nabla u)+k^{2} n u=0 \quad$ in D
$\Delta w+k^{2} w=0 \quad$ in D
$u-w \quad=0 \quad$ on ∂D

$\nu \cdot A \nabla u-\nu \cdot \nabla w=0 \quad$ on ∂D. Transmission conditions on ∂D

Definition. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

Presentation of the ITEP

- Scattering in time-harmonic regime by an inclusion D (coefficients A and n) in \mathbb{R}^{2} : we look for an incident wave that does not scatter.
- This leads to study the Interior Transmission Eigenvalue Problem (cf. F. Cakoni's talk):
u is the total field in D
(w is the incident field in D

Find $(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D)$ such that:
$\operatorname{div}(A \nabla u)+k^{2} n u=0 \quad$ in D
$\Delta w+k^{2} w=0 \quad$ in D
$u-w \quad=0 \quad$ on ∂D

$\nu \cdot A \nabla u-\nu \cdot \nabla w=0 \quad$ on ∂D. Transmission conditions on ∂D

Definition. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

- The goal in this talk is to prove that the set of transmission eigenvalues is at most discrete.

Variational formulation for the ITEP

- k is a transmission eigenvalue if and only if there exists $(u, w) \in \mathrm{X} \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\int_{D} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}=k^{2} \int_{D}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

Variational formulation for the ITEP

- k is a transmission eigenvalue if and only if there exists $(u, w) \in \mathrm{X} \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\int_{D} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}=k^{2} \int_{D}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D) \mid u-w \in \mathrm{H}_{0}^{1}(D)\right\}$.

Variational formulation for the ITEP

- $\quad k$ is a transmission eigenvalue if and only if there exists $(u, w) \in \mathrm{X} \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\int_{D} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}=k^{2} \int_{D}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D) \mid u-w \in \mathrm{H}_{0}^{1}(D)\right\}$.

- This is a non standard eigenvalue problem.

Variational formulation for the ITEP

- $\quad k$ is a transmission eigenvalue if and only if there exists $(u, w) \in \mathrm{X} \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\underbrace{\int_{D} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}}_{\text {not coercive on } \mathrm{X}}=k^{2} \int_{D}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D) \mid u-w \in \mathrm{H}_{0}^{1}(D)\right\}$.

- This is a non standard eigenvalue problem.

Variational formulation for the ITEP

- $\quad k$ is a transmission eigenvalue if and only if there exists $(u, w) \in \mathrm{X} \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\underbrace{\int_{D} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}}_{\text {not coercive on X }}=k^{2} \int_{\text {not an inner product on } \mathrm{X}}^{\int_{D}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),}
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D) \mid u-w \in \mathrm{H}_{0}^{1}(D)\right\}$.

- This is a non standard eigenvalue problem.

Variational formulation for the ITEP

- k is a transmission eigenvalue if and only if there exists $(u, w) \in \mathrm{X} \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\underbrace{\int_{D} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}}_{\text {not coercive on } \mathrm{X}}=k^{2} \int_{\text {not an inner product on } \mathrm{X}}^{\int_{D}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),}
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D) \mid u-w \in \mathrm{H}_{0}^{1}(D)\right\}$.

- This is a non standard eigenvalue problem.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Sylvester, Païvärinta, Rynne, Sleeman...)

Variational formulation for the ITEP

- k is a transmission eigenvalue if and only if there exists $(u, w) \in \mathrm{X} \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\underbrace{\int_{D} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}}_{\text {not coercive on } \mathrm{X}}=k^{2} \int_{\text {not an inner product on } \mathrm{X}}^{\int_{D}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),}
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D) \mid u-w \in \mathrm{H}_{0}^{1}(D)\right\}$.

- This is a non standard eigenvalue problem.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Sylvester, Païvärinta, Rynne, Sleeman...)
- In this talk, we want to highlight an

Variational formulation for the ITEP

- k is a transmission eigenvalue if and only if there exists $(u, w) \in \mathrm{X} \backslash\{0\}$ such that, for all $\left(u^{\prime}, w^{\prime}\right) \in \mathrm{X}$,

$$
\underbrace{\int_{D} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}}_{\text {not coercive on X }}=k^{2} \int_{\text {not an inner product on } \mathrm{X}}^{\int_{D}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),}
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(D) \times \mathrm{H}^{1}(D) \mid u-w \in \mathrm{H}_{0}^{1}(D)\right\}$.

- This is a non standard eigenvalue problem.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Sylvester, Païvärinta, Rynne, Sleeman...)
- In this talk, we want to highlight an

Idea 1: Analogy with another non standard transmission problem ...

Dielectric/Metamaterial Transmission Eigenvalue Problem (DMTEP)

- Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^{2} :

Dielectric/Metamaterial Transmission Eigenvalue Problem (DMTEP)

- Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^{2} :

Dielectric/Metamaterial Transmission Eigenvalue Problem (DMTEP)

- Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^{2} :

- Eigenvalue problem for E_{z} in 2D:

$$
\begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \operatorname{div}\left(\mu^{-1} \nabla v\right)+k^{2} \varepsilon v=0 \quad \text { in } \Omega .
\end{aligned}
$$

Dielectric/Metamaterial Transmission Eigenvalue Problem (DMTEP)

- Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain Ω of \mathbb{R}^{2} :
$\begin{aligned} \varepsilon_{1} & :=\left.\varepsilon\right|_{\Omega_{1}}>0 \\ \mu_{1} & :=\left.\mu\right|_{\Omega_{1}}>0\end{aligned}$

Ω_{1} Dielectric	$\nu \quad \Omega_{2}$ Metamaterial			$\varepsilon_{2}:=\left.\varepsilon\right\|_{\Omega_{2}}<0$ $\mu_{2}:=\left.\mu\right\|_{\Omega_{2}}<0$

- Eigenvalue problem for E_{z} in 2D:

$$
\begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \operatorname{div}\left(\mu^{-1} \nabla v\right)+k^{2} \varepsilon v=0 \quad \text { in } \Omega .
\end{aligned}
$$

- k is a transmission eigenvalue if and only if there exists $v \in \mathrm{H}_{0}^{1}(\Omega) \backslash\{0\}$ such that, for all $v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)$,

$$
\int_{\Omega_{1}} \mu_{1}^{-1} \nabla v \cdot \overline{\nabla v^{\prime}}-\int_{\Omega_{2}}\left|\mu_{2}\right|^{-1} \nabla v \cdot \overline{\nabla v^{\prime}}=k^{2}\left(\int_{\Omega_{1}} \varepsilon_{1} v \overline{v^{\prime}}-\int_{\Omega_{2}}\left|\varepsilon_{2}\right| v \overline{v^{\prime}}\right) .
$$

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

$$
\text { Symmetry with respect to the interface } \Sigma
$$

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

$$
\text { Symmetry with respect to the interface } \Sigma
$$

- We obtain a problem analogous to the ITEP in Ω_{1} :

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

$$
\text { Symmetry with respect to the interface } \Sigma
$$

- We obtain a problem analogous to the ITEP in Ω_{1} :

Equivalence DMTEP/ITEP

- DMTEP in the domain Ω :

$$
\text { Symmetry with respect to the interface } \Sigma
$$

- We obtain a problem analogous to the ITEP in Ω_{1} :

- The interface Σ in the DMTEP plays the role of the boundary ∂D in the ITEP.

Outline of the talk: three steps

(1) An analogy between two transmission problems
(2) The T-coercivity method for the Dielectric/Metamaterial Transmission Problem
(3) The T-coercivity method for the Interior Transmission Problem
(1) An analogy between two transmission problems
(2) The T-coercivity method for the Dielectric/Metamaterial Transmission Problem

3 The T-coercivity method for the Interior Transmission Problem

Study of the DMTP

- Problem for E_{z} in a symmetric 2D domain:

Study of the DMTP

- Problem for E_{z} in a symmetric 2D domain:

- We focus on the principal part:

$$
\left(\mathscr{P}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \underbrace{\int_{\Omega} \mu^{-1} \nabla v \cdot \nabla v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Study of the DMTP

- Problem for E_{z} in a symmetric 2D domain:

- We focus on the principal part:

$$
\left(\mathscr{P}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \underbrace{\int_{\Omega} \mu^{-1} \nabla v \cdot \nabla v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Study of the DMTP

- Problem for E_{z} in a symmetric 2D domain:

- We focus on the principal part:

$$
\left(\mathscr{P}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \underbrace{\int_{\Omega}^{-1} \nabla v \cdot \nabla v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) . .
\end{aligned}\right.
$$

Definition. We will say that the problem $\left(\mathscr{P}_{V}\right)$ is well-posed if the operator $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{1}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$.

Study of the DMTP

- Problem for E_{z} in a symmetric 2D domain:

- We focus on the principal part:

$$
\left(\mathscr{P}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \int_{a\left(v, v^{\prime}\right)}^{\int_{\Omega}^{-1} \nabla v \cdot \nabla v^{\prime}}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Definition. We will say that the problem $\left(\mathscr{P}_{V}\right)$ is well-posed if the operator $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{1}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$.

- The form a is not coercive.

Study of the DMTP

- Problem for E_{z} in a symmetric 2D domain:

- We focus on the principal part:

$$
\left(\mathscr{P}_{V}\right) \left\lvert\, \underbrace{\begin{array}{l}
\text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
\int_{\Omega} \mu^{-1} \nabla v \cdot \nabla v^{\prime}
\end{array}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .}_{a\left(v, v^{\prime}\right)}\right.
$$

Definition. We will say that the problem $\left(\mathscr{P}_{V}\right)$ is well-posed if the operator $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{1}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$.

- The form a is not coercive.
- For $\mu_{2}=-\mu_{1}$, we can build a kernel of infinite dimension to $\left(\mathscr{P}_{V}\right)$.

Study of the DMTP

- Problem for E_{z} in a symmetric 2D domain:

- We focus on the principal part:

$$
\left(\mathscr{P}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& \int_{a\left(v, v^{\prime}\right)}^{\int_{\Omega} \mu^{-1} \nabla v \cdot \nabla v^{\prime}}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{\Omega}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Definition. We will say that the problem $\left(\mathscr{P}_{V}\right)$ is well-posed if the operator $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{1}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$.

- The form a is not coercive.
- For $\mu_{2}=-\mu_{1}$, we can build a kernel of infinite dimension to $\left(\mathscr{P}_{V}\right)$.

Idea 2: Use the T-coercivity approach to deal with problem $\left(\mathscr{P}_{V}\right)$.

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.
$\left(\mathscr{P}_{V}\right) \left\lvert\, \begin{aligned} & \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\ & a\left(v, v^{\prime}\right)=l\left(v^{\prime}\right), \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .\end{aligned}\right.$

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.
$\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned} & \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\ & a\left(v, \mathrm{~T} v^{\prime}\right)=l\left(\mathrm{~T} v^{\prime}\right), \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .\end{aligned}\right.$

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a\left(v, \mathrm{~T} v^{\prime}\right)=l\left(\mathrm{~T} v^{\prime}\right), \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla v \cdot \nabla(\mathrm{~T} v) \geq C\|v\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left(\mathscr{P}_{V}\right)$) is well-posed.

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a\left(v, \mathrm{~T} v^{\prime}\right)=l\left(\mathrm{~T} v^{\prime}\right), \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla v \cdot \nabla(\mathrm{~T} v) \geq C\|v\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left(\mathscr{P}_{V}\right)$) is well-posed.
(1) Define $\mathrm{T}_{1} v=\left\lvert\, \begin{array}{ll}v_{1} & \text { in } \Omega_{1} \\ -v_{2}+\ldots & \text { in } \Omega_{2}\end{array}\right.$

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a\left(v, \mathrm{~T} v^{\prime}\right)=l\left(\mathrm{~T} v^{\prime}\right), \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla v \cdot \nabla(\mathrm{~T} v) \geq C\|v\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left(\mathscr{P}_{V}\right)$) is well-posed.
(1) Define $\mathrm{T}_{1} v=\left\lvert\, \begin{array}{ll}v_{1} & \text { in } \Omega_{1} \\ -v_{2}+2 S_{\Sigma} v_{1} & \text { in } \Omega_{2}\end{array}\right.$, where S_{Σ} is the symmetry.

Idea of the T-coercivity $1 / 2$

Let T be an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$.

$$
\left(\mathscr{P}_{V}\right) \Leftrightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{1}(\Omega) \text { such that: } \\
& a\left(v, \mathrm{~T} v^{\prime}\right)=l\left(\mathrm{~T} v^{\prime}\right), \forall v^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
\end{aligned}\right.
$$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \mu^{-1} \nabla v \cdot \nabla(\mathrm{~T} v) \geq C\|v\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}$. In this case, Lax-Milgram $\Rightarrow\left(\mathscr{P}_{V}^{\mathrm{T}}\right)$ (and so $\left(\mathscr{P}_{V}\right)$) is well-posed.
(1) Define $\mathrm{T}_{1} v=\left\lvert\, \begin{array}{ll}v_{1} & \text { in } \Omega_{1} \\ -v_{2}+2 S_{\Sigma} v_{1} & \text { in } \Omega_{2}\end{array}\right.$, where S_{Σ} is the symmetry.

(2) $\mathrm{T}_{1} \circ \mathrm{~T}_{1}=I d$ so T_{1} is an isomorphism of $\mathrm{H}_{0}^{1}(\Omega)$

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(v, \mathrm{~T}_{1} v\right)=\int_{\Omega}|\mu|^{-1}|\nabla v|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla v \cdot \nabla\left(S_{\Sigma} v_{1}\right)$

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(v, \mathrm{~T}_{1} v\right)=\int_{\Omega}|\mu|^{-1}|\nabla v|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla v \cdot \nabla\left(S_{\Sigma} v_{1}\right)$

Young's inequality $+\left\|S_{\Sigma}\right\|=1 \Rightarrow a$ is T-coercive when $\left|\mu_{2}\right|>\mu_{1}$.

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(v, \mathrm{~T}_{1} v\right)=\int_{\Omega}|\mu|^{-1}|\nabla v|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla v \cdot \nabla\left(S_{\Sigma} v_{1}\right)$

Young's inequality $+\left\|S_{\Sigma}\right\|=1 \Rightarrow a$ is T-coercive when $\left|\mu_{2}\right|>\mu_{1}$.
(4) With $\mathrm{T}_{2} v=\left\lvert\, \begin{array}{ll}v_{1}-2 S_{\Sigma} v_{2} & \text { in } \Omega_{1} \\ -v_{2} & \text { in } \Omega_{2}\end{array}\right., a$ is T-coercive when $\mu_{1}>\left|\mu_{2}\right|$.

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(v, \mathrm{~T}_{1} v\right)=\int_{\Omega}|\mu|^{-1}|\nabla v|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla v \cdot \nabla\left(S_{\Sigma} v_{1}\right)$

Young's inequality $+\left\|S_{\Sigma}\right\|=1 \Rightarrow a$ is T-coercive when $\left|\mu_{2}\right|>\mu_{1}$
(4) With $\mathrm{T}_{2} v=\left\lvert\, \begin{array}{ll}v_{1}-2 S_{\Sigma} v_{2} & \text { in } \Omega_{1} \\ -v_{2} & \text { in } \Omega_{2}\end{array}\right., a$ is T-coercive when $\mu_{1}>\left|\mu_{2}\right|$.
(5) Conclusion:

Theorem. The operator $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{1}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$ if and only if the contrast $\kappa_{\mu}=\mu_{1} / \mu_{2}$ satisfies $\kappa_{\mu} \neq-1$.

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(v, \mathrm{~T}_{1} v\right)=\int_{\Omega}|\mu|^{-1}|\nabla v|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla v \cdot \nabla\left(S_{\Sigma} v_{1}\right)$

Young's inequality $+\left\|S_{\Sigma}\right\|=1 \Rightarrow a$ is T-coercive when $\left|\mu_{2}\right|>\mu_{1}$
(4) With $\mathrm{T}_{2} v=\left\lvert\, \begin{array}{ll}v_{1}-2 S_{\Sigma} v_{2} & \text { in } \Omega_{1} \\ -v_{2} & \text { in } \Omega_{2}\end{array}\right., a$ is T-coercive when $\mu_{1}>\left|\mu_{2}\right|$.
(5) Conclusion:

Theorem. The operator $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{1}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$ if and only if the contrast $\kappa_{\mu}=\mu_{1} / \mu_{2}$ satisfies $\kappa_{\mu} \neq-1$.

- By a localization process, when μ_{1} and μ_{2} are not constant, we can prove that $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is of Fredholm type when

$$
\inf _{\Omega_{1} \cap \mathcal{V}} \mu_{1} / \inf _{\Omega_{2} \cap \mathcal{V}} \mu_{2}<-1 \quad \text { or } \quad \sup _{\Omega_{1} \cap \mathcal{V}} \mu_{1} / \sup _{\Omega_{2} \cap \mathcal{V}} \mu_{2}>-1
$$

where \mathcal{V} is a neighbourhood of Σ.

Idea of the T-coercivity $2 / 2$

(3) One has $a\left(v, \mathrm{~T}_{1} v\right)=\int_{\Omega}|\mu|^{-1}|\nabla v|^{2}-2 \int_{\Omega_{2}} \mu_{2}^{-1} \nabla v \cdot \nabla\left(S_{\Sigma} v_{1}\right)$

Young's inequality $+\left\|S_{\Sigma}\right\|=1 \Rightarrow a$ is T-coercive when $\left|\mu_{2}\right|>\mu_{1}$
(4) With $\mathrm{T}_{2} v=\left\lvert\, \begin{array}{ll}v_{1}-2 S_{\Sigma} v_{2} & \text { in } \Omega_{1} \\ -v_{2} & \text { in } \Omega_{2}\end{array}\right., a$ is T-coercive when $\mu_{1}>\left|\mu_{2}\right|$.
(5) Conclusion:

Theorem. The operator $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is an isomorphism from $\mathrm{H}_{0}^{1}(\Omega)$ to $\mathrm{H}^{-1}(\Omega)$ if and only if the contrast $\kappa_{\mu}=\mu_{1} / \mu_{2}$ satisfies $\kappa_{\mu} \neq-1$.

- By a localization process, when μ_{1} and μ_{2} are not constant, we can prove that $\operatorname{div}\left(\mu^{-1} \nabla \cdot\right)$ is of Fredholm type when

$$
\inf _{\Omega_{1} \cap \mathcal{V}} \mu_{1} / \inf _{\Omega_{2} \cap \mathcal{V}} \mu_{2}<-1 \quad \text { or } \quad \sup _{\Omega_{1} \cap \mathcal{V}} \mu_{1} / \sup _{\Omega_{2} \cap \mathcal{V}} \mu_{2}>-1
$$

where \mathcal{V} is a neighbourhood of Σ.

- This technique also allows to deal with non symmetric configurations.

(1) An analogy between two transmission problems

(2) The T-coercivity method for the Dielectric/Metamaterial Transmission Problem
(3) The T-coercivity method for the Interior Transmission Problem

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right),
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- Introduce the isomorphism $\mathrm{T}(u, w)=(u-2 w,-w)$.

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right)
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- Introduce the isomorphism $\mathrm{T}(u, w)=(u-2 w,-w)$.
- For $k \in \mathbb{R} i \backslash\{0\}, A>I d$ and $n>1$, one finds

$$
\Re e a((u, w), \mathrm{T}(u, w)) \geq C\left(\|u\|_{\mathrm{H}^{1}(\Omega)}^{2}+\|w\|_{\mathrm{H}^{1}(\Omega)}^{2}\right), \quad \forall(u, w) \in \mathrm{X} .
$$

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right)
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- Introduce the isomorphism $\mathrm{T}(u, w)=(u-2 w,-w)$.
- For $k \in \mathbb{R} i \backslash\{0\}, A>I d$ and $n>1$, one finds

$$
\Re e a((u, w), \mathrm{T}(u, w)) \geq C\left(\|u\|_{\mathrm{H}^{1}(\Omega)}^{2}+\|w\|_{\mathrm{H}^{1}(\Omega)}^{2}\right), \quad \forall(u, w) \in \mathrm{X} .
$$

- Using the analytic Fredholm theorem, one deduces the

Proposition. Suppose that $A>I d$ and $n>1$. Then the set of transmission eigenvalues is discrete and countable.

Study of the ITEP

- Define on $\mathrm{X} \times \mathrm{X}$ the sesquilinear form

$$
a\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)=\int_{\Omega} A \nabla u \cdot \overline{\nabla u^{\prime}}-\nabla w \cdot \overline{\nabla w^{\prime}}-k^{2}\left(n u \overline{u^{\prime}}-w \overline{w^{\prime}}\right)
$$

with $\mathrm{X}=\left\{(u, w) \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega) \mid u-w \in \mathrm{H}_{0}^{1}(\Omega)\right\}$.

- Introduce the isomorphism $\mathrm{T}(u, w)=(u-2 w,-w)$.
- For $k \in \mathbb{R} i \backslash\{0\}, A>I d$ and $n>1$, one finds

$$
\Re e a((u, w), \mathrm{T}(u, w)) \geq C\left(\|u\|_{\mathrm{H}^{1}(\Omega)}^{2}+\|w\|_{\mathrm{H}^{1}(\Omega)}^{2}\right), \quad \forall(u, w) \in \mathrm{X} .
$$

- Using the analytic Fredholm theorem, one deduces the

Proposition. Suppose that $A>I d$ and $n>1$. Then the set of transmission eigenvalues is discrete and countable.

- This result can be extended to situations where $A-I d$ and $n-1$ change sign in Ω working with $\mathrm{T}(u, w)=(u-2 \chi w, w))$.

ITEP when $A=I d$

- When $A=I d$, the ITP is not of Fredholm type in X likewise the DMTP is not of Fredholm type in $\mathrm{H}_{0}^{1}(\Omega)$ when $\mu_{1}=-\mu_{2}$.

ITEP when $A=I d$

- We change the functional framework working on the difference $v:=u-w \in \mathrm{H}_{0}^{2}(D): k$ is a transmission eigenvalue if and only if there exists $v \in \mathrm{H}_{0}^{2}(D) \backslash\{0\}$ such that, for all $v^{\prime} \in \mathrm{H}_{0}^{2}(D)$,

$$
\int_{D} \frac{1}{1-n}\left(\Delta v+k^{2} n v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0 .
$$

- We focus on the principal part:

$$
\left(\mathscr{F}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{2}(D) \text { such that: } \\
& \underbrace{\int_{D} \frac{1}{1-n} \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{D}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(D) .
\end{aligned}\right.
$$

ITEP when $A=I d$

- We change the functional framework working on the difference
$v:=u-w \in \mathrm{H}_{0}^{2}(D): k$ is a transmission eigenvalue if and only if there exists $v \in \mathrm{H}_{0}^{2}(D) \backslash\{0\}$ such that, for all $v^{\prime} \in \mathrm{H}_{0}^{2}(D)$,

$$
\int_{D} \frac{1}{1-n}\left(\Delta v+k^{2} n v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0
$$

- We focus on the principal part:

ITEP when $A=I d$

- We change the functional framework working on the difference $v:=u-w \in \mathrm{H}_{0}^{2}(D): k$ is a transmission eigenvalue if and only if there exists $v \in \mathrm{H}_{0}^{2}(D) \backslash\{0\}$ such that, for all $v^{\prime} \in \mathrm{H}_{0}^{2}(D)$,

$$
\int_{D} \frac{1}{1-n}\left(\Delta v+k^{2} n v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0
$$

- We focus on the principal part:

$$
\left(\mathscr{F}_{V}\right) \left\lvert\, \begin{aligned}
& \text { Find } v \in \mathrm{H}_{0}^{2}(D) \text { such that: } \underbrace{\int_{D} \frac{1}{1-n} \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{D}}_{l\left(v^{\prime}\right)}, \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(D)
\end{aligned}\right.
$$

Idea 3: This transmission problem is very different from DMTP.

ITEP when $A=I d$

- We change the functional framework working on the difference $v:=u-w \in \mathrm{H}_{0}^{2}(D): k$ is a transmission eigenvalue if and only if there exists $v \in \mathrm{H}_{0}^{2}(D) \backslash\{0\}$ such that, for all $v^{\prime} \in \mathrm{H}_{0}^{2}(D)$,

$$
\int_{D} \frac{1}{1-n}\left(\Delta v+k^{2} n v\right)\left(\Delta v^{\prime}+k^{2} v^{\prime}\right)=0
$$

- We focus on the principal part:

$$
\left(\mathscr{F}_{V}\right) \left\lvert\, \underbrace{\int_{D} \frac{1}{1-n} \Delta v \Delta v^{\prime}}_{a\left(v, v^{\prime}\right)}=\underbrace{\left\langle f, v^{\prime}\right\rangle_{D}}_{l\left(v^{\prime}\right)}\right., \quad \forall v^{\prime} \in \mathrm{H}_{0}^{2}(D) .
$$

Idea 3: This transmission problem is very different from DMTP.

Theorem. The problem $\left(\mathscr{F}_{V}\right)$ is well-posed in the Fredholm sense as soon as $1-n$ does not change sign in a neighbourhood of ∂D.

- Proof: T-coercivity or see J. Sylvester's work for a more precise study. ${ }_{13 / 15}$

Generalizations

\checkmark T-coercivity approach can be used for non-constant coefficients (L^{∞}) and other problems (Maxwell's equations, elasticity, ...).
\checkmark It allows to justify the convergence of standard finite element methods.
© What happens when $A-I d$ change sign in a neighbourhood of the boundary?
© For the equivalent DMTP, strong singularities appear at the interface and H^{1} is no longer the appropriate functional framework. We observe a black hole phenomenon (joint work with X. Claeys).
© We are not able to use the T-coercivity technique to prove existence of transmission eigenvalues.
\Rightarrow T-coercivity gives positivity but operators are no longer symmetric.

Thank you for your attention.

A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., T-coercivity for scalar interface problems between dielectrics and metamaterials, M2AN, to appear, 2012.
囯 A.-S. Bonnet-Ben Dhia, L. Chesnel, H. Haddar, On the use of T-coercivity to study the interior transmission eigenvalue problem, C. R. Acad. Sci. Paris, Ser. I, 349:647-651, 2011.
围 A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr., C.M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math, 234:1912-1919, 2010, Corrigendum J. Comput. Appl. Math., 234:2616, 2010.
F. Cakoni, H. Haddar, Transmission eigenvalues in inverse scattering theory, submitted, 2012.
L. Chesnel, Interior transmission eigenvalue problem for Maxwell's equations: the T-coercivity as an alternative approach, Inverse problems, to appear, 2012.

