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General setting

» We are interested in methods based on the propagation of waves to
determine the shape, the physical properties of objects, in an exact or
qualitative manner, from given measurements.

» GENERAL PRINCIPLE OF THE METHODS:
i) send waves in the medium;
ii) measure the scattered field;
iii) deduce information on the structure.
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e Many techniques: Xray, ultrasound imaging, seismic tomography, ...

e Many applications: biomedical imaging, non destructive testing of

materials, geophysics, ...
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Model problem

» Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable (coefficients p) in R2.

Find v such that

—Au = Epu in R?,
u = wu+us inR2 (1)
Oug
li —= —jkuy ) = 0.
i V(G ) =0
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Model problem

» Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable (coefficients p) in R2.

\\l uj := e™¥me® (incident dir. Oy, € S')

e
0= 1

Find u such that
—Au = Epu in R?,
u = wu+us inR?, (1)

: Jus .
TEIJPOO VT (87’ — zkus> =0.

DEFINITION: | u; = incident field (data)

u = total field (uniquely defined by (1))
us = scattered field (uniquely defined by (1)).
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Illustration of the scattering of a plane wave

» Below, the movies represent a numerical approximation of the solution
of the previous problem.

Incident field Total field Scattered field
t— Re (e Why;(z)) t— Re (e “Whu(x)) t— Re (e “hug(z))

» The pulsation w is defined by w = k/c where ¢ = 1 is the celerity of the

waves in the homogeneous medium.
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Far field pattern

» The scattered field of an incident plane wave of direction 6;,. behaves in
each direction like a cylindrical wave at infinity:
eikr
us(mveinc) = 7 ( ugo(escaaoinc) + 0(1/7"))

as r = |x| — 400, uniformly in Oy, € St.
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other terms are too small).
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Far field pattern

» The scattered field of an incident plane wave of direction 6;,. behaves in
each direction like a cylindrical wave at infinity:
eikr
US(ID,OinC) = 7 ( U§°(9sca,0inc) + 0(1/7"))

as r = |x| — 400, uniformly in Oy, € St.

DEFINITION: The map u°(-,-) : S! x S! — C is called the far field pattern.

@ The far field pattern is the quantity one can measure at infinity (the
other terms are too small).

» The goal of imaging techniques is to find features of the inclusion from
the knowledge of u2(-,-) on a subset of S! x S'.

- In literature, most of the techniques require a continuum of data.

- In practice, one has a finite number of emitters and receivers.
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Setting

» Let 0,...,0y be given directions of the unit circle S.
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» We assume that emitters and receivers coincide:
e We send the plane wave ¢*91°% (direction ;) and measure the resulted
scattered fields in the directions —01,..., —0y.
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» We assume that emitters and receivers coincide:
e We send the plane wave ¢*91°% (direction ;) and measure the resulted
scattered fields in the directions —01,..., —0y.

e We repeat the experiment sending successively plane waves in the
directions 6s,..., Oy.
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Setting

» Let 0,...,0y be given directions of the unit circle S.

~

g -

ray

» We assume that emitters and receivers coincide:

e We send the plane wave ¢*91°% (direction ;) and measure the resulted
scattered fields in the directions —01,..., —0y.

e We repeat the experiment sending successively plane waves in the
directions 6s,..., Oy.

N x N multistatic backscattering measurements
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Relative scattering matrix

» For 04,...,0y given directions of St, we introduce the relative

scattering matrix

L (k) =

ug®(—01,01)

us®(=On,61)

uso(_eh GN)

u(—0n,0N)

e CNxN,
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Relative scattering matrix

» For 04,...,0y given directions of St, we introduce the relative
scattering matrix

u(—01,01) - u®(—601,0y)
S (k) = : : € CN*N,
uF(=0n,61) - ul(—On,0N)

» Note that (k) = 0 when there is no obstacle (= “relative”).
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Relative scattering matrix

» For 04,...,0y given directions of St, we introduce the relative
scattering matrix

u(—01,01) - u®(—601,0y)
(k) == : : € CNxN,
uF(=0n,61) - ul(—On,0N)

» Note that (k) = 0 when there is no obstacle (= “relative”).

We are interested in defects that cannot be detected and in invisibility.

1) Is there an incident wave which does not scatter at infinity?
— ker (k) # {0}?

2) Can it be that all incident waves do not scatter at infinity?
— (k) =07
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Outline of the talk

@ Introduction

9 Non-scattering wavenumbers

Is there an incident wave which does not scatter at infinity?

e Invisible inclusions

Can it be that all incident waves do not scatter at infinity?

@ Conclusion

8 /25



© Non-scattering wavenumbers
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Non-scattering wavenumbers

DEFINITION. Values of & > 0 for which .”(k) has a non trivial kernel are
called non-scattering wavenumbers.

» For k non-scat. wavenumber, there is some (a1, ...,ay) € CV\ {0} s.t.
N
U = Z anezken-z
n=1
does not scatter at infinity in the directions —6+,...,—8y.
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Non-scattering wavenumbers

DEFINITION. Values of & > 0 for which .”(k) has a non trivial kernel are
called non-scattering wavenumbers.

» For k non-scat. wavenumber, there is some (a1, ...,ay) € CV\ {0} s.t.
N
U = Z anezkenm
n=1
does not scatter at infinity in the directions —6+,...,—8y.

We want to prove that non-scattering wavenumbers form a discrete set be-
cause we want to avoid them to implement reconstruction techniques.
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Discreteness of non-scattering wavenumbers

IDEA OF THE APPROACH:

@ We show that k +— .7 (k) can be meromorphically extended to C \ {0}.
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@ We show that k +— .7 (k) can be meromorphically extended to C \ {0}.

@ For k € Ri\ {0}, using integration by parts, we prove the energy identity
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R2 D
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@ For k € Ri\ {0}, p < 1, we deduce that .#(k) is invertible.

@ Using the principle of isolated zeros, we obtain the following result:

PROPOSITION.  Suppose that p < 1. Then the set of non-scattering
wavenumbers is discrete and countable.
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© Invisible inclusions
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Invisible inclusions: setting

» In the previous section, for a given obstacle, we have studied the k such
that ker .7 (k) # {0} (L (k) is the relative scattering matrix).

» Now, we assume that & and the support of the inclusion D are given.

We explain how to construct non trivial inclusions such that .7 (k) = 0. ‘
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» These inclusions cannot be detected from far field measurements.

13 / 25



Invisible inclusions: setting

» In the previous section, for a given obstacle, we have studied the k such
that ker .7 (k) # {0} (L (k) is the relative scattering matrix).

» Now, we assume that & and the support of the inclusion D are given.

We explain how to construct non trivial inclusions such that .7 (k) = 0. ‘

» To simplify the presentation, assume that there is only one incident
direction Oi,.. Let 61,...,0y be given scattering directions.

13 / 25



Invisible inclusions: setting

» In the previous section, for a given obstacle, we have studied the k such
that ker .7 (k) # {0} (L (k) is the relative scattering matrix).

» Now, we assume that & and the support of the inclusion D are given.

We explain how to construct non trivial inclusions such that .7 (k) = 0. ‘

» To simplify the presentation, assume that there is only one incident
direction Oi,.. Let 61,...,0y be given scattering directions.

FORMULATION OF THE PROBLEM:

Find a real valued function p # 1, with p — 1 supported in D, such
that the solution of the problem

Find u = ug + e™*0inc® gych that

—Au = k’pu in RZ
Oug
li — dku. | =
r;l—}l-loo \/F < or g us) 0
verifies u>°(01) = -+ = u®(Oy) = 0.
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Invisible inclusions: setting

» In the previous section, for a given obstacle, we have studied the k such
that ker .7 (k) # {0} (L (k) is the relative scattering matrix).

» Now, we assume that & and the support of the inclusion D are given.

We explain how to construct non trivial inclusions such that .7 (k) = 0. ‘

» To simplify the presentation, assume that there is only one incident
direction Oi,.. Let 61,...,0y be given scattering directions.

Origin of the method:

e The idea we will use has been introduced in Nazarov 11 to construct waveg-
uides for which there are embedded eigenvalues in the continuous spectrum.

e It has been adapted in Bonnet-Ben Dhia & Nazarov 13 to build invisible
perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov & Taskinen
14 for an application to a water-wave problem).
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),...,Fan(0) T € R?V.

(N complex measurements = 2N real measurements)
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),...,Fan(0) T € R?V.

» No obstacle leads to null measurements = F'(0) = 0.
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),..., Fan(0))T € R*.
Our goal: to find o € L*>°(D) such that F(o) =0 (with o # 0).

» We look for small perturbations of the reference medium: o = ;1 where
€ > 0 is a small parameter and where p has be to determined.
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),...,Fan(0) T € R?V.

Our goal: to find o € L*>°(D) such that F(o) =0 (with o # 0).

> Taylor: F(ep) = F(0) +edF(0)(u) + €2F= (1)
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),..., Fan(0))T € R*.
Our goal: to find o € L*>°(D) such that F(o) =0 (with o # 0).

> Taylor: F(ep) = edF(0)(p) 4+ 2 F* ().

Assume that dF(0) : L=°(D) — R2" is onto. ‘
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» Take p = pg + Z Tnln Where the 7,, are real parameters to set:
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where 7 = (71,...,7on) | and G(7) = —eF* ().

If G¢ is a contraction, the fixed-point equation has a unique solution 7.
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),..., Fan(0))T € R*.
Our goal: to find o € L*>°(D) such that F(o) =0 (with o # 0).

> Taylor: F(ep) = edF(0)(p) 4+ 2 F* ().

Assume that dF(0) : L=°(D) — R2" is onto. ‘

. 4P (0) (o) =0
3 s srseeeobant € LX) S| (o)) ap(0) )] = T

2N
» Take p = pg + Z Tnln Where the 7,, are real parameters to set:
n=1
0= F(ep) & 7= G°(T)
where 7 = (71,...,7on) | and G(7) = —eF* ().

If G¢ is a contraction, the fixed-point equation has a unique solution 7.

Set 0%°! := eu*°l. We have F(0°°!) = 0 (existence of an invisible inclusion).
14/ 25



Calculus of dF(0)

» For our problem, we have (¢ = p—1)

F(o) = (Reul®(0y),...,Reu(On), Smu®(01),...,Smu(0y)).
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» We denote u®, uS the functions satisfying

Find u® = u + e®%ne® with u¢ outgoing, such that
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im/4
£ 00 _ 2 € _1 ) e\ —1ik@, -z __ € )
o ut™(0,) =ck /D(p ) (ui +ul) e dx (c —m)
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Calculus of dF(0)

» For our problem, we have (¢ = p—1)
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Calculus of dF(0)

>

For our problem, we have (0 = p — 1)

u(61) uF(0y) . u(0:1) o U (On)
Ck2 yoo Ck’Q ,sm Ck2 ,...,JmT).

F(o) = (Re ., Re

To compute dF(0)(u), we take p° = 1+ ep with p supported in D.

We denote v, u$ the functions satisfying

Find u® = u + e®%ne® with u¢ outgoing, such that
—Auf = E2pfuf  in RZ

We obtain the expansion (Born approx.), for small &

us>(0,) =0+cck? / p e*Ome=0)2 ol 1 O(£2).
D

aFO)(u) = ([

JD

/Dusin(/c(einc —0))-2)de, .. /

D

pcos(k(Oine — 61)-x) de, . . . ,/,ucos(k(@mC —0y)-z) dz,
D

1510 (k(Bine — On)-2) d:c)
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Calculus of dF(0)

einc an = Hinc
SN O TN
Emitter Receiver
(/,ucos —601)-x)dzx,..., /,ucos(lc(@mC —0n)-z) dz,
D
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Construction of the shape functions
OIf 6. #6, forn=1,...,N,

M = {cos(k(Oinc — 0r) - x),sin(k(Oinc — 0r) - m)}ﬁ;l,

is a family of linearly independent functions. Using the Gram matrix, we
can build g1 1,..., 1N, f2,15- -, 2. v € span(#) such that

/ 141,m €o8(k(@inc — 0y) - ) de = ™", / p1,m SIn(k(Oine — 65) - ) de =0
D D

/ 142,m €0S(k(@ine — 0y) - ) dx = 0, / 142, SIN(K(Oine — 6) - ) dx = 6™
D D
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Construction of the shape functions
OIf 6. #6, forn=1,...,N,

M = {cos(k(Oinc — 0r) - x),sin(k(Oinc — 0r) - q:)}ﬁ/:l,

is a family of linearly independent functions. Using the Gram matrix, we
can build g1 1,..., 1N, f2,15- -, 2. v € span(#) such that

/ 141,m €o8(k(@inc — 0y) - ) de = ™", / p1,m SIn(k(Oine — 65) - ) de =0
D D

/ 142,m €0S(k(@ine — 0y) - ) dx = 0, / 142, SIN(K(Oine — 6) - ) dx = 6™
D D

® We take
N N
po=pf — Y (/ 11,m 1 dm) Bim— ) </ 12,m 1 dm) [2,m
=1 \WD m=1 /P

where M# ¢ Span{/ll,h ceey ML NS H2,15 - M2AN}-
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Main result

enough, define p™' = 1 + ep*°! with
N

m=1

Then the solution of the scattering problem

Find u® = uS + ¢*%nc® such that

—~Au = k?p*'u in R?,
Ous
li — — thus | =
TJIJIrloo \/; ( 87“ ! Us> 0
verifies u>°(01) = --- = uS*(Oy) = 0.

N
sol § : sol § : sol
M = Mo + Tl,m ,U/l,m + T2,m ,M‘Z,m~
m=1

PROPOSITION: Assume that Oy, # 6, for n = 1,...,N. For & small

COMMENTS:

— Proving that G® is a contraction is not a big deal.

— We have ;°°! # 0 (non trivial inclusion). To see it, compute dF(0)(u

sol)‘
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COMMENTS:
— Proving that G® is a contraction is not a big deal.
— We have ;°°! # 0 (non trivial inclusion). To see it, compute dF(0)(u

— This proof of existence of invisible inclusions may appear not so surprising since
S(k) e RQN, p € L=(D). The case Oinc = 0, shows that nothing is obvious...17 /05
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The case 6;,. =0,

» In the previous approach, we needed to assume @i # 60, ,n=1,...,N.
What if 6;,. = 0,,7

Oinc on = 0inc
TN O >
Emitter Receiver
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» In the previous approach, we needed to assume @i # 60, ,n=1,...,N.
What if 6;,. = 0,,7

» There holds

u® (Oine) = ¢ k2/ (p—1) (u + us) % de.
D

e No solution if D has corners and under certain assumptions on p.

- Corners always scatter, E. Blasten, L. Paivarinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

e And if D is smooth? = The problem seems open.

|z| Imposing invisibility in the direction 0;,. requires to impose invisi-
bility in all directions 8 € S'!

By Rellich’s lemma, this implies u; = 0 in R? \ D = we are back to the
continuous ITEP (with a strong assumption on the incident field).

18 / 25



Data and algorithm

» We can solve the fixed point problem using an iterative procedure: we
set 70 = (0,...,0)T then define

—'n+1 Ga( n)
» At each step, we solve a scattering problem. We use a P2 finite element
method set on the ball Bg. On 0Bg, a truncated Dirichlet-to-Neumann map

with 13 harmonics serves as a transparent boundary condition.

» For the numerical experiments, we take D = By, M = 3 (3 directions of
observation) and

Oinc = (cos(Yine), sin(¢Yinc)), Pine = 0°

01 = (cos(¢1), sin(¥1)), 1 = 90°

92 (cos(tp2), sin(1h2)), Yo = 180°
= (cos(¢3), sin(y3)), Y3 = 225°
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Results: coefficient p at the end of the process

.374836
1.3

— —— Il'2

0.915801

.374836

0.915801
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Results: scattered field

0.781012

0.1
0.01
0.001
0.0001

5.479e-5

Figure: |ug| at the end of the fixed point procedure in logarithmic scale. As
desired, we see it is very small far from D in the directions corresponding to
the angles 90°, 180° and 225°. The domain is equal to Bs.
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Results: far field pattern

:J — — — Far field pattern at iteration 0

07 Far field pattern at the end of the fixed point procedure P

0.5~

0.3

0.1r-

0 !
0 50 100 150 200 250 300 350

Figure: The dotted lines show the directions where we want u2° to vanish.
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@ Conclusion
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Conclusion

Discreteness of non-scattering eigenvalues

For a given obstacle, is there an incident field that does not scatter?

& How to proceed to prove discreteness of non-scattering wavenumbers for
situations other than multistatic backscattering measurements?

& Can we relax assumptions on p?

& Can we prove existence of non-scattering wavenumbers in this setting?
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Conclusion

Discreteness of non-scattering eigenvalues

For a given obstacle, is there an incident field that does not scatter?

& How to proceed to prove discreteness of non-scattering wavenumbers for
situations other than multistatic backscattering measurements?

& Can we relax assumptions on p?

& Can we prove existence of non-scattering wavenumbers in this setting?

Invisibility
For a given frequency, how to build an invisible obstacle?

& An important issue: can we reiterate the process to construct larger
defects in the reference medium?

& Can we hide small Dirichlet obstacles (flies)? Work in progress...
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Thank you for your attention!!!
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