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General setting
I We are interested in methods based on the propagation of waves to
determine the shape, the physical properties of objects, in an exact or
qualitative manner, from given measurements.

I General principle of the methods:
i) send waves in the medium;
ii) measure the scattered field;
iii) deduce information on the structure.

• Many techniques: Xray, ultrasound imaging, seismic tomography, ...
• Many applications: biomedical imaging, non destructive testing of
materials, geophysics, ...
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Model problem
I Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable inclusion D (coefficients ρ) in R2.

ui := eikθinc·x (incident dir. θinc ∈ S1)

ρ = 1 D
ρ 6= 1

Find u such that
−∆u = k2ρ u in R2,

u = ui + us in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0.

(1)

Definition: ui = incident field (data)
u = total field (uniquely defined by (1))
us = scattered field (uniquely defined by (1)).
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Illustration of the scattering of a plane wave

I Below, the movies represent a numerical approximation of the solution
of the previous problem.

Incident field Total field Scattered field

t 7→ <e (e−iωtui(x)) t 7→ <e (e−iωtu(x)) t 7→ <e (e−iωtus(x))

I The pulsation ω is defined by ω = k/c where c = 1 is the celerity of the
waves in the homogeneous medium.
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Far field pattern
I The scattered field of an incident plane wave of direction θinc behaves in
each direction like a cylindrical wave at infinity:

us(x,θinc) = eikr
√
r

(
u∞s (θsca,θinc) + O(1/r)

)
as r = |x| → +∞, uniformly in θsca ∈ S1.

Definition: The map u∞s (·, ·) : S1×S1 → C is called the far field pattern.

The far field pattern is the quantity one can measure at infinity (the
other terms are too small).

I The goal of imaging techniques is to find features of the inclusion from
the knowledge of u∞s (·, ·) on a subset of S1 × S1.

- In literature, most of the techniques require a continuum of data.
- In practice, one has a finite number of emitters and receivers.
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Setting
I Let θ1, . . . ,θN be given directions of the unit circle S1.

−→
θ1

←−
θ2

−→
θ3

−→
θ1
←−
−θ1

−→
−θ2

←−−θ3

I We assume that emitters and receivers coincide:

• We send the plane wave eikθ1·x (direction θ1) and measure the resulted
scattered fields in the directions −θ1, . . . ,−θN .

• We repeat the experiment sending successively plane waves in the
directions θ2,. . . , θN .

N ×N multistatic backscattering measurements
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Relative scattering matrix
I For θ1, . . . ,θN given directions of S1, we introduce the relative
scattering matrix

S (k) :=

u∞s (−θ1,θ1) · · · u∞s (−θ1,θN )
...

. . .
...

u∞s (−θN ,θ1) · · · u∞s (−θN ,θN )

 ∈ CN×N .

I Note that S (k) = 0 when there is no obstacle (⇒ “relative”).

We are interested in defects that cannot be detected and in invisibility.
1) Is there an incident wave which does not scatter at infinity?
→ kerS (k) 6= {0}?

2) Can it be that all incident waves do not scatter at infinity?
→ S (k) = 0?
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Outline of the talk

1 Introduction

2 Non-scattering wavenumbers

Is there an incident wave which does not scatter at infinity?

3 Invisible inclusions

Can it be that all incident waves do not scatter at infinity?

4 Conclusion
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Non-scattering wavenumbers

Definition. Values of k > 0 for which S (k) has a non trivial kernel are
called non-scattering wavenumbers.

I For k non-scat. wavenumber, there is some (α1, . . . , αN ) ∈ CN \ {0} s.t.

ui =
N∑

n=1
αneikθn ·x

does not scatter at infinity in the directions −θ1, . . . ,−θN .

We want to prove that non-scattering wavenumbers form a discrete set be-
cause we want to avoid them to implement reconstruction techniques.
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Discreteness of non-scattering wavenumbers
Idea of the approach:

1 We show that k 7→ S (k) can be meromorphically extended to C \ {0}.

2 For k ∈ Ri \ {0}, using integration by parts, we prove the energy identity

c α>S (k)α =
∫
R2
|∇us|2 + |k|2ρ |us|2 + |k|2

∫
D

(1− ρ)|ui|2.

where ui =
N∑

n=1
αneikθn ·x , α = (α1, . . . , αN )> and c 6= 0 is a constant.

3 For k ∈ Ri \ {0}, ρ < 1, we deduce that S (k) is invertible.

4 Using the principle of isolated zeros, we obtain the following result:

Proposition. Suppose that ρ < 1. Then the set of non-scattering
wavenumbers is discrete and countable.
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Invisible inclusions: setting
I In the previous section, for a given obstacle, we have studied the k such
that kerS (k) 6= {0} (S (k) is the relative scattering matrix).

I Now, we assume that k and the support of the inclusion D are given.
We explain how to construct non trivial inclusions such that S (k) = 0.

I To simplify the presentation, assume that there is only one incident
direction θinc. Let θ1, . . . ,θN be given scattering directions.

Formulation of the problem:
Find a real valued function ρ 6≡ 1, with ρ − 1 supported in D, such
that the solution of the problem

Find u = us + eikθinc·x such that
−∆u = k2ρ u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.

Origin of the method:

• The idea we will use has been introduced in Nazarov 11 to construct waveg-
uides for which there are embedded eigenvalues in the continuous spectrum.

• It has been adapted in Bonnet-Ben Dhia & Nazarov 13 to build invisible
perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov & Taskinen
14 for an application to a water-wave problem).
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Sketch of the method
I Define σ = ρ− 1 and gather the measurements in the vector

F(σ) = (F1(σ), . . . ,F2N (σ))> ∈ R2N .

(N complex measurements ⇒ 2N real measurements)

I We look for small perturbations of the reference medium: σ = εµ where
ε > 0 is a small parameter and where µ has be to determined.
Assume that dF(0) : L∞(D)→ R2N is onto.

∃ µ0, µ1, . . . , µ2N ∈ L∞(D) s.t. dF(0)(µ0) = 0
[dF(0)(µ1), . . . , dF(0)(µ2N )] = Id2N .

I Take µ = µ0 +
2N∑

n=1
τnµn where the τn are real parameters to set:

0 = F(εµ) ⇔

0 = ε
2N∑

n=1
τndF(0)(µn) + ε2F̃ε(µ)

where ~τ = (τ1, . . . , τ2N )>

and Gε(~τ) = −εF̃ε(µ).

If Gε is a contraction, the fixed-point equation has a unique solution ~τ sol.

Set σsol := εµsol. We have F(σsol) = 0 (existence of an invisible inclusion).
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Calculus of dF(0)
I For our problem, we have (σ = ρ− 1)

F(σ) = (<e u∞s (θ1), . . . ,<e u∞s (θN ),=m u∞s (θ1), . . . ,=m u∞s (θN )).

To compute dF(0)(µ), we take ρε = 1 + εµ with µ supported in D.

I We denote uε, uε
s the functions satisfying

Find uε = uε
s + eikθinc·x ,with uε

s outgoing, such that
−∆uε = k2ρε uε in R2.

•

uε∞
s (θn) =

• We can prove that uε
s = O(ε).

I We obtain the expansion (Born approx.), for small ε

uε∞
s (θn) = 0 + ε c k2

∫
D
µ eik(θinc−θn)·x dx + O(ε2).

dF(0)(µ) =
(∫

D
µ cos(k(θinc − θ1)·x) dx, . . . ,

∫
D
µ cos(k(θinc − θN )·x) dx,∫

D
µ sin(k(θinc − θ1)·x) dx, . . . ,

∫
D
µ sin(k(θinc − θN )·x) dx

)

θinc θn = θinc

Emitter Receiver
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Construction of the shape functions
1 If θinc 6= θn for n = 1, . . . ,N ,

M := {cos(k(θinc − θn) · x), sin(k(θinc − θn) · x)}N
n=1,

is a family of linearly independent functions. Using the Gram matrix, we
can build µ1,1, . . . , µ1,N , µ2,1, . . . , µ2,N ∈ span(M ) such that∫

D
µ1,m cos(k(θinc − θn) · x) dx = δmn ,

∫
D
µ1,m sin(k(θinc − θn) · x) dx = 0∫

D
µ2,m cos(k(θinc − θn) · x) dx = 0,

∫
D
µ2,m sin(k(θinc − θn) · x) dx = δmn

2 We need to construct some µ0 ∈ ker dF(0), i.e. some µ0 satisfying

∫
D
µ0 cos(k(θinc − θn) · x) dx = 0,

∫
D
µ0 sin(k(θinc − θn) · x) dx = 0.µ0 = µ#

0 −
N∑

m=1

(∫
D
µ1,m µ#

0 dx
)
µ1,m −

N∑
m=1

(∫
D
µ2,m µ#

0 dx
)
µ2,m

where µ#
0 /∈ span{µ1,1, . . . , µ1,N , µ2,1, . . . , µ2,N}.
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Main result

Proposition: Assume that θinc 6= θn for n = 1, . . . ,N . For ε small
enough, define ρ sol = 1 + εµ sol with

µ sol = µ0 +
N∑

m=1
τ sol

1,m µ1,m +
N∑

m=1
τ sol

2,m µ2,m.

Then the solution of the scattering problem

Find uε = uε
s + eikθinc·x such that

−∆u = k2ρ sol u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.

Comments:
→ Proving that Gε is a contraction is not a big deal.
→ We have µ sol 6≡ 0 (non trivial inclusion). To see it, compute dF(0)(µ sol).

→ This proof of existence of invisible inclusions may appear not so surprising since
S (k) ∈ R2N , ρ ∈ L∞(D). The case θinc = θn shows that nothing is obvious...
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The case θinc = θn

I In the previous approach, we needed to assume θinc 6= θn , n = 1, . . . ,N .
What if θinc = θn?

θinc θn = θinc

Emitter Receiver

I There holds

u∞s (θn) = c k2
∫
D

(ρ− 1) (ui + us) e−ikθn ·x dx.

I This allows to prove the formula (use Colton, Kress 98)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.
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Data and algorithm

I We can solve the fixed point problem using an iterative procedure: we
set ~τ 0 = (0, . . . , 0)> then define

~τ n+1 = Gε(~τ n).

I At each step, we solve a scattering problem. We use a P2 finite element
method set on the ball B8. On ∂B8, a truncated Dirichlet-to-Neumann map
with 13 harmonics serves as a transparent boundary condition.

I For the numerical experiments, we take D = B1, M = 3 (3 directions of
observation) and

θinc = (cos(ψinc), sin(ψinc)), ψinc = 0◦

θ1 = (cos(ψ1), sin(ψ1)), ψ1 = 90◦

θ2 = (cos(ψ2), sin(ψ2)), ψ2 = 180◦

θ3 = (cos(ψ3), sin(ψ3)), ψ3 = 225◦
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Results: coefficient ρ at the end of the process
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Results: scattered field

Figure: |us| at the end of the fixed point procedure in logarithmic scale. As
desired, we see it is very small far from D in the directions corresponding to
the angles 90◦, 180◦ and 225◦. The domain is equal to B8.
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Results: far field pattern
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Far field pattern at iteration 0
Far field pattern at the end of the fixed point procedure

Figure: The dotted lines show the directions where we want u∞s to vanish.
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Conclusion

Discreteness of non-scattering eigenvalues

For a given obstacle, is there an incident field that does not scatter?

♠ How to proceed to prove discreteness of non-scattering wavenumbers for
situations other than multistatic backscattering measurements?

♠ Can we relax assumptions on ρ?

♠ Can we prove existence of non-scattering wavenumbers in this setting?

Invisibility

For a given frequency, how to build an invisible obstacle?

♠ An important issue: can we reiterate the process to construct larger
defects in the reference medium?

♠ Can we hide small Dirichlet obstacles (flies)? Work in progress...
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Invisibility

For a given frequency, how to build an invisible obstacle?

♠ An important issue: can we reiterate the process to construct larger
defects in the reference medium?

♠ Can we hide small Dirichlet obstacles (flies)? Work in progress...
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Thank you for your attention!!!
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