Waveguides: ASYMptotic methods and numerical analysis

Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions

Lucas Chesnel ${ }^{1}$

Coll. with A.-S. Bonnet-Ben Dhia ${ }^{2}$ and S.A. Nazarov ${ }^{3}$.
${ }^{1}$ Defi team, CMAP, École Polytechnique, France
${ }^{2}$ Poems team, Ensta ParisTech, France
${ }^{3}$ FMM, St. Petersburg State University, Russia

Fondation mathématique -

NAPOLI, 21/05/2015

General setting

- We are interested in methods based on the propagation of waves to determine the shape, the physical properties of objects, in an exact or qualitative manner, from given measurements.
- General principle of the methods:
i) send waves in the medium;
ii) measure the scattered field;
iii) deduce information on the structure.

- Many techniques: Xray, ultrasound imaging, seismic tomography, ...
- Many applications: biomedical imaging, non destructive testing of materials, geophysics, ...

Model problem

- Scattering in time-harmonic regime of an incident plane wave by a bounded penetrable inclusion \mathcal{D} (coefficients ρ) in \mathbb{R}^{2}.

Find u such that

$$
\begin{align*}
&-\Delta u=k^{2} \rho u \quad \text { in } \mathbb{R}^{2} \\
& u=u_{\mathrm{i}}+u_{\mathrm{s}} \tag{1}\\
& \text { in } \mathbb{R}^{2} \\
& \lim _{r \rightarrow+\infty} \sqrt{r}\left(\frac{\partial u_{\mathrm{s}}}{\partial r}-i k u_{\mathrm{s}}\right)=0 .
\end{align*}
$$

Model problem

- Scattering in time-harmonic regime of an incident plane wave by a bounded penetrable inclusion \mathcal{D} (coefficients ρ) in \mathbb{R}^{2}.

Find u such that

$$
\begin{align*}
&-\Delta u=k^{2} \rho u \quad \text { in } \mathbb{R}^{2} \\
& u=u_{\mathrm{i}}+u_{\mathrm{s}} \tag{1}\\
& \text { in } \mathbb{R}^{2} \\
& \lim _{r \rightarrow+\infty} \sqrt{r}\left(\frac{\partial u_{\mathrm{s}}}{\partial r}-i k u_{\mathrm{s}}\right)=0 .
\end{align*}
$$

Model problem

- Scattering in time-harmonic regime of an incident plane wave by a bounded penetrable inclusion \mathcal{D} (coefficients ρ) in \mathbb{R}^{2}.

Find u such that

$$
\begin{align*}
&-\Delta u=k^{2} \rho u \quad \text { in } \mathbb{R}^{2}, \\
& u=u_{\mathrm{i}}+u_{\mathrm{s}} \tag{1}\\
& \text { in } \mathbb{R}^{2}, \\
& \lim _{r \rightarrow+\infty} \sqrt{r}\left(\frac{\partial u_{\mathrm{s}}}{\partial r}-i k u_{\mathrm{s}}\right)=0 .
\end{align*}
$$

Definition: $u_{\mathrm{i}}=$ incident field (data)
$u=$ total field (uniquely defined by (1))
$u_{\mathrm{s}}=$ scattered field (uniquely defined by (1)).

Illustration of the scattering of a plane wave

- Below, the movies represent a numerical approximation of the solution of the previous problem.

Incident field

$$
t \mapsto \Re e\left(e^{-i \omega t} u_{\mathrm{i}}(x)\right)
$$

Total field

$$
t \mapsto \Re e\left(e^{-i \omega t} u(x)\right)
$$

Scattered field

$$
t \mapsto \Re e\left(e^{-i \omega t} u_{\mathrm{S}}(\boldsymbol{x})\right)
$$

- The pulsation ω is defined by $\omega=k / c$ where $c=1$ is the celerity of the waves in the homogeneous medium.

Far field pattern

- The scattered field of an incident plane wave of direction $\boldsymbol{\theta}_{\text {inc }}$ behaves in each direction like a cylindrical wave at infinity:

$$
u_{\mathrm{s}}\left(\boldsymbol{x}, \boldsymbol{\theta}_{\mathrm{inc}}\right)=\frac{e^{i k r}}{\sqrt{r}}\left(u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\mathrm{sca}}, \boldsymbol{\theta}_{\mathrm{inc}}\right)+O(1 / r)\right)
$$

as $r=|\boldsymbol{x}| \rightarrow+\infty$, uniformly in $\boldsymbol{\theta}_{\text {sca }} \in \mathbb{S}^{1}$.

Far field pattern

- The scattered field of an incident plane wave of direction $\boldsymbol{\theta}_{\text {inc }}$ behaves in each direction like a cylindrical wave at infinity:

$$
u_{\mathrm{s}}\left(\boldsymbol{x}, \boldsymbol{\theta}_{\mathrm{inc}}\right)=\frac{e^{i k r}}{\sqrt{r}}\left(u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\mathrm{sca}}, \boldsymbol{\theta}_{\mathrm{inc}}\right)+O(1 / r)\right)
$$

as $r=|\boldsymbol{x}| \rightarrow+\infty$, uniformly in $\boldsymbol{\theta}_{\text {sca }} \in \mathbb{S}^{1}$.

Definition: The map $u_{\mathrm{s}}^{\infty}(\cdot, \cdot): \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{C}$ is called the far field pattern.

Far field pattern

- The scattered field of an incident plane wave of direction $\boldsymbol{\theta}_{\text {inc }}$ behaves in each direction like a cylindrical wave at infinity:

$$
u_{\mathrm{s}}\left(\boldsymbol{x}, \boldsymbol{\theta}_{\text {inc }}\right)=\frac{e^{i k r}}{\sqrt{r}}\left(u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\text {sca }}, \boldsymbol{\theta}_{\text {inc }}\right)+O(1 / r)\right)
$$

as $r=|\boldsymbol{x}| \rightarrow+\infty$, uniformly in $\boldsymbol{\theta}_{\text {sca }} \in \mathbb{S}^{1}$.

Definition: The map $u_{\mathrm{s}}^{\infty}(\cdot, \cdot): \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{C}$ is called the far field pattern.

The far field pattern is the quantity one can measure at infinity (the other terms are too small).

Far field pattern

- The scattered field of an incident plane wave of direction $\boldsymbol{\theta}_{\text {inc }}$ behaves in each direction like a cylindrical wave at infinity:

$$
u_{\mathrm{s}}\left(\boldsymbol{x}, \boldsymbol{\theta}_{\text {inc }}\right)=\frac{e^{i k r}}{\sqrt{r}}\left(u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\text {sca }}, \boldsymbol{\theta}_{\text {inc }}\right)+O(1 / r)\right)
$$

as $r=|\boldsymbol{x}| \rightarrow+\infty$, uniformly in $\boldsymbol{\theta}_{\text {sca }} \in \mathbb{S}^{1}$.

Definition: The map $u_{\mathrm{s}}^{\infty}(\cdot, \cdot): \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{C}$ is called the far field pattern.

The far field pattern is the quantity one can measure at infinity (the other terms are too small).

- The goal of imaging techniques is to find features of the inclusion from the knowledge of $u_{\mathrm{s}}^{\infty}(\cdot, \cdot)$ on a subset of $\mathbb{S}^{1} \times \mathbb{S}^{1}$.
- In literature, most of the techniques require a continuum of data.
- In practice, one has a finite number of emitters and receivers.

Setting

- Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given directions of the unit circle \mathbb{S}^{1}.

$$
\Varangle \underset{\boldsymbol{\theta}_{1}}{\longrightarrow} \longrightarrow
$$

Setting

- Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given directions of the unit circle \mathbb{S}^{1}.

$$
7
$$

\square

$$
A
$$

- We assume that emitters and receivers coincide:
- We send the plane wave $e^{i k \boldsymbol{\theta}_{1} \cdot \boldsymbol{x}}$ (direction $\boldsymbol{\theta}_{1}$) and measure the resulted scattered fields in the directions $-\boldsymbol{\theta}_{1}, \ldots,-\boldsymbol{\theta}_{N}$.

Setting

- Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given directions of the unit circle \mathbb{S}^{1}.

$$
7
$$

$$
A
$$

- We assume that emitters and receivers coincide:
- We send the plane wave $e^{i k \boldsymbol{\theta}_{1} \cdot \boldsymbol{x}}$ (direction $\boldsymbol{\theta}_{1}$) and measure the resulted scattered fields in the directions $-\boldsymbol{\theta}_{1}, \ldots,-\boldsymbol{\theta}_{N}$.

Setting

- Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given directions of the unit circle \mathbb{S}^{1}.

- We assume that emitters and receivers coincide:
- We send the plane wave $e^{i k \boldsymbol{\theta}_{1} \cdot \boldsymbol{x}}$ (direction $\boldsymbol{\theta}_{1}$) and measure the resulted scattered fields in the directions $-\boldsymbol{\theta}_{1}, \ldots,-\boldsymbol{\theta}_{N}$.

Setting

- Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given directions of the unit circle \mathbb{S}^{1}.

$$
7
$$

\square

$$
A
$$

- We assume that emitters and receivers coincide:
- We send the plane wave $e^{i k \boldsymbol{\theta}_{1} \cdot \boldsymbol{x}}$ (direction $\boldsymbol{\theta}_{1}$) and measure the resulted scattered fields in the directions $-\boldsymbol{\theta}_{1}, \ldots,-\boldsymbol{\theta}_{N}$.

Setting

- Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given directions of the unit circle \mathbb{S}^{1}.

$$
7
$$

$$
A
$$

- We assume that emitters and receivers coincide:
- We send the plane wave $e^{i k \boldsymbol{\theta}_{1} \cdot \boldsymbol{x}}$ (direction $\boldsymbol{\theta}_{1}$) and measure the resulted scattered fields in the directions $-\boldsymbol{\theta}_{1}, \ldots,-\boldsymbol{\theta}_{N}$.
- We repeat the experiment sending successively plane waves in the directions $\boldsymbol{\theta}_{2}, \ldots, \boldsymbol{\theta}_{N}$.

Setting

- Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given directions of the unit circle \mathbb{S}^{1}.

$$
7
$$

$$
A
$$

- We assume that emitters and receivers coincide:
- We send the plane wave $e^{i k \boldsymbol{\theta}_{1} \cdot \boldsymbol{x}}$ (direction $\boldsymbol{\theta}_{1}$) and measure the resulted scattered fields in the directions $-\boldsymbol{\theta}_{1}, \ldots,-\boldsymbol{\theta}_{N}$.
- We repeat the experiment sending successively plane waves in the directions $\boldsymbol{\theta}_{2}, \ldots, \boldsymbol{\theta}_{N}$.
$N \times N$ multistatic backscattering measurements

Relative scattering matrix

- For $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ given directions of \mathbb{S}^{1}, we introduce the relative scattering matrix

$$
\mathscr{S}(k):=\left(\begin{array}{ccc}
u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{1}\right) & \cdots & u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{N}\right) \\
\vdots & \ddots & \vdots \\
u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{N}, \boldsymbol{\theta}_{1}\right) & \cdots & u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{N}, \boldsymbol{\theta}_{N}\right)
\end{array}\right) \in \mathbb{C}^{N \times N} .
$$

Relative scattering matrix

- For $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ given directions of \mathbb{S}^{1}, we introduce the relative scattering matrix

$$
\mathscr{S}(k):=\left(\begin{array}{ccc}
u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{1}\right) & \cdots & u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{N}\right) \\
\vdots & \ddots & \vdots \\
u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{N}, \boldsymbol{\theta}_{1}\right) & \cdots & u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{N}, \boldsymbol{\theta}_{N}\right)
\end{array}\right) \in \mathbb{C}^{N \times N} .
$$

- Note that $\mathscr{S}(k)=0$ when there is no obstacle (\Rightarrow "relative").

Relative scattering matrix

- For $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ given directions of \mathbb{S}^{1}, we introduce the relative scattering matrix

$$
\mathscr{S}(k):=\left(\begin{array}{ccc}
u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{1}\right) & \cdots & u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{N}\right) \\
\vdots & \ddots & \vdots \\
u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{N}, \boldsymbol{\theta}_{1}\right) & \cdots & u_{\mathrm{s}}^{\infty}\left(-\boldsymbol{\theta}_{N}, \boldsymbol{\theta}_{N}\right)
\end{array}\right) \in \mathbb{C}^{N \times N} .
$$

- Note that $\mathscr{S}(k)=0$ when there is no obstacle (\Rightarrow "relative").

We are interested in defects that cannot be detected and in invisibility.

1) Is there an incident wave which does not scatter at infinity?

$$
\rightarrow \operatorname{ker} \mathscr{S}(k) \neq\{0\} ?
$$

2) Can it be that all incident waves do not scatter at infinity?

$$
\rightarrow \mathscr{S}(k)=0 ?
$$

Outline of the talk

(1) Introduction
(2) Non-scattering wavenumbers

Is there an incident wave which does not scatter at infinity?
(3) Invisible inclusions

Can it be that all incident waves do not scatter at infinity?

4 Conclusion

(1) Introduction

(2) Non-scattering wavenumbers

(3) Invisible inclusions

4. Conclusion

Non-scattering wavenumbers

Definition. Values of $k>0$ for which $\mathscr{S}(k)$ has a non trivial kernel are called non-scattering wavenumbers.

- For k non-scat. wavenumber, there is some $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{C}^{N} \backslash\{0\}$ s.t.

$$
u_{\mathrm{i}}=\sum_{n=1}^{N} \alpha_{n} e^{i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}}
$$

does not scatter at infinity in the directions $-\boldsymbol{\theta}_{1}, \ldots,-\boldsymbol{\theta}_{N}$.

Non-scattering wavenumbers

Definition. Values of $k>0$ for which $\mathscr{S}(k)$ has a non trivial kernel are called non-scattering wavenumbers.

- For k non-scat. wavenumber, there is some $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{C}^{N} \backslash\{0\}$ s.t.

$$
u_{\mathrm{i}}=\sum_{n=1}^{N} \alpha_{n} e^{i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}}
$$

does not scatter at infinity in the directions $-\boldsymbol{\theta}_{1}, \ldots,-\boldsymbol{\theta}_{N}$.

We want to prove that non-scattering wavenumbers form a discrete set because we want to avoid them to implement reconstruction techniques.

Discreteness of non-scattering wavenumbers

IDEA OF THE APPROACH:
(1) We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \backslash\{0\}$.

Discreteness of non-scattering wavenumbers

IDEA OF THE APPROACH:
(1) We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \backslash\{0\}$.
(2) For $k \in \mathbb{R} i \backslash\{0\}$, using integration by parts, we prove the energy identity

$$
c \bar{\alpha}^{\top} \mathscr{S}(k) \alpha=\int_{\mathbb{R}^{2}}\left|\nabla u_{\mathrm{s}}\right|^{2}+|k|^{2} \rho\left|u_{\mathrm{s}}\right|^{2}+|k|^{2} \int_{\mathcal{D}}(1-\rho)\left|u_{\mathrm{i}}\right|^{2}
$$

where $u_{\mathrm{i}}=\sum_{n=1}^{N} \alpha_{n} e^{i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)^{\top}$ and $c \neq 0$ is a constant.

Discreteness of non-scattering wavenumbers

IDEA OF THE APPROACH:
(1) We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \backslash\{0\}$.
(2) For $k \in \mathbb{R} i \backslash\{0\}$, using integration by parts, we prove the energy identity

$$
c \bar{\alpha}^{\top} \mathscr{S}(k) \alpha=\int_{\mathbb{R}^{2}}\left|\nabla u_{\mathrm{s}}\right|^{2}+|k|^{2} \rho\left|u_{\mathrm{s}}\right|^{2}+|k|^{2} \int_{\mathcal{D}}(1-\rho)\left|u_{\mathrm{i}}\right|^{2}
$$

where $u_{\mathrm{i}}=\sum_{n=1}^{N} \alpha_{n} e^{i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)^{\top}$ and $c \neq 0$ is a constant.
(3) For $k \in \mathbb{R} i \backslash\{0\}, \rho<1$, we deduce that $\mathscr{S}(k)$ is invertible.

Discreteness of non-scattering wavenumbers

IDEA OF THE APPROACH:
(1) We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \backslash\{0\}$.
(2) For $k \in \mathbb{R} i \backslash\{0\}$, using integration by parts, we prove the energy identity

$$
c \bar{\alpha}^{\top} \mathscr{S}(k) \alpha=\int_{\mathbb{R}^{2}}\left|\nabla u_{\mathrm{s}}\right|^{2}+|k|^{2} \rho\left|u_{\mathrm{s}}\right|^{2}+|k|^{2} \int_{\mathcal{D}}(1-\rho)\left|u_{\mathrm{i}}\right|^{2}
$$

where $u_{\mathrm{i}}=\sum_{n=1}^{N} \alpha_{n} e^{i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)^{\top}$ and $c \neq 0$ is a constant.
(3) For $k \in \mathbb{R} i \backslash\{0\}, \rho<1$, we deduce that $\mathscr{S}(k)$ is invertible.
(4) Using the principle of isolated zeros, we obtain the following result:

Proposition. Suppose that $\rho<1$. Then the set of non-scattering wavenumbers is discrete and countable.

Discreteness of non-scattering wavenumbers

IDEA OF THE APPROACH:
(1) We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \backslash\{0\}$.
(2) For $k \in \mathbb{R} i \backslash\{0\}$, using integration by parts, we prove the energy identity

$$
c \bar{\alpha}^{\top} \mathscr{S}(k) \alpha=-\int_{\mathbb{R}^{2}}\left|\nabla u_{\mathrm{s}}\right|^{2}+|k|^{2}\left|u_{\mathrm{s}}\right|^{2}-|k|^{2} \int_{\mathcal{D}}(\rho-1)|u|^{2}
$$

where $u_{\mathrm{i}}=\sum_{n=1}^{N} \alpha_{n} e^{i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)^{\top}$ and $c \neq 0$ is a constant.
(3) For $k \in \mathbb{R} i \backslash\{0\}, \rho>1$, we deduce that $\mathscr{S}(k)$ is invertible.
(4) Using the principle of isolated zeros, we obtain the following result:

Proposition. Suppose that $\rho>1$. Then the set of non-scattering wavenumbers is discrete and countable.

(1) Introduction

(2) Non-scattering wavenumbers
(3) Invisible inclusions
(4) Conclusion

Invisible inclusions: setting

- In the previous section, for a given obstacle, we have studied the k such that $\operatorname{ker} \mathscr{S}(k) \neq\{0\}(\mathscr{S}(k)$ is the relative scattering matrix).
- Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k)=0$.

Invisible inclusions: setting

- In the previous section, for a given obstacle, we have studied the k such that $\operatorname{ker} \mathscr{S}(k) \neq\{0\}(\mathscr{S}(k)$ is the relative scattering matrix).
- Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k)=0$.

- These inclusions cannot be detected from far field measurements.

Invisible inclusions: setting

- In the previous section, for a given obstacle, we have studied the k such that $\operatorname{ker} \mathscr{S}(k) \neq\{0\}(\mathscr{S}(k)$ is the relative scattering matrix).
- Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k)=0$.

- To simplify the presentation, assume that there is only one incident direction $\boldsymbol{\theta}_{\text {inc }}$. Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given scattering directions.

Invisible inclusions: setting

- In the previous section, for a given obstacle, we have studied the k such that $\operatorname{ker} \mathscr{S}(k) \neq\{0\}(\mathscr{S}(k)$ is the relative scattering matrix).
- Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k)=0$.

- To simplify the presentation, assume that there is only one incident direction $\boldsymbol{\theta}_{\text {inc }}$. Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given scattering directions.

Formulation of the problem:
Find a real valued function $\rho \not \equiv 1$, with $\rho-1$ supported in $\overline{\mathcal{D}}$, such that the solution of the problem

$$
\begin{aligned}
& \text { Find } u=u_{\mathrm{s}}+e^{i k \boldsymbol{\theta}_{\text {inc }} \cdot \boldsymbol{x}} \text { such that } \\
& -\Delta u=k^{2} \rho u \quad \text { in } \mathbb{R}^{2}, \\
& \lim _{r \rightarrow+\infty} \sqrt{r}\left(\frac{\partial u_{\mathrm{s}}}{\partial r}-i k u_{\mathrm{s}}\right)=0
\end{aligned}
$$

verifies $u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right)=\cdots=u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)=0$.

Invisible inclusions: setting

- In the previous section, for a given obstacle, we have studied the k such that $\operatorname{ker} \mathscr{S}(k) \neq\{0\}(\mathscr{S}(k)$ is the relative scattering matrix).
- Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k)=0$.

- To simplify the presentation, assume that there is only one incident direction $\boldsymbol{\theta}_{\text {inc }}$. Let $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ be given scattering directions.

Origin of the method:

- The idea we will use has been introduced in Nazarov 11 to construct waveguides for which there are embedded eigenvalues in the continuous spectrum.
- It has been adapted in Bonnet-Ben Dhia \& Nazarov 13 to build invisible perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov \& Taskinen 14 for an application to a water-wave problem).

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

(N complex measurements $\Rightarrow 2 N$ real measurements)

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N}
$$

- No obstacle leads to null measurements $\Rightarrow F(0)=0$.

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N}
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\left.\sigma \not \equiv 0\right)$.

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N}
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\left.\sigma \not \equiv 0\right)$.

- We look for small perturbations of the reference medium: $\sigma=\varepsilon \mu$ where $\varepsilon>0$ is a small parameter and where μ has be to determined.

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\sigma \not \equiv 0$).

- Taylor: $F(\varepsilon \mu)=F(0)+\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\sigma \not \equiv 0$).

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\left.\sigma \not \equiv 0\right)$.

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N}
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\sigma \not \equiv 0$).

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\left\lvert\, \begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}\right.$

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\left.\sigma \not \equiv 0\right)$.

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\left\lvert\, \begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}\right.$

- Take $\mu=\mu_{0}+\sum_{n=1}^{2 N} \tau_{n} \mu_{n}$ where the τ_{n} are real parameters to set:

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\sigma \not \equiv 0$).

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\left\lvert\, \begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}\right.$

- Take $\mu=\mu_{0}+\sum_{n=1}^{2 N} \tau_{n} \mu_{n}$ where the τ_{n} are real parameters to set:

$$
0=F(\varepsilon \mu) \quad \Leftrightarrow
$$

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N}
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\sigma \not \equiv 0$).

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\left\lvert\, \begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}\right.$

- Take $\mu=\mu_{0}+\sum_{n=1}^{2 N} \tau_{n} \mu_{n}$ where the τ_{n} are real parameters to set:

$$
0=F(\varepsilon \mu) \quad \Leftrightarrow \quad 0=\varepsilon \sum_{n=1}^{2 N} \tau_{n} d F(0)\left(\mu_{n}\right)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)
$$

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\sigma \not \equiv 0$).

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\left\lvert\, \begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}\right.$

- Take $\mu=\mu_{0}+\sum_{n=1}^{2 N} \tau_{n} \mu_{n}$ where the τ_{n} are real parameters to set:

$$
0=F(\varepsilon \mu) \quad \Leftrightarrow \quad 0=\varepsilon \vec{\tau}+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)
$$

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\sigma \not \equiv 0$).

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\left\lvert\, \begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}\right.$

- Take $\mu=\mu_{0}+\sum_{n=1}^{2 N} \tau_{n} \mu_{n}$ where the τ_{n} are real parameters to set:

$$
0=F(\varepsilon \mu) \quad \Leftrightarrow \quad 0=\varepsilon \vec{\tau}+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)
$$

where $\vec{\tau}=\left(\tau_{1}, \ldots, \tau_{2 N}\right)^{\top}$

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\sigma \not \equiv 0$).

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\left\lvert\, \begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}\right.$

- Take $\mu=\mu_{0}+\sum_{n=1}^{2 N} \tau_{n} \mu_{n}$ where the τ_{n} are real parameters to set:

$$
0=F(\varepsilon \mu) \quad \Leftrightarrow \quad \vec{\tau}=G^{\varepsilon}(\vec{\tau})
$$

where $\vec{\tau}=\left(\tau_{1}, \ldots, \tau_{2 N}\right)^{\top}$

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\sigma \not \equiv 0$).

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\left\lvert\, \begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}\right.$

- Take $\mu=\mu_{0}+\sum_{n=1}^{2 N} \tau_{n} \mu_{n}$ where the τ_{n} are real parameters to set:

$$
0=F(\varepsilon \mu) \quad \Leftrightarrow \quad \vec{\tau}=G^{\varepsilon}(\vec{\tau})
$$

where $\vec{\tau}=\left(\tau_{1}, \ldots, \tau_{2 N}\right)^{\top}$ and $G^{\varepsilon}(\vec{\tau})=-\varepsilon \tilde{F}^{\varepsilon}(\mu)$.

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N} .
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\left.\sigma \not \equiv 0\right)$.

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}$

- Take $\mu=\mu_{0}+\sum_{n=1}^{2 N} \tau_{n} \mu_{n}$ where the τ_{n} are real parameters to set:

$$
0=F(\varepsilon \mu) \quad \Leftrightarrow \quad \vec{\tau}=G^{\varepsilon}(\vec{\tau})
$$

$$
\text { where } \vec{\tau}=\left(\tau_{1}, \ldots, \tau_{2 N}\right)^{\top} \text { and } G^{\varepsilon}(\vec{\tau})=-\varepsilon \tilde{F}^{\varepsilon}(\mu) \text {. }
$$

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text {sol }}$.

Sketch of the method

- Define $\sigma=\rho-1$ and gather the measurements in the vector

$$
F(\sigma)=\left(F_{1}(\sigma), \ldots, F_{2 N}(\sigma)\right)^{\top} \in \mathbb{R}^{2 N}
$$

Our goal: to find $\sigma \in \mathrm{L}^{\infty}(\mathcal{D})$ such that $F(\sigma)=0$ (with $\left.\sigma \not \equiv 0\right)$.

- Taylor: $F(\varepsilon \mu)=\varepsilon d F(0)(\mu)+\varepsilon^{2} \tilde{F}^{\varepsilon}(\mu)$.

Assume that $d F(0): \mathrm{L}^{\infty}(\mathcal{D}) \rightarrow \mathbb{R}^{2 N}$ is onto.
$\exists \mu_{0}, \mu_{1}, \ldots, \mu_{2 N} \in \mathrm{~L}^{\infty}(\mathcal{D})$ s.t. $\left\lvert\, \begin{aligned} & d F(0)\left(\mu_{0}\right)=0 \\ & {\left[d F(0)\left(\mu_{1}\right), \ldots, d F(0)\left(\mu_{2 N}\right)\right]=I d_{2 N} .}\end{aligned}\right.$.

- Take $\mu=\mu_{0}+\sum_{n=1}^{2 N} \tau_{n} \mu_{n}$ where the τ_{n} are real parameters to set:

$$
0=F(\varepsilon \mu) \quad \Leftrightarrow \quad \vec{\tau}=G^{\varepsilon}(\vec{\tau})
$$

$$
\text { where } \vec{\tau}=\left(\tau_{1}, \ldots, \tau_{2 N}\right)^{\top} \text { and } G^{\varepsilon}(\vec{\tau})=-\varepsilon \tilde{F}^{\varepsilon}(\mu) \text {. }
$$

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text {sol }}$. Set $\sigma^{\text {sol }}:=\varepsilon \mu^{\text {sol }}$. We have $F\left(\sigma^{\text {sol }}\right)=0$ (existence of an invisible inclusion).

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right), \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)\right) .
$$

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right), \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)\right) .
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right), \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)\right) .
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

- We denote $u^{\varepsilon}, u_{\mathrm{s}}^{\varepsilon}$ the functions satisfying

$$
\begin{aligned}
& \text { Find } u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \theta_{\text {inc }} \cdot x} \text {, with } u_{\mathrm{s}}^{\varepsilon} \text { outgoing, such that } \\
& -\Delta u^{\varepsilon}=k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text { in } \mathbb{R}^{2} .
\end{aligned}
$$

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right), \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)\right) .
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

- We denote $u^{\varepsilon}, u_{\mathrm{s}}^{\varepsilon}$ the functions satisfying

Find $u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \theta_{\text {inc }} \cdot x}$, with $u_{\mathrm{s}}^{\varepsilon}$ outgoing, such that
$-\Delta u^{\varepsilon}=k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad$ in \mathbb{R}^{2}.

- $u_{\mathrm{s}}^{\varepsilon \infty}\left(\boldsymbol{\theta}_{n}\right)=c k^{2} \int_{\mathcal{D}}\left(\rho^{\varepsilon}-1\right)\left(u_{\mathrm{i}}+u_{\mathrm{s}}^{\varepsilon}\right) e^{-i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}} d \boldsymbol{x}$

$$
\left(c=\frac{e^{i \pi / 4}}{\sqrt{8 \pi k}}\right)
$$

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right), \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)\right) .
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

- We denote $u^{\varepsilon}, u_{\mathrm{s}}^{\varepsilon}$ the functions satisfying

Find $u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \theta_{\text {inc }} \cdot \boldsymbol{x}}$, with $u_{\mathrm{s}}^{\varepsilon}$ outgoing, such that
$-\Delta u^{\varepsilon}=k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad$ in \mathbb{R}^{2}.

- $u_{\mathrm{s}}^{\varepsilon \infty}\left(\boldsymbol{\theta}_{n}\right)=c k^{2} \int_{\mathcal{D}}\left(\rho^{\varepsilon}-1\right)\left(u_{\mathrm{i}}+u_{\mathrm{s}}^{\varepsilon}\right) e^{-i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}} d \boldsymbol{x}$.

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right), \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)\right) .
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

- We denote $u^{\varepsilon}, u_{\mathrm{s}}^{\varepsilon}$ the functions satisfying

Find $u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \theta_{\text {inc }} \cdot \boldsymbol{x}}$, with $u_{\mathrm{s}}^{\varepsilon}$ outgoing, such that
$-\Delta u^{\varepsilon}=k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad$ in \mathbb{R}^{2}.

- $u_{\mathrm{s}}^{\varepsilon \infty}\left(\boldsymbol{\theta}_{n}\right)=\varepsilon c k^{2} \int_{\mathcal{D}} \mu\left(u_{\mathrm{i}}+u_{\mathrm{s}}^{\varepsilon}\right) e^{-i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}} d \boldsymbol{x}$.

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right), \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)\right) .
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

- We denote $u^{\varepsilon}, u_{\mathrm{s}}^{\varepsilon}$ the functions satisfying

$$
\text { Find } u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \theta_{\mathrm{inc}} \cdot x} \text {, with } u_{\mathrm{s}}^{\varepsilon} \text { outgoing, such that }
$$

$-\Delta u^{\varepsilon}=k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad$ in \mathbb{R}^{2}.

- $u_{\mathrm{s}}^{\varepsilon \infty}\left(\boldsymbol{\theta}_{n}\right)=\varepsilon c k^{2} \int_{\mathcal{D}} \mu\left(u_{\mathrm{i}}+u_{\mathrm{s}}^{\varepsilon}\right) e^{-i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}} d \boldsymbol{x}$.
- We can prove that $u_{\mathrm{s}}^{\varepsilon}=O(\varepsilon)$.

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right), \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)\right) .
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

- We denote $u^{\varepsilon}, u_{\mathrm{s}}^{\varepsilon}$ the functions satisfying

$$
\text { Find } u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \theta_{\mathrm{inc}} \cdot x} \text {, with } u_{\mathrm{s}}^{\varepsilon} \text { outgoing, such that }
$$

$-\Delta u^{\varepsilon}=k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad$ in \mathbb{R}^{2}.

- $u_{\mathrm{s}}^{\varepsilon \infty}\left(\boldsymbol{\theta}_{n}\right)=\varepsilon c k^{2} \int_{\mathcal{D}} \mu u_{\mathrm{i}} e^{-i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}} d \boldsymbol{x}+O\left(\varepsilon^{2}\right)$.
- We can prove that $u_{\mathrm{s}}^{\varepsilon}=O(\varepsilon)$.

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Re e u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right), \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right), \ldots, \Im m u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)\right) .
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

- We denote $u^{\varepsilon}, u_{\mathrm{s}}^{\varepsilon}$ the functions satisfying

$$
\begin{aligned}
& \text { Find } u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \theta_{\text {inc }} \cdot x} \text {, with } u_{\mathrm{s}}^{\varepsilon} \text { outgoing, such that } \\
& -\Delta u^{\varepsilon}=k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text { in } \mathbb{R}^{2} .
\end{aligned}
$$

- We obtain the expansion (Born approx.), for small ε

$$
u_{\mathrm{s}}^{\varepsilon \infty}\left(\boldsymbol{\theta}_{n}\right)=0+\varepsilon c k^{2} \int_{\mathcal{D}} \mu e^{i k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}} d \boldsymbol{x}+O\left(\varepsilon^{2}\right)
$$

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e \frac{u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right)}{c k^{2}}, \ldots, \Re e \frac{u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)}{c k^{2}}, \Im m \frac{u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right)}{c k^{2}}, \ldots, \Im m \frac{u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)}{c k^{2}}\right) .
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

- We denote $u^{\varepsilon}, u_{\mathrm{s}}^{\varepsilon}$ the functions satisfying

$$
\left\lvert\, \begin{aligned}
& \text { Find } u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \theta_{\text {inc }} \cdot x} \text {, with } u_{\mathrm{s}}^{\varepsilon} \text { outgoing, such that } \\
& -\Delta u^{\varepsilon}=k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text { in } \mathbb{R}^{2} .
\end{aligned}\right.
$$

- We obtain the expansion (Born approx.), for small ε

$$
u_{\mathrm{s}}^{\varepsilon \infty}\left(\boldsymbol{\theta}_{n}\right)=0+\varepsilon c k^{2} \int_{\mathcal{D}} \mu e^{i k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}} d \boldsymbol{x}+O\left(\varepsilon^{2}\right)
$$

Calculus of $d F(0)$

- For our problem, we have $(\sigma=\rho-1)$

$$
F(\sigma)=\left(\Re e \frac{u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right)}{c k^{2}}, \ldots, \Re e \frac{u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)}{c k^{2}}, \Im m \frac{u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right)}{c k^{2}}, \ldots, \Im m \frac{u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)}{c k^{2}}\right)
$$

To compute $d F(0)(\mu)$, we take $\rho^{\varepsilon}=1+\varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

- We denote $u^{\varepsilon}, u_{\mathrm{s}}^{\varepsilon}$ the functions satisfying

$$
\begin{aligned}
& \text { Find } u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \theta_{\mathrm{inc}} \cdot x} \text {, with } u_{\mathrm{s}}^{\varepsilon} \text { outgoing, such that } \\
& -\Delta u^{\varepsilon}=k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text { in } \mathbb{R}^{2} \text {. }
\end{aligned}
$$

- We obtain the expansion (Born approx.), for small ε

$$
u_{\mathrm{s}}^{\varepsilon \infty}\left(\boldsymbol{\theta}_{n}\right)=0+\varepsilon c k^{2} \int_{\mathcal{D}} \mu e^{i k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}} d \boldsymbol{x}+O\left(\varepsilon^{2}\right)
$$

$$
\begin{aligned}
d F(0)(\mu)= & \left(\int_{\mathcal{D}} \mu \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{1}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}, \ldots, \int_{\mathcal{D}} \mu \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{N}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x},\right. \\
& \left.\int_{\mathcal{D}} \mu \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{1}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}, \ldots, \int_{\mathcal{D}} \mu \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{N}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}\right)
\end{aligned}
$$

Calculus of $d F(0)$

$$
\begin{aligned}
d F(0)(\mu)= & \left(\int_{\mathcal{D}} \mu \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{1}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}, \ldots, \int_{\mathcal{D}} \mu \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{N}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}\right. \\
& \left.\int_{\mathcal{D}} \mu \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{1}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}, \ldots, \int_{\mathcal{D}} \mu \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{N}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}\right)
\end{aligned}
$$

Construction of the shape functions

(1) If $\boldsymbol{\theta}_{\text {inc }} \neq \boldsymbol{\theta}_{n}$ for $n=1, \ldots, N$,

$$
\mathscr{M}:=\left\{\cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right), \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right)\right\}_{n=1}^{N},
$$

is a family of linearly independent functions. Using the Gram matrix, we can build $\mu_{1,1}, \ldots, \mu_{1, N}, \mu_{2,1}, \ldots, \mu_{2, N} \in \operatorname{span}(\mathscr{M})$ such that

$$
\begin{array}{ll}
\int_{\mathcal{D}} \mu_{1, m} \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=\delta^{m n}, & \int_{\mathcal{D}} \mu_{1, m} \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=0 \\
\int_{\mathcal{D}} \mu_{2, m} \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=0, & \int_{\mathcal{D}} \mu_{2, m} \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=\delta^{m n}
\end{array}
$$

Construction of the shape functions

(1) If $\boldsymbol{\theta}_{\text {inc }} \neq \boldsymbol{\theta}_{n}$ for $n=1, \ldots, N$,

$$
\mathscr{M}:=\left\{\cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right), \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right)\right\}_{n=1}^{N},
$$

is a family of linearly independent functions. Using the Gram matrix, we can build $\mu_{1,1}, \ldots, \mu_{1, N}, \mu_{2,1}, \ldots, \mu_{2, N} \in \operatorname{span}(\mathscr{M})$ such that

$$
\begin{array}{ll}
\int_{\mathcal{D}} \mu_{1, m} \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=\delta^{m n}, & \int_{\mathcal{D}} \mu_{1, m} \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=0 \\
\int_{\mathcal{D}} \mu_{2, m} \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=0, & \int_{\mathcal{D}} \mu_{2, m} \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=\delta^{m n}
\end{array}
$$

(2) We need to construct some $\mu_{0} \in \operatorname{ker} d F(0)$, i.e. some μ_{0} satisfying

$$
\int_{\mathcal{D}} \mu_{0} \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=0, \quad \int_{\mathcal{D}} \mu_{0} \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=0
$$

Construction of the shape functions

(1) If $\boldsymbol{\theta}_{\text {inc }} \neq \boldsymbol{\theta}_{n}$ for $n=1, \ldots, N$,

$$
\mathscr{M}:=\left\{\cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right), \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right)\right\}_{n=1}^{N},
$$

is a family of linearly independent functions. Using the Gram matrix, we can build $\mu_{1,1}, \ldots, \mu_{1, N}, \mu_{2,1}, \ldots, \mu_{2, N} \in \operatorname{span}(\mathscr{M})$ such that

$$
\begin{array}{ll}
\int_{\mathcal{D}} \mu_{1, m} \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=\delta^{m n}, & \int_{\mathcal{D}} \mu_{1, m} \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=0 \\
\int_{\mathcal{D}} \mu_{2, m} \cos \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=0, & \int_{\mathcal{D}} \mu_{2, m} \sin \left(k\left(\boldsymbol{\theta}_{\mathrm{inc}}-\boldsymbol{\theta}_{n}\right) \cdot \boldsymbol{x}\right) d \boldsymbol{x}=\delta^{m n}
\end{array}
$$

(2) We take

$$
\mu_{0}=\mu_{0}^{\#}-\sum_{m=1}^{N}\left(\int_{\mathcal{D}} \mu_{1, m} \mu_{0}^{\#} d \boldsymbol{x}\right) \mu_{1, m}-\sum_{m=1}^{N}\left(\int_{\mathcal{D}} \mu_{2, m} \mu_{0}^{\#} d \boldsymbol{x}\right) \mu_{2, m}
$$

where $\mu_{0}^{\#} \notin \operatorname{span}\left\{\mu_{1,1}, \ldots, \mu_{1, N}, \mu_{2,1}, \ldots, \mu_{2, N}\right\}$.

Main result

Proposition: Assume that $\boldsymbol{\theta}_{\mathrm{inc}} \neq \boldsymbol{\theta}_{n}$ for $n=1, \ldots, N$. For ε small enough, define $\rho^{\text {sol }}=1+\varepsilon \mu^{\text {sol }}$ with

$$
\mu^{\mathrm{sol}}=\mu_{0}+\sum_{m=1}^{N} \tau_{1, m}^{\mathrm{sol}} \mu_{1, m}+\sum_{m=1}^{N} \tau_{2, m}^{\mathrm{sol}} \mu_{2, m}
$$

Then the solution of the scattering problem

$$
\begin{aligned}
& \text { Find } u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \boldsymbol{\theta}_{\mathrm{inc}} \cdot \boldsymbol{x}} \text { such that } \\
& -\Delta u=k^{2} \rho^{\mathrm{sol}} u \quad \text { in } \mathbb{R}^{2} \\
& \lim _{r \rightarrow+\infty} \sqrt{r}\left(\frac{\partial u_{\mathrm{s}}}{\partial r}-i k u_{\mathrm{s}}\right)=0
\end{aligned}
$$

verifies $u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right)=\cdots=u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)=0$.
Comments:
\rightarrow Proving that G^{ε} is a contraction is not a big deal.
\rightarrow We have $\mu^{\text {sol }} \not \equiv 0$ (non trivial inclusion). To see it, compute $d F(0)\left(\mu^{\text {sol }}\right)$.

Main result

Proposition: Assume that $\boldsymbol{\theta}_{\mathrm{inc}} \neq \boldsymbol{\theta}_{n}$ for $n=1, \ldots, N$. For ε small enough, define $\rho^{\text {sol }}=1+\varepsilon \mu^{\text {sol }}$ with

$$
\mu^{\mathrm{sol}}=\mu_{0}+\sum_{m=1}^{N} \tau_{1, m}^{\mathrm{sol}} \mu_{1, m}+\sum_{m=1}^{N} \tau_{2, m}^{\mathrm{sol}} \mu_{2, m}
$$

Then the solution of the scattering problem

$$
\begin{aligned}
& \text { Find } u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \boldsymbol{\theta}_{\mathrm{inc}} \cdot \boldsymbol{x}} \text { such that } \\
& -\Delta u=k^{2} \rho^{\mathrm{sol}} u \quad \text { in } \mathbb{R}^{2} \\
& \lim _{r \rightarrow+\infty} \sqrt{r}\left(\frac{\partial u_{\mathrm{s}}}{\partial r}-i k u_{\mathrm{s}}\right)=0
\end{aligned}
$$

verifies $u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right)=\cdots=u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)=0$.

Comments:

\rightarrow Proving that G^{ε} is a contraction is not a big deal.
\rightarrow We have $\mu^{\text {sol }} \not \equiv 0$ (non trivial inclusion). To see it, compute $d F(0)\left(\mu^{\text {sol }}\right)$.
\rightarrow This proof of existence of invisible inclusions may appear not so surprising since $\mathscr{S}(k) \in \mathbb{R}^{2 N}, \rho \in \mathrm{~L}^{\infty}(\mathcal{D})$.

Main result

Proposition: Assume that $\boldsymbol{\theta}_{\mathrm{inc}} \neq \boldsymbol{\theta}_{n}$ for $n=1, \ldots, N$. For ε small enough, define $\rho^{\text {sol }}=1+\varepsilon \mu^{\text {sol }}$ with

$$
\mu^{\mathrm{sol}}=\mu_{0}+\sum_{m=1}^{N} \tau_{1, m}^{\mathrm{sol}} \mu_{1, m}+\sum_{m=1}^{N} \tau_{2, m}^{\mathrm{sol}} \mu_{2, m}
$$

Then the solution of the scattering problem

$$
\begin{aligned}
& \text { Find } u^{\varepsilon}=u_{\mathrm{s}}^{\varepsilon}+e^{i k \boldsymbol{\theta}_{\mathrm{inc}} \cdot \boldsymbol{x}} \text { such that } \\
& -\Delta u=k^{2} \rho^{\mathrm{sol}} u \quad \text { in } \mathbb{R}^{2} \\
& \lim _{r \rightarrow+\infty} \sqrt{r}\left(\frac{\partial u_{\mathrm{s}}}{\partial r}-i k u_{\mathrm{s}}\right)=0
\end{aligned}
$$

verifies $u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{1}\right)=\cdots=u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{N}\right)=0$.

Comments:

\rightarrow Proving that G^{ε} is a contraction is not a big deal.
\rightarrow We have $\mu^{\text {sol }} \not \equiv 0$ (non trivial inclusion). To see it, compute $d F(0)\left(\mu^{\text {sol }}\right)$.
\rightarrow This proof of existence of invisible inclusions may appear not so surprising since $\mathscr{S}(k) \in \mathbb{R}^{2 N}, \rho \in \mathrm{~L}^{\infty}(\mathcal{D})$. The case $\boldsymbol{\theta}_{\mathrm{inc}}=\boldsymbol{\theta}_{n}$ shows that nothing is obvious... $17 / 25$

The case $\boldsymbol{\theta}_{\mathrm{inc}}=\boldsymbol{\theta}_{n}$

- In the previous approach, we needed to assume $\boldsymbol{\theta}_{\text {inc }} \neq \boldsymbol{\theta}_{n}, n=1, \ldots, N$. What if $\boldsymbol{\theta}_{\text {inc }}=\boldsymbol{\theta}_{n}$?

The case $\boldsymbol{\theta}_{\mathrm{inc}}=\boldsymbol{\theta}_{n}$

- In the previous approach, we needed to assume $\boldsymbol{\theta}_{\mathrm{inc}} \neq \boldsymbol{\theta}_{n}, n=1, \ldots, N$. What if $\boldsymbol{\theta}_{\text {inc }}=\boldsymbol{\theta}_{n}$?

The case $\boldsymbol{\theta}_{\mathrm{inc}}=\boldsymbol{\theta}_{n}$

- In the previous approach, we needed to assume $\boldsymbol{\theta}_{\text {inc }} \neq \boldsymbol{\theta}_{n}, n=1, \ldots, N$. What if $\boldsymbol{\theta}_{\text {inc }}=\boldsymbol{\theta}_{n}$?
- There holds

$$
u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{n}\right)=c k^{2} \int_{\mathcal{D}}(\rho-1)\left(u_{\mathrm{i}}+u_{\mathrm{s}}\right) e^{-i k \boldsymbol{\theta}_{n} \cdot \boldsymbol{x}} d \boldsymbol{x}
$$

The case $\boldsymbol{\theta}_{\mathrm{inc}}=\boldsymbol{\theta}_{n}$

- In the previous approach, we needed to assume $\boldsymbol{\theta}_{\mathrm{inc}} \neq \boldsymbol{\theta}_{n}, n=1, \ldots, N$. What if $\boldsymbol{\theta}_{\text {inc }}=\boldsymbol{\theta}_{n}$?
- There holds

$$
u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\mathrm{inc}}\right)=c k^{2} \int_{\mathcal{D}}(\rho-1)\left(u_{\mathrm{i}}+u_{\mathrm{s}}\right) \overline{u_{\mathrm{i}}} d \boldsymbol{x}
$$

The case $\boldsymbol{\theta}_{\mathrm{inc}}=\boldsymbol{\theta}_{n}$

- In the previous approach, we needed to assume $\boldsymbol{\theta}_{\text {inc }} \neq \boldsymbol{\theta}_{n}, n=1, \ldots, N$. What if $\boldsymbol{\theta}_{\text {inc }}=\boldsymbol{\theta}_{n}$?
- There holds

$$
u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\mathrm{inc}}\right)=c k^{2} \int_{\mathcal{D}}(\rho-1)\left(u_{\mathrm{i}}+u_{\mathrm{s}}\right) \overline{u_{\mathrm{i}}} d \boldsymbol{x}
$$

- This allows to prove the formula (use Colton, Kress 98)

$$
\Im m\left(c^{-1} u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\mathrm{inc}}\right)\right)=k \int_{\mathbb{S}^{1}}\left|u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta})\right|^{2} d \boldsymbol{\theta}
$$

The case $\boldsymbol{\theta}_{\mathrm{inc}}=\boldsymbol{\theta}_{n}$

- In the previous approach, we needed to assume $\boldsymbol{\theta}_{\mathrm{inc}} \neq \boldsymbol{\theta}_{n}, n=1, \ldots, N$. What if $\boldsymbol{\theta}_{\text {inc }}=\boldsymbol{\theta}_{n}$?
- There holds

$$
u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\mathrm{inc}}\right)=c k^{2} \int_{\mathcal{D}}(\rho-1)\left(u_{\mathrm{i}}+u_{\mathrm{s}}\right) \overline{u_{\mathrm{i}}} d \boldsymbol{x} .
$$

- This allows to prove the formula (use Colton, Kress 98)

$$
\Im m\left(c^{-1} u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\mathrm{inc}}\right)\right)=k \int_{\mathbb{S}^{1}}\left|u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta})\right|^{2} d \boldsymbol{\theta} .
$$

Imposing invisibility in the direction $\boldsymbol{\theta}_{\mathrm{inc}}$ requires to impose invisibility in all directions $\theta \in \mathbb{S}^{1}$!

The case $\boldsymbol{\theta}_{\mathrm{inc}}=\boldsymbol{\theta}_{n}$

- In the previous approach, we needed to assume $\boldsymbol{\theta}_{\text {inc }} \neq \boldsymbol{\theta}_{n}, n=1, \ldots, N$. What if $\boldsymbol{\theta}_{\text {inc }}=\boldsymbol{\theta}_{n}$?
- There holds

$$
u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\mathrm{inc}}\right)=c k^{2} \int_{\mathcal{D}}(\rho-1)\left(u_{\mathrm{i}}+u_{\mathrm{s}}\right) \overline{u_{\mathrm{i}}} d \boldsymbol{x}
$$

- This allows to prove the formula (use Colton, Kress 98)

$$
\Im m\left(c^{-1} u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\mathrm{inc}}\right)\right)=k \int_{\mathbb{S}^{1}}\left|u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta})\right|^{2} d \boldsymbol{\theta} .
$$

Imposing invisibility in the direction $\boldsymbol{\theta}_{\mathrm{inc}}$ requires to impose invisibility in all directions $\boldsymbol{\theta} \in \mathbb{S}^{1}$!

By Rellich's lemma, this implies $u_{\mathrm{s}} \equiv 0$ in $\mathbb{R}^{2} \backslash \overline{\mathcal{D}} \Rightarrow$ we are back to the continuous ITEP (with a strong assumption on the incident field).

The case $\boldsymbol{\theta}_{\mathrm{inc}}=\boldsymbol{\theta}_{n}$

- In the previous approach, we needed to assume $\boldsymbol{\theta}_{\mathrm{inc}} \neq \boldsymbol{\theta}_{n}, n=1, \ldots, N$. What if $\boldsymbol{\theta}_{\text {inc }}=\boldsymbol{\theta}_{n}$?
- There holds

$$
u_{\mathrm{s}}^{\infty}\left(\boldsymbol{\theta}_{\text {inc }}\right)=c k^{2} \int_{\mathcal{D}}(\rho-1)\left(u_{\mathrm{i}}+u_{\mathrm{s}}\right) \overline{u_{\mathrm{i}}} d \boldsymbol{x}
$$

- No solution if \mathcal{D} has corners and under certain assumptions on ρ.
- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014
- Corners and edges always scatter, J. Elschner, G. Hu, 2015
- And if \mathcal{D} is smooth? \Rightarrow The problem seems open.

Imposing invisibility in the direction $\boldsymbol{\theta}_{\mathrm{inc}}$ requires to impose invisibility in all directions $\boldsymbol{\theta} \in \mathbb{S}^{1}$!

By Rellich's lemma, this implies $u_{\mathrm{s}} \equiv 0$ in $\mathbb{R}^{2} \backslash \overline{\mathcal{D}} \Rightarrow$ we are back to the continuous ITEP (with a strong assumption on the incident field).

Data and algorithm

- We can solve the fixed point problem using an iterative procedure: we set $\vec{\tau}^{0}=(0, \ldots, 0)^{\top}$ then define

$$
\vec{\tau}^{n+1}=G^{\varepsilon}\left(\vec{\tau}^{n}\right)
$$

- At each step, we solve a scattering problem. We use a P2 finite element method set on the ball B_{8}. On $\partial \mathrm{B}_{8}$, a truncated Dirichlet-to-Neumann map with 13 harmonics serves as a transparent boundary condition.
- For the numerical experiments, we take $\mathcal{D}=\mathrm{B}_{1}, M=3$ (3 directions of observation) and

$$
\begin{array}{|ll}
\boldsymbol{\theta}_{\mathrm{inc}}=\left(\cos \left(\psi_{\mathrm{inc}}\right), \sin \left(\psi_{\mathrm{inc}}\right)\right), & \psi_{\mathrm{inc}}=0^{\circ} \\
\boldsymbol{\theta}_{1}=\left(\cos \left(\psi_{1}\right), \sin \left(\psi_{1}\right)\right), & \psi_{1}=90^{\circ} \\
\boldsymbol{\theta}_{2}=\left(\cos \left(\psi_{2}\right), \sin \left(\psi_{2}\right)\right), & \psi_{2}=180^{\circ} \\
\boldsymbol{\theta}_{3}=\left(\cos \left(\psi_{3}\right), \sin \left(\psi_{3}\right)\right), & \psi_{3}=225^{\circ}
\end{array}
$$

Results: coefficient ρ at the end of the process
1.374836
1.3
1.2
1.1
1
0.915801
1.374836
1.3
1.2
1.1
1

Results: scattered field

Figure: $\left|u_{s}\right|$ at the end of the fixed point procedure in logarithmic scale. As desired, we see it is very small far from \mathcal{D} in the directions corresponding to the angles $90^{\circ}, 180^{\circ}$ and 225°. The domain is equal to B_{8}.

Results: far field pattern

Figure: The dotted lines show the directions where we want u_{s}^{∞} to vanish.

(1) Introduction

(2) Non-scattering wavenumbers
(3) Invisible inclusions

4 Conclusion

Conclusion

Discreteness of non-scattering eigenvalues

For a given obstacle, is there an incident field that does not scatter?
© How to proceed to prove discreteness of non-scattering wavenumbers for situations other than multistatic backscattering measurements?

4 Can we relax assumptions on ρ ?
4. Can we prove existence of non-scattering wavenumbers in this setting?

Conclusion

Discreteness of non-scattering eigenvalues

For a given obstacle, is there an incident field that does not scatter?
© How to proceed to prove discreteness of non-scattering wavenumbers for situations other than multistatic backscattering measurements?

4 Can we relax assumptions on ρ ?
^ Can we prove existence of non-scattering wavenumbers in this setting?

Invisibility

For a given frequency, how to build an invisible obstacle?
© An important issue: can we reiterate the process to construct larger defects in the reference medium?
\& Can we hide small Dirichlet obstacles (flies)? Work in progress...

Thank you for your attention!!!

