Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions

Lucas Chesnel¹

Coll. with A.-S. Bonnet-Ben Dhia² and S.A. Nazarov³.

¹Defi team, CMAP, École Polytechnique, France
 ²Poems team, Ensta ParisTech, France
 ³FMM, St. Petersburg State University, Russia

Napoli, 21/05/2015

General setting

▶ We are interested in methods based on the propagation of waves to determine the shape, the physical properties of objects, in an exact or qualitative manner, from given measurements.

- General principle of the methods:
 - i) send waves in the medium;
 - ii) measure the scattered field;
 - iii) deduce information on the structure.

• Many techniques: Xray, ultrasound imaging, seismic tomography, ...

• Many applications: biomedical imaging, non destructive testing of materials, geophysics, ...

Model problem

Scattering in time-harmonic regime of an incident plane wave by a bounded penetrable inclusion \mathcal{D} (coefficients ρ) in \mathbb{R}^2 .

$$\rho = 1 \qquad \qquad \begin{array}{c} \mathcal{D} \\ \rho \neq 1 \end{array}$$

Find
$$u$$
 such that
 $-\Delta u = k^2 \rho u \quad \text{in } \mathbb{R}^2,$
 $u = u_{i} + u_{s} \quad \text{in } \mathbb{R}^2,$
 $\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{s}}{\partial r} - iku_{s} \right) = 0.$

(1)

Model problem

Scattering in time-harmonic regime of an incident plane wave by a bounded penetrable inclusion \mathcal{D} (coefficients ρ) in \mathbb{R}^2 .

$$\rho = 1 \qquad \begin{array}{c} & u_{i} := e^{ik\theta_{inc} \cdot x} \text{ (incident dir. } \theta_{inc} \in \mathbb{S}^{1}) \\ & & \mathcal{D} \\ & & \rho \neq 1 \end{array}$$

Find u such that $\begin{aligned} -\Delta u &= k^2 \rho \, u & \text{in } \mathbb{R}^2, \\ u &= u_{\rm i} + u_{\rm s} & \text{in } \mathbb{R}^2, \\ \lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - i k u_{\rm s} \right) = 0. \end{aligned}$

(1)

Model problem

Scattering in time-harmonic regime of an incident plane wave by a bounded penetrable inclusion \mathcal{D} (coefficients ρ) in \mathbb{R}^2 .

DEFINITION: $\begin{aligned} u_{i} &= \text{incident field (data)} \\ u &= \text{total field (uniquely defined by (1))} \\ u_{s} &= \text{scattered field (uniquely defined by (1)).} \end{aligned}$

(1)

Illustration of the scattering of a plane wave

▶ Below, the movies represent a numerical approximation of the solution of the previous problem.

Incident field Total field Scattered field

$$t \mapsto \Re e\left(e^{-i\omega t}u_{i}(\boldsymbol{x})\right) \qquad \qquad t \mapsto \Re e\left(e^{-i\omega t}u(\boldsymbol{x})\right) \qquad \qquad t \mapsto \Re e\left(e^{-i\omega t}u_{s}(\boldsymbol{x})\right)$$

▶ The pulsation ω is defined by $\omega = k/c$ where c = 1 is the celerity of the waves in the homogeneous medium.

► The scattered field of an incident plane wave of direction θ_{inc} behaves in each direction like a cylindrical wave at infinity:

$$u_{
m s}(\boldsymbol{x}, \boldsymbol{ heta}_{
m inc}) = rac{e^{ikr}}{\sqrt{r}} \left(\; u_{
m s}^{\infty}(\boldsymbol{ heta}_{
m sca}, \boldsymbol{ heta}_{
m inc}) \; + \; O(1/r)
ight)$$

as $r = |\mathbf{x}| \to +\infty$, uniformly in $\boldsymbol{\theta}_{sca} \in \mathbb{S}^1$.

► The scattered field of an incident plane wave of direction θ_{inc} behaves in each direction like a cylindrical wave at infinity:

$$u_{
m s}(\boldsymbol{x}, \boldsymbol{ heta}_{
m inc}) = rac{e^{ikr}}{\sqrt{r}} \left(u_{
m s}^{\infty}(\boldsymbol{ heta}_{
m sca}, \boldsymbol{ heta}_{
m inc}) + O(1/r)
ight)$$

as $r = |\mathbf{x}| \to +\infty$, uniformly in $\boldsymbol{\theta}_{sca} \in \mathbb{S}^1$.

DEFINITION: The map $u_{s}^{\infty}(\cdot, \cdot)$: $\mathbb{S}^{1} \times \mathbb{S}^{1} \to \mathbb{C}$ is called the far field pattern.

► The scattered field of an incident plane wave of direction θ_{inc} behaves in each direction like a cylindrical wave at infinity:

$$u_{
m s}(\boldsymbol{x}, \boldsymbol{ heta}_{
m inc}) = rac{e^{ikr}}{\sqrt{r}} \left(u_{
m s}^{\infty}(\boldsymbol{ heta}_{
m sca}, \boldsymbol{ heta}_{
m inc}) + O(1/r)
ight)$$

as $r = |\mathbf{x}| \to +\infty$, uniformly in $\boldsymbol{\theta}_{sca} \in \mathbb{S}^1$.

DEFINITION: The map $u_{s}^{\infty}(\cdot, \cdot)$: $\mathbb{S}^{1} \times \mathbb{S}^{1} \to \mathbb{C}$ is called the far field pattern.

The far field pattern is the quantity one can measure at infinity (the other terms are too small).

► The scattered field of an incident plane wave of direction θ_{inc} behaves in each direction like a cylindrical wave at infinity:

$$u_{
m s}(\boldsymbol{x}, \boldsymbol{ heta}_{
m inc}) = rac{e^{ikr}}{\sqrt{r}} \left(u_{
m s}^{\infty}(\boldsymbol{ heta}_{
m sca}, \boldsymbol{ heta}_{
m inc}) + O(1/r)
ight)$$

as $r = |\mathbf{x}| \to +\infty$, uniformly in $\boldsymbol{\theta}_{sca} \in \mathbb{S}^1$.

DEFINITION: The map $u_{s}^{\infty}(\cdot, \cdot)$: $\mathbb{S}^{1} \times \mathbb{S}^{1} \to \mathbb{C}$ is called the far field pattern.

The far field pattern is the quantity one can measure at infinity (the other terms are too small).

▶ The goal of imaging techniques is to find features of the inclusion from the knowledge of $u_s^{\infty}(\cdot, \cdot)$ on a subset of $\mathbb{S}^1 \times \mathbb{S}^1$.

- In literature, most of the techniques require a continuum of data.
- In practice, one has a finite number of emitters and receivers.

- We assume that emitters and receivers coincide:
 - We send the plane wave $e^{ik\theta_1 \cdot x}$ (direction θ_1) and measure the resulted scattered fields in the directions $-\theta_1, \ldots, -\theta_N$.

- We assume that emitters and receivers coincide:
 - We send the plane wave $e^{ik\theta_1 \cdot x}$ (direction θ_1) and measure the resulted scattered fields in the directions $-\theta_1, \ldots, -\theta_N$.

- We assume that emitters and receivers coincide:
 - We send the plane wave $e^{ik\theta_1 \cdot x}$ (direction θ_1) and measure the resulted scattered fields in the directions $-\theta_1, \ldots, -\theta_N$.

- We assume that emitters and receivers coincide:
 - We send the plane wave $e^{ik\theta_1 \cdot x}$ (direction θ_1) and measure the resulted scattered fields in the directions $-\theta_1, \ldots, -\theta_N$.

- We assume that emitters and receivers coincide:
 - We send the plane wave $e^{ik\theta_1 \cdot x}$ (direction θ_1) and measure the resulted scattered fields in the directions $-\theta_1, \ldots, -\theta_N$.
 - We repeat the experiment sending successively plane waves in the directions $\theta_2, \ldots, \theta_N$.

• Let $\boldsymbol{\theta}_1, \ldots, \boldsymbol{\theta}_N$ be given directions of the unit circle \mathbb{S}^1 .

- We assume that emitters and receivers coincide:
 - We send the plane wave $e^{ik\theta_1 \cdot x}$ (direction θ_1) and measure the resulted scattered fields in the directions $-\theta_1, \ldots, -\theta_N$.
 - We repeat the experiment sending successively plane waves in the directions $\theta_2, \ldots, \theta_N$.

 $N \times N$ multistatic backscattering measurements

Relative scattering matrix

• For $\theta_1, \ldots, \theta_N$ given directions of \mathbb{S}^1 , we introduce the relative scattering matrix

$$\mathscr{S}(k) := \begin{pmatrix} u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{1}) & \cdots & u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{N}) \\ \vdots & \ddots & \vdots \\ u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{N},\boldsymbol{\theta}_{1}) & \cdots & u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{N},\boldsymbol{\theta}_{N}) \end{pmatrix} \in \mathbb{C}^{N \times N}.$$

Relative scattering matrix

For $\theta_1, \ldots, \theta_N$ given directions of \mathbb{S}^1 , we introduce the relative scattering matrix

$$\mathscr{S}(k) := \begin{pmatrix} u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{1}) & \cdots & u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{N}) \\ \vdots & \ddots & \vdots \\ u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{N},\boldsymbol{\theta}_{1}) & \cdots & u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{N},\boldsymbol{\theta}_{N}) \end{pmatrix} \in \mathbb{C}^{N \times N}.$$

• Note that $\mathscr{S}(k) = 0$ when there is no obstacle (\Rightarrow "relative").

Relative scattering matrix

For $\theta_1, \ldots, \theta_N$ given directions of \mathbb{S}^1 , we introduce the relative scattering matrix

$$\mathscr{S}(k) := \begin{pmatrix} u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{1}) & \cdots & u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{N}) \\ \vdots & \ddots & \vdots \\ u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{N},\boldsymbol{\theta}_{1}) & \cdots & u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{N},\boldsymbol{\theta}_{N}) \end{pmatrix} \in \mathbb{C}^{N \times N}.$$

Note that $\mathscr{S}(k) = 0$ when there is no obstacle (\Rightarrow "relative").

We are interested in defects that cannot be detected and in invisibility.

- 1) Is there an incident wave which does not scatter at infinity?
 → ker S(k) ≠ {0}?
- 2) Can it be that all incident waves do not scatter at infinity?
 → S(k) = 0?

2 Non-scattering wavenumbers

Is there an incident wave which does not scatter at infinity?

3 Invisible inclusions

Can it be that all incident waves do not scatter at infinity?

3 Invisible inclusions

Non-scattering wavenumbers

DEFINITION. Values of k>0 for which $\mathscr{S}(k)$ has a non trivial kernel are called non-scattering wavenumbers.

For k non-scat. wavenumber, there is some $(\alpha_1, \ldots, \alpha_N) \in \mathbb{C}^N \setminus \{0\}$ s.t.

$$u_{\mathbf{i}} = \sum_{n=1}^{N} \alpha_n e^{ik\boldsymbol{\theta}_n \cdot \boldsymbol{x}}$$

does not scatter at infinity in the directions $-\boldsymbol{\theta}_1, \ldots, -\boldsymbol{\theta}_N$.

Non-scattering wavenumbers

DEFINITION. Values of k > 0 for which $\mathscr{S}(k)$ has a non trivial kernel are called non-scattering wavenumbers.

For k non-scat. wavenumber, there is some $(\alpha_1, \ldots, \alpha_N) \in \mathbb{C}^N \setminus \{0\}$ s.t.

$$u_{\mathbf{i}} = \sum_{n=1}^{N} lpha_n e^{ikoldsymbol{ heta}_n\cdotoldsymbol{x}}$$

does not scatter at infinity in the directions $-\theta_1, \ldots, -\theta_N$.

We want to prove that non-scattering wavenumbers form a discrete set because we want to avoid them to implement reconstruction techniques.

IDEA OF THE APPROACH:

1 We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.

IDEA OF THE APPROACH:

1 We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.

2 For $k \in \mathbb{R}i \setminus \{0\}$, using integration by parts, we prove the energy identity

$$c\,\overline{\alpha}^{\mathsf{T}}\mathscr{S}(k)\,\alpha = \int_{\mathbb{R}^2} |\nabla u_{\mathrm{s}}|^2 + |k|^2\rho\,|u_{\mathrm{s}}|^2 + |k|^2\int_{\mathcal{D}} (1-\rho)|u_{\mathrm{i}}|^2.$$

where
$$u_{\mathbf{i}} = \sum_{n=1}^{N} \alpha_n e^{i k \boldsymbol{\theta}_n \cdot \boldsymbol{x}}, \ \alpha = (\alpha_1, \dots, \alpha_N)^{\top} \text{ and } c \neq 0 \text{ is a constant.}$$

IDEA OF THE APPROACH:

1 We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.

2 For $k \in \mathbb{R}i \setminus \{0\}$, using integration by parts, we prove the energy identity

$$c\,\overline{\alpha}^{\top}\mathscr{S}(k)\,\alpha = \int_{\mathbb{R}^2} |\nabla u_{\rm s}|^2 + |k|^2 \rho \,|u_{\rm s}|^2 + |k|^2 \int_{\mathcal{D}} (1-\rho)|u_{\rm i}|^2.$$

where $u_{\mathbf{i}} = \sum_{i=1}^{N} \alpha_n e^{i k \boldsymbol{\theta}_n \cdot \boldsymbol{x}}, \ \alpha = (\alpha_1, \dots, \alpha_N)^{\top}$ and $c \neq 0$ is a constant.

3 For $k \in \mathbb{R}i \setminus \{0\}$, $\rho < 1$, we deduce that $\mathscr{S}(k)$ is invertible.

IDEA OF THE APPROACH:

1 We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.

2 For $k \in \mathbb{R}i \setminus \{0\}$, using integration by parts, we prove the energy identity

$$c\,\overline{\alpha}^{\mathsf{T}}\mathscr{S}(k)\,\alpha = \int_{\mathbb{R}^2} |\nabla u_{\mathrm{s}}|^2 + |k|^2\rho\,|u_{\mathrm{s}}|^2 + |k|^2\int_{\mathcal{D}} (1-\rho)|u_{\mathrm{i}}|^2.$$

where
$$u_{\mathbf{i}} = \sum_{n=1}^{N} \alpha_n e^{i k \boldsymbol{\theta}_n \cdot \boldsymbol{x}}, \ \alpha = (\alpha_1, \dots, \alpha_N)^{\top} \text{ and } c \neq 0 \text{ is a constant.}$$

3 For $k \in \mathbb{R}i \setminus \{0\}$, $\rho < 1$, we deduce that $\mathscr{S}(k)$ is invertible.

Using the principle of isolated zeros, we obtain the following result:

PROPOSITION. Suppose that $\rho < 1$. Then the set of non-scattering wavenumbers is discrete and countable.

11

IDEA OF THE APPROACH:

1 We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.

2 For $k \in \mathbb{R}i \setminus \{0\}$, using integration by parts, we prove the energy identity

$$c\,\overline{\alpha}^{\mathsf{T}}\mathscr{S}(k)\,\alpha = -\int_{\mathbb{R}^2} |\nabla u_{\mathsf{s}}|^2 + |k|^2 |u_{\mathsf{s}}|^2 - |k|^2 \int_{\mathcal{D}} (\rho - 1)|u|^2.$$

where
$$u_{i} = \sum_{n=1}^{N} \alpha_{n} e^{ik\theta_{n} \cdot x}$$
, $\alpha = (\alpha_{1}, \dots, \alpha_{N})^{\top}$ and $c \neq 0$ is a constant.

3 For $k \in \mathbb{R}i \setminus \{0\}$, $\rho > 1$, we deduce that $\mathscr{S}(k)$ is invertible.

Using the principle of isolated zeros, we obtain the following result:

PROPOSITION. Suppose that $\rho > 1$. Then the set of non-scattering wavenumbers is discrete and countable.

11

▶ In the previous section, for a given obstacle, we have studied the k such that ker $\mathscr{S}(k) \neq \{0\}$ ($\mathscr{S}(k)$ is the relative scattering matrix).

• Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k) = 0$.

▶ In the previous section, for a given obstacle, we have studied the k such that ker $\mathscr{S}(k) \neq \{0\}$ ($\mathscr{S}(k)$ is the relative scattering matrix).

Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k) = 0$.

> These inclusions cannot be detected from far field measurements.

▶ In the previous section, for a given obstacle, we have studied the k such that ker $\mathscr{S}(k) \neq \{0\}$ ($\mathscr{S}(k)$ is the relative scattering matrix).

Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k) = 0$.

► To simplify the presentation, assume that there is only one incident direction θ_{inc} . Let $\theta_1, \ldots, \theta_N$ be given scattering directions.

▶ In the previous section, for a given obstacle, we have studied the k such that ker $\mathscr{S}(k) \neq \{0\}$ ($\mathscr{S}(k)$ is the relative scattering matrix).

Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k) = 0$.

► To simplify the presentation, assume that there is only one incident direction θ_{inc} . Let $\theta_1, \ldots, \theta_N$ be given scattering directions.

FORMULATION OF THE PROBLEM:

Find a real valued function $\rho \not\equiv 1$, with $\rho - 1$ supported in $\overline{\mathcal{D}}$, such that the solution of the problem

$$\begin{cases} \text{Find } u = u_{\text{s}} + e^{ik\theta_{\text{inc}}\cdot x} \text{ such that} \\ -\Delta u &= k^{2}\rho u \quad \text{in } \mathbb{R}^{2}, \\ \lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\text{s}}}{\partial r} - iku_{\text{s}} \right) = 0 \end{cases}$$

$$\text{verifies } u_{\text{s}}^{\infty}(\boldsymbol{\theta}_{1}) = \cdots = u_{\text{s}}^{\infty}(\boldsymbol{\theta}_{N}) = 0.$$

▶ In the previous section, for a given obstacle, we have studied the k such that ker $\mathscr{S}(k) \neq \{0\}$ ($\mathscr{S}(k)$ is the relative scattering matrix).

Now, we assume that k and the support of the inclusion $\overline{\mathcal{D}}$ are given.

We explain how to construct non trivial inclusions such that $\mathscr{S}(k) = 0$.

► To simplify the presentation, assume that there is only one incident direction θ_{inc} . Let $\theta_1, \ldots, \theta_N$ be given scattering directions.

Origin of the method:

• The idea we will use has been introduced in Nazarov 11 to construct waveguides for which there are embedded eigenvalues in the continuous spectrum.

• It has been adapted in Bonnet-Ben Dhia & Nazarov 13 to build invisible perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov & Taskinen 14 for an application to a water-wave problem).

Sketch of the method

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

(*N* complex measurements $\Rightarrow 2N$ real measurements)
• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

• No obstacle leads to null measurements $\Rightarrow F(0) = 0$.

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• We look for small perturbations of the reference medium: $\sigma = \varepsilon \mu$ where $\varepsilon > 0$ is a small parameter and where μ has be to determined.

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor: $F(\varepsilon\mu) = F(0) + \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu)$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor: $F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$

$$\exists \ \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t. } \begin{vmatrix} dF(0)(\mu_0) = 0 \\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \end{vmatrix}$$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

$$\exists \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t.} \begin{vmatrix} dF(0)(\mu_0) = 0\\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \end{vmatrix}$$

$$\blacktriangleright \text{ Take } \mu = \mu_0 + \sum_{n=1}^{2N} \tau_n \mu_n \text{ where the } \tau_n \text{ are real parameters to set:}$$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

$$\exists \ \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t.} \begin{vmatrix} dF(0)(\mu_0) = 0\\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \end{vmatrix}$$

$$\bullet \quad \text{Take } \mu = \mu_0 + \sum_{n=1}^{2N} \tau_n \mu_n \text{ where the } \tau_n \text{ are real parameters to set:}$$
$$0 = F(\varepsilon \mu) \quad \Leftrightarrow$$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

Assume that $dF(0) : L^{\infty}(\mathcal{D}) \to \mathbb{R}^{2N}$ is onto.

$$\exists \ \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t. } \begin{vmatrix} dF(0)(\mu_0) = 0\\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \\ \frac{2N}{2N} \end{vmatrix}$$

Take $\mu = \mu_0 + \sum_{n=1} \tau_n \mu_n$ where the τ_n are real parameters to set: $0 = F(\varepsilon \mu) \quad \Leftrightarrow \quad 0 = \varepsilon \sum_{n=1}^{2N} \tau_n dF(0)(\mu_n) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu)$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

Assume that $dF(0) : L^{\infty}(\mathcal{D}) \to \mathbb{R}^{2N}$ is onto.

$$\exists \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t.} \begin{vmatrix} dF(0)(\mu_0) = 0\\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \end{vmatrix}$$

$$\bullet \quad \text{Take } \mu = \mu_0 + \sum_{n=1}^{2N} \tau_n \mu_n \text{ where the } \tau_n \text{ are real parameters to set:}$$

Take $\mu = \mu_0 + \sum_{n=1} \tau_n \mu_n$ where the τ_n are real parameters to set:

$$0 = F(\varepsilon \mu) \qquad \Leftrightarrow \qquad 0 = \varepsilon \vec{\tau} + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu)$$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

Assume that $dF(0) : L^{\infty}(\mathcal{D}) \to \mathbb{R}^{2N}$ is onto.

$$\exists \ \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t. } \begin{vmatrix} dF(0)(\mu_0) = 0\\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \end{vmatrix}$$

Take $\mu = \mu_0 + \sum_{n=1} \tau_n \mu_n$ where the τ_n are real parameters to set:

$$0 = F(\varepsilon \mu) \qquad \Leftrightarrow \qquad 0 = \varepsilon \vec{\tau} + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu)$$

where $\vec{\tau} = (\tau_1, \ldots, \tau_{2N})^\top$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

Assume that $dF(0) : L^{\infty}(\mathcal{D}) \to \mathbb{R}^{2N}$ is onto.

$$\exists \ \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t. } \begin{vmatrix} dF(0)(\mu_0) = 0\\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \end{vmatrix}$$

• Take $\mu = \mu_0 + \sum_{n=1} \tau_n \mu_n$ where the τ_n are real parameters to set:

$$0 = F(\varepsilon \mu) \qquad \Leftrightarrow \qquad \vec{\tau} = G^{\varepsilon}(\vec{\tau})$$

where $\vec{\tau} = (\tau_1, \ldots, \tau_{2N})^\top$

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

Assume that $dF(0) : L^{\infty}(\mathcal{D}) \to \mathbb{R}^{2N}$ is onto.

$$\exists \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t. } \begin{vmatrix} dF(0)(\mu_0) = 0\\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \end{vmatrix}$$

• Take $\mu = \mu_0 + \sum_{n=1} \tau_n \mu_n$ where the τ_n are real parameters to set:

$$0 = F(\varepsilon \mu) \qquad \Leftrightarrow \qquad \vec{\tau} = G^{\varepsilon}(\vec{\tau})$$

where $\vec{\tau} = (\tau_1, \dots, \tau_{2N})^{\top}$ and $G^{\varepsilon}(\vec{\tau}) = -\varepsilon \tilde{F}^{\varepsilon}(\mu)$.

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

Assume that $dF(0) : L^{\infty}(\mathcal{D}) \to \mathbb{R}^{2N}$ is onto.

$$\exists \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t. } \begin{vmatrix} dF(0)(\mu_0) = 0\\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \end{vmatrix}$$

• Take $\mu = \mu_0 + \sum_{n=1}^{\infty} \tau_n \mu_n$ where the τ_n are real parameters to set:

$$0 = F(\varepsilon \mu) \qquad \Leftrightarrow \qquad \vec{\tau} = G^{\varepsilon}(\vec{\tau})$$

where $\vec{\tau} = (\tau_1, \dots, \tau_{2N})^{\top}$ and $G^{\varepsilon}(\vec{\tau}) = -\varepsilon \tilde{F}^{\varepsilon}(\mu)$.

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text{sol}}$.

• Define $\sigma = \rho - 1$ and gather the measurements in the vector $F(\sigma) = (F_1(\sigma), \dots, F_{2N}(\sigma))^\top \in \mathbb{R}^{2N}.$

Our goal: to find $\sigma \in L^{\infty}(\mathcal{D})$ such that $F(\sigma) = 0$ (with $\sigma \neq 0$).

• Taylor:
$$F(\varepsilon\mu) = \varepsilon dF(0)(\mu) + \varepsilon^2 \tilde{F}^{\varepsilon}(\mu).$$

Assume that $dF(0) : L^{\infty}(\mathcal{D}) \to \mathbb{R}^{2N}$ is onto.

$$\exists \ \mu_0, \mu_1, \dots, \mu_{2N} \in \mathcal{L}^{\infty}(\mathcal{D}) \text{ s.t. } \begin{vmatrix} dF(0)(\mu_0) = 0\\ [dF(0)(\mu_1), \dots, dF(0)(\mu_{2N})] = Id_{2N}. \end{vmatrix}$$

• Take $\mu = \mu_0 + \sum_{n=1}^{2n} \tau_n \mu_n$ where the τ_n are real parameters to set:

$$0 = F(\varepsilon \mu) \qquad \Leftrightarrow \qquad \vec{\tau} = G^{\varepsilon}(\vec{\tau})$$

where $\vec{\tau} = (\tau_1, \dots, \tau_{2N})^{\top}$ and $G^{\varepsilon}(\vec{\tau}) = -\varepsilon \tilde{F}^{\varepsilon}(\mu)$.

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text{sol}}$. Set $\sigma^{\text{sol}} := \varepsilon \mu^{\text{sol}}$. We have $F(\sigma^{\text{sol}}) = 0$ (existence of an invisible inclusion).

/ 25

• For our problem, we have $(\sigma = \rho - 1)$

 $F(\sigma) = (\Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_1), \dots, \Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_N), \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_1), \dots, \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_N)).$

• For our problem, we have
$$(\sigma = \rho - 1)$$

$$F(\sigma) = (\Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N}), \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N})).$$

To compute $dF(0)(\mu)$, we take $\rho^{\varepsilon} = 1 + \varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

For our problem, we have
$$(\sigma = \rho - 1)$$

$$F(\sigma) = (\Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N}), \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N})).$$

To compute $dF(0)(\mu)$, we take $\rho^{\varepsilon} = 1 + \varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

• We denote u^{ε} , u_{s}^{ε} the functions satisfying

Find
$$u^{\varepsilon} = u_{s}^{\varepsilon} + e^{ik\theta_{inc}\cdot x}$$
, with u_{s}^{ε} outgoing, such that
 $-\Delta u^{\varepsilon} = k^{2}\rho^{\varepsilon} u^{\varepsilon}$ in \mathbb{R}^{2} .

• For our problem, we have
$$(\sigma = \rho - 1)$$

$$F(\sigma) = (\Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N}), \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N})).$$

To compute $dF(0)(\mu)$, we take $\rho^{\varepsilon} = 1 + \varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

We denote u^{ε} , u^{ε}_{s} the functions satisfying

Find
$$u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\boldsymbol{\theta}_{\rm inc}\cdot\boldsymbol{x}}$$
, with $u_{\rm s}^{\varepsilon}$ outgoing, such that
 $-\Delta u^{\varepsilon} = k^2 \rho^{\varepsilon} u^{\varepsilon}$ in \mathbb{R}^2 .

•
$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_n) = c \, k^2 \int_{\mathcal{D}} (\rho^{\varepsilon} - 1) \left(u_{\rm i} + u_{\rm s}^{\varepsilon} \right) e^{-ik\boldsymbol{\theta}_n \cdot \boldsymbol{x}} \, d\boldsymbol{x} \qquad \left(c = \frac{e^{i\pi/4}}{\sqrt{8\pi k}} \right).$$

For our problem, we have
$$(\sigma = \rho - 1)$$

$$F(\sigma) = (\Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N}), \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N})).$$

To compute $dF(0)(\mu)$, we take $\rho^{\varepsilon} = 1 + \varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

We denote u^{ε} , u^{ε}_{s} the functions satisfying

Find
$$u^{\varepsilon} = u_{s}^{\varepsilon} + e^{ik\boldsymbol{\theta}_{inc}\cdot\boldsymbol{x}}$$
, with u_{s}^{ε} outgoing, such that
 $-\Delta u^{\varepsilon} = k^{2}\rho^{\varepsilon} u^{\varepsilon}$ in \mathbb{R}^{2} .

•
$$u_{s}^{\varepsilon \infty}(\boldsymbol{\theta}_{n}) = c k^{2} \int_{\mathcal{D}} (\rho^{\varepsilon} - 1) (u_{i} + u_{s}^{\varepsilon}) e^{-ik\boldsymbol{\theta}_{n} \cdot \boldsymbol{x}} d\boldsymbol{x}.$$

For our problem, we have
$$(\sigma = \rho - 1)$$

$$F(\sigma) = (\Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N}), \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N})).$$

To compute $dF(0)(\mu)$, we take $\rho^{\varepsilon} = 1 + \varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

We denote u^{ε} , u^{ε}_{s} the functions satisfying

Find
$$u^{\varepsilon} = u_{s}^{\varepsilon} + e^{ik\boldsymbol{\theta}_{inc}\cdot\boldsymbol{x}}$$
, with u_{s}^{ε} outgoing, such that
 $-\Delta u^{\varepsilon} = k^{2}\rho^{\varepsilon} u^{\varepsilon}$ in \mathbb{R}^{2} .

•
$$u_{\mathbf{s}}^{\varepsilon \infty}(\boldsymbol{\theta}_n) = \varepsilon c k^2 \int_{\mathcal{D}} \mu \left(u_{\mathbf{i}} + u_{\mathbf{s}}^{\varepsilon} \right) e^{-ik\boldsymbol{\theta}_n \cdot \boldsymbol{x}} d\boldsymbol{x}.$$

• For our problem, we have
$$(\sigma = \rho - 1)$$

$$F(\sigma) = (\Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N}), \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N})).$$

To compute $dF(0)(\mu)$, we take $\rho^{\varepsilon} = 1 + \varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

We denote u^{ε} , u^{ε}_{s} the functions satisfying

Find
$$u^{\varepsilon} = u_{s}^{\varepsilon} + e^{ik\boldsymbol{\theta}_{inc}\cdot\boldsymbol{x}}$$
, with u_{s}^{ε} outgoing, such that
 $-\Delta u^{\varepsilon} = k^{2}\rho^{\varepsilon} u^{\varepsilon}$ in \mathbb{R}^{2} .

•
$$u_{s}^{\varepsilon \infty}(\boldsymbol{\theta}_{n}) = \varepsilon c k^{2} \int_{\mathcal{D}} \mu \left(u_{i} + u_{s}^{\varepsilon} \right) e^{-ik\boldsymbol{\theta}_{n} \cdot \boldsymbol{x}} d\boldsymbol{x}.$$

• We can prove that $u_{\rm s}^{\varepsilon} = O(\varepsilon)$.

• For our problem, we have
$$(\sigma = \rho - 1)$$

$$F(\sigma) = (\Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N}), \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N})).$$

To compute $dF(0)(\mu)$, we take $\rho^{\varepsilon} = 1 + \varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

We denote u^{ε} , u^{ε}_{s} the functions satisfying

Find
$$u^{\varepsilon} = u_{s}^{\varepsilon} + e^{ik\boldsymbol{\theta}_{inc}\cdot\boldsymbol{x}}$$
, with u_{s}^{ε} outgoing, such that
 $-\Delta u^{\varepsilon} = k^{2}\rho^{\varepsilon} u^{\varepsilon}$ in \mathbb{R}^{2} .

•
$$u_{\mathbf{s}}^{\varepsilon \infty}(\boldsymbol{\theta}_n) = \varepsilon c k^2 \int_{\mathcal{D}} \mu u_{\mathbf{i}} e^{-ik\boldsymbol{\theta}_n \cdot \boldsymbol{x}} d\boldsymbol{x} + O(\varepsilon^2).$$

• We can prove that $u_{\rm s}^{\varepsilon} = O(\varepsilon)$.

• For our problem, we have
$$(\sigma = \rho - 1)$$

$$F(\sigma) = (\Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Re e \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N}), \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{1}), \dots, \Im m \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{N})).$$

To compute $dF(0)(\mu)$, we take $\rho^{\varepsilon} = 1 + \varepsilon \mu$ with μ supported in $\overline{\mathcal{D}}$.

• We denote u^{ε} , u^{ε}_{s} the functions satisfying

 $\left| \begin{array}{l} {\rm Find} \ u^{\varepsilon} = u^{\varepsilon}_{\rm s} + e^{ik\boldsymbol{\theta}_{\rm inc}\cdot\boldsymbol{x}}, {\rm with} \ u^{\varepsilon}_{\rm s} \ {\rm outgoing}, \ {\rm such} \ {\rm that} \\ -\Delta u^{\varepsilon} \ = \ k^2\rho^{\varepsilon} \ u^{\varepsilon} \quad {\rm in} \ \mathbb{R}^2. \end{array} \right.$

• We obtain the expansion (Born approx.), for small ε

$$u_{\rm s}^{\varepsilon \,\infty}(\boldsymbol{\theta}_n) = 0 + \varepsilon \, c \, k^2 \int_{\mathcal{D}} \mu \, e^{ik(\boldsymbol{\theta}_{\rm inc} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}} \, d\boldsymbol{x} \, + \, O(\varepsilon^2).$$

For our problem, we have
$$(\sigma = \rho - 1)$$

 $F(\sigma) = (\Re e \frac{u_{s}^{\infty}(\boldsymbol{\theta}_{1})}{ck^{2}}, \dots, \Re e \frac{u_{s}^{\infty}(\boldsymbol{\theta}_{N})}{ck^{2}}, \Im m \frac{u_{s}^{\infty}(\boldsymbol{\theta}_{1})}{ck^{2}}, \dots, \Im m \frac{u_{s}^{\infty}(\boldsymbol{\theta}_{N})}{ck^{2}}).$
To compute $dF(0)(u)$ we take $\rho^{\varepsilon} = 1 + \varepsilon u$ with u supported in $\overline{\mathcal{D}}$

• We denote u^{ε} , $u_{\rm s}^{\varepsilon}$ the functions satisfying

Find $u^{\varepsilon} = u_{\mathrm{s}}^{\varepsilon} + e^{ik\boldsymbol{\theta}_{\mathrm{inc}}\cdot\boldsymbol{x}}$, with $u_{\mathrm{s}}^{\varepsilon}$ outgoing, such that $-\Delta u^{\varepsilon} = k^{2}\rho^{\varepsilon} u^{\varepsilon}$ in \mathbb{R}^{2} .

• We obtain the expansion (Born approx.), for small ε

$$u_{\rm s}^{\varepsilon \,\infty}(\boldsymbol{\theta}_n) = 0 + \varepsilon \, c \, k^2 \int_{\mathcal{D}} \mu \, e^{ik(\boldsymbol{\theta}_{\rm inc} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}} \, d\boldsymbol{x} \, + O(\varepsilon^2).$$

For our problem, we have
$$(\sigma = \rho - 1)$$

 $F(\sigma) = (\Re e \frac{u_{s}^{\infty}(\boldsymbol{\theta}_{1})}{ck^{2}}, \dots, \Re e \frac{u_{s}^{\infty}(\boldsymbol{\theta}_{N})}{ck^{2}}, \Im m \frac{u_{s}^{\infty}(\boldsymbol{\theta}_{1})}{ck^{2}}, \dots, \Im m \frac{u_{s}^{\infty}(\boldsymbol{\theta}_{N})}{ck^{2}}).$
To compute $dF(0)(\mu)$, we take $\rho^{\varepsilon} = 1 + \varepsilon\mu$ with μ supported in $\overline{\mathcal{D}}$.

We denote u^{ε} , u^{ε}_{s} the functions satisfying

 $\left| \begin{array}{l} {\rm Find} \ u^{\varepsilon} = u^{\varepsilon}_{\rm s} + e^{ik\boldsymbol{\theta}_{\rm inc}\cdot\boldsymbol{x}}, {\rm with} \ u^{\varepsilon}_{\rm s} \ {\rm outgoing}, \ {\rm such \ that} \\ -\Delta u^{\varepsilon} \ = \ k^2\rho^{\varepsilon} \ u^{\varepsilon} \quad {\rm in} \ \mathbb{R}^2. \end{array} \right.$

• We obtain the expansion (Born approx.), for small ε

$$u_{\rm s}^{\varepsilon \,\infty}(\boldsymbol{\theta}_n) = 0 + \varepsilon \, c \, k^2 \int_{\mathcal{D}} \mu \, e^{ik(\boldsymbol{\theta}_{\rm inc} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}} \, d\boldsymbol{x} + O(\varepsilon^2).$$

$$dF(0)(\mu) = \left(\int_{\mathcal{D}} \mu \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_{1}) \cdot \boldsymbol{x}) \, d\boldsymbol{x}, \dots, \int_{\mathcal{D}} \mu \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_{N}) \cdot \boldsymbol{x}) \, d\boldsymbol{x}, \\ \int_{\mathcal{D}} \mu \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_{1}) \cdot \boldsymbol{x}) \, d\boldsymbol{x}, \dots, \int_{\mathcal{D}} \mu \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_{N}) \cdot \boldsymbol{x}) \, d\boldsymbol{x}\right)$$

$$dF(0)(\mu) = \left(\int_{\mathcal{D}} \mu \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_{1}) \cdot \boldsymbol{x}) \, d\boldsymbol{x}, \dots, \int_{\mathcal{D}} \mu \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_{N}) \cdot \boldsymbol{x}) \, d\boldsymbol{x}, \\ \int_{\mathcal{D}} \mu \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_{1}) \cdot \boldsymbol{x}) \, d\boldsymbol{x}, \dots, \int_{\mathcal{D}} \mu \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_{N}) \cdot \boldsymbol{x}) \, d\boldsymbol{x}\right)$$

Construction of the shape functions

1 If $\boldsymbol{\theta}_{\text{inc}} \neq \boldsymbol{\theta}_n$ for $n = 1, \dots, N$,

$$\mathscr{M} := \{\cos(k(\boldsymbol{\theta}_{\mathrm{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}), \sin(k(\boldsymbol{\theta}_{\mathrm{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x})\}_{n=1}^N,$$

is a family of linearly independent functions. Using the Gram matrix, we can build $\mu_{1,1}, \ldots, \mu_{1,N}, \mu_{2,1}, \ldots, \mu_{2,N} \in \operatorname{span}(\mathscr{M})$ such that

$$\int_{\mathcal{D}} \mu_{1,m} \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = \delta^{mn}, \quad \int_{\mathcal{D}} \mu_{1,m} \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0$$
$$\int_{\mathcal{D}} \mu_{2,m} \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0, \qquad \int_{\mathcal{D}} \mu_{2,m} \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = \delta^{mn}$$

Construction of the shape functions

1 If $\boldsymbol{\theta}_{\text{inc}} \neq \boldsymbol{\theta}_n$ for $n = 1, \dots, N$,

$$\mathcal{M} := \{\cos(k(\boldsymbol{\theta}_{\mathrm{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}), \sin(k(\boldsymbol{\theta}_{\mathrm{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x})\}_{n=1}^N,$$

is a family of linearly independent functions. Using the Gram matrix, we can build $\mu_{1,1}, \ldots, \mu_{1,N}, \mu_{2,1}, \ldots, \mu_{2,N} \in \operatorname{span}(\mathscr{M})$ such that

$$\int_{\mathcal{D}} \mu_{1,m} \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = \delta^{mn}, \quad \int_{\mathcal{D}} \mu_{1,m} \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0$$
$$\int_{\mathcal{D}} \mu_{2,m} \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0, \qquad \int_{\mathcal{D}} \mu_{2,m} \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = \delta^{mn}$$

2

We need to construct some $\mu_0 \in \ker dF(0)$, *i.e.* some μ_0 satisfying

$$\int_{\mathcal{D}} \mu_0 \cos(k(\boldsymbol{\theta}_{\rm inc} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0, \quad \int_{\mathcal{D}} \mu_0 \sin(k(\boldsymbol{\theta}_{\rm inc} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0.$$

Construction of the shape functions

1 If $\boldsymbol{\theta}_{\text{inc}} \neq \boldsymbol{\theta}_n$ for $n = 1, \dots, N$,

$$\mathscr{M} := \{\cos(k(\boldsymbol{\theta}_{\mathrm{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}), \sin(k(\boldsymbol{\theta}_{\mathrm{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x})\}_{n=1}^N,$$

is a family of linearly independent functions. Using the Gram matrix, we can build $\mu_{1,1}, \ldots, \mu_{1,N}, \mu_{2,1}, \ldots, \mu_{2,N} \in \operatorname{span}(\mathscr{M})$ such that

$$\int_{\mathcal{D}} \mu_{1,m} \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = \delta^{mn}, \quad \int_{\mathcal{D}} \mu_{1,m} \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0$$
$$\int_{\mathcal{D}} \mu_{2,m} \cos(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0, \qquad \int_{\mathcal{D}} \mu_{2,m} \sin(k(\boldsymbol{\theta}_{\text{inc}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = \delta^{mn}$$

$$\mu_0 = \mu_0^{\#} - \sum_{m=1}^N \left(\int_{\mathcal{D}} \mu_{1,m} \, \mu_0^{\#} \, d\boldsymbol{x} \right) \, \mu_{1,m} - \sum_{m=1}^N \left(\int_{\mathcal{D}} \mu_{2,m} \, \mu_0^{\#} \, d\boldsymbol{x} \right) \, \mu_{2,m}$$

where $\mu_0^{\#} \notin \operatorname{span}\{\mu_{1,1}, \dots, \mu_{1,N}, \mu_{2,1}, \dots, \mu_{2,N}\}.$

Main result

PROPOSITION: Assume that $\theta_{inc} \neq \theta_n$ for n = 1, ..., N. For ε small enough, define $\rho^{\rm sol} = 1 + \varepsilon \mu^{\rm sol}$ with $\mu^{\text{sol}} = \mu_0 + \sum_{n=1}^{N} \tau_{1,m}^{\text{sol}} \mu_{1,m} + \sum_{n=1}^{N} \tau_{2,m}^{\text{sol}} \mu_{2,m}.$ Then the solution of the scattering problem Find $u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\theta_{\rm inc}\cdot x}$ such that $-\Delta u = k^2 \rho^{\rm sol} u \quad \text{in } \mathbb{R}^2,$ $\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s}\right) = 0$ verifies $u_{s}^{\infty}(\boldsymbol{\theta}_{1}) = \cdots = u_{s}^{\infty}(\boldsymbol{\theta}_{N}) = 0.$

Comments:

- \rightarrow Proving that G^{ε} is a contraction is not a big deal.
- \rightarrow We have $\mu^{\text{sol}} \neq 0$ (non trivial inclusion). To see it, compute $dF(0)(\mu^{\text{sol}})$.

Main result

PROPOSITION: Assume that $\theta_{inc} \neq \theta_n$ for n = 1, ..., N. For ε small enough, define $\rho^{\rm sol} = 1 + \varepsilon \mu^{\rm sol}$ with $\mu^{\text{sol}} = \mu_0 + \sum^N \tau_{1,m}^{\text{sol}} \mu_{1,m} + \sum^N \tau_{2,m}^{\text{sol}} \mu_{2,m}.$ Then the solution of the scattering problem Find $u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\theta_{\rm inc}\cdot x}$ such that $-\Delta u = k^2 \rho^{\rm sol} u \quad \text{in } \mathbb{R}^2,$ $\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s}\right) = 0$ verifies $u_{s}^{\infty}(\boldsymbol{\theta}_{1}) = \cdots = u_{s}^{\infty}(\boldsymbol{\theta}_{N}) = 0.$

Comments:

- \rightarrow Proving that G^{ε} is a contraction is not a big deal.
- → We have $\mu^{\text{sol}} \neq 0$ (non trivial inclusion). To see it, compute $dF(0)(\mu^{\text{sol}})$.
- → This proof of existence of invisible inclusions may appear not so surprising since $\mathscr{S}(k) \in \mathbb{R}^{2N}, \ \rho \in L^{\infty}(\mathcal{D}).$

Main result

PROPOSITION: Assume that $\theta_{inc} \neq \theta_n$ for n = 1, ..., N. For ε small enough, define $\rho^{\rm sol} = 1 + \varepsilon \mu^{\rm sol}$ with $\mu^{\text{sol}} = \mu_0 + \sum_{n=1}^{N} \tau_{1,m}^{\text{sol}} \mu_{1,m} + \sum_{n=1}^{N} \tau_{2,m}^{\text{sol}} \mu_{2,m}.$ Then the solution of the scattering problem Find $u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\theta_{\rm inc}\cdot x}$ such that $-\Delta u = k^2 \rho^{\rm sol} u \quad \text{in } \mathbb{R}^2,$ $\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s}\right) = 0$ verifies $u_{s}^{\infty}(\boldsymbol{\theta}_{1}) = \cdots = u_{s}^{\infty}(\boldsymbol{\theta}_{N}) = 0.$

Comments:

- \rightarrow Proving that G^{ε} is a contraction is not a big deal.
- → We have $\mu^{\text{sol}} \neq 0$ (non trivial inclusion). To see it, compute $dF(0)(\mu^{\text{sol}})$.
- → This proof of existence of invisible inclusions may appear not so surprising since $\mathscr{S}(k) \in \mathbb{R}^{2N}, \rho \in L^{\infty}(\mathcal{D})$. The case $\boldsymbol{\theta}_{inc} = \boldsymbol{\theta}_n$ shows that nothing is obvious..._{17 / 25}

The case $\boldsymbol{\theta}_{\text{inc}} = \boldsymbol{\theta}_n$

► In the previous approach, we needed to assume $\theta_{inc} \neq \theta_n$, n = 1, ..., N. What if $\theta_{inc} = \theta_n$?

The case $\theta_{inc} = \theta_n$

► In the previous approach, we needed to assume $\theta_{inc} \neq \theta_n$, n = 1, ..., N. What if $\theta_{inc} = \theta_n$?
- ► In the previous approach, we needed to assume $\theta_{inc} \neq \theta_n$, n = 1, ..., N. What if $\theta_{inc} = \theta_n$?
- ► There holds

$$u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{n}) = c k^{2} \int_{\mathcal{D}} (\rho - 1) \left(u_{\mathrm{i}} + u_{\mathrm{s}} \right) e^{-ik\boldsymbol{\theta}_{n}\cdot\boldsymbol{x}} d\boldsymbol{x}.$$

- ► In the previous approach, we needed to assume $\theta_{inc} \neq \theta_n$, n = 1, ..., N. What if $\theta_{inc} = \theta_n$?
- ► There holds

$$u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{inc}}) = c k^2 \int_{\mathcal{D}} (\rho - 1) \left(u_{\mathrm{i}} + u_{\mathrm{s}}
ight) \overline{u_{\mathrm{i}}} \, d\boldsymbol{x}.$$

- ► In the previous approach, we needed to assume $\theta_{inc} \neq \theta_n$, n = 1, ..., N. What if $\theta_{inc} = \theta_n$?
- There holds

$$u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{inc}}) = c \, k^2 \int_{\mathcal{D}} (\rho - 1) \left(u_{\mathrm{i}} + u_{\mathrm{s}}
ight) \overline{u_{\mathrm{i}}} \, d\boldsymbol{x}.$$

This allows to prove the formula (use Colton, Kress 98)

$$\Im m\left(c^{-1} \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{inc}})\right) = k \int_{\mathbb{S}^1} |u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta})|^2 \, d\boldsymbol{\theta}.$$

- ► In the previous approach, we needed to assume $\theta_{inc} \neq \theta_n$, n = 1, ..., N. What if $\theta_{inc} = \theta_n$?
- There holds

$$u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{inc}}) = c \, k^2 \int_{\mathcal{D}} (\rho - 1) \left(u_{\mathrm{i}} + u_{\mathrm{s}}
ight) \overline{u_{\mathrm{i}}} \, d\boldsymbol{x}.$$

• This allows to prove the formula (use Colton, Kress 98)

$$\Im m\left(c^{-1}\,u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{inc}})\right) = k \int_{\mathbb{S}^{1}} |u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta})|^{2} \, d\boldsymbol{\theta}.$$

Imposing invisibility in the direction θ_{inc} requires to impose invisibility in all directions $\theta \in \mathbb{S}^1$!

- ► In the previous approach, we needed to assume $\theta_{inc} \neq \theta_n$, n = 1, ..., N. What if $\theta_{inc} = \theta_n$?
- There holds

$$u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{inc}}) = c \, k^2 \int_{\mathcal{D}} (\rho - 1) \left(u_{\mathrm{i}} + u_{\mathrm{s}}
ight) \overline{u_{\mathrm{i}}} \, d\boldsymbol{x}.$$

This allows to prove the formula (use Colton, Kress 98)

$$\Im m\left(c^{-1} u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{inc}})\right) = k \int_{\mathbb{S}^1} |u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta})|^2 d\boldsymbol{\theta}.$$

Imposing invisibility in the direction θ_{inc} requires to impose invisibility in all directions $\theta \in \mathbb{S}^1$!

By Rellich's lemma, this implies $u_{\rm s} \equiv 0$ in $\mathbb{R}^2 \setminus \overline{\mathcal{D}} \Rightarrow$ we are back to the continuous ITEP (with a strong assumption on the incident field).

18

- ► In the previous approach, we needed to assume $\theta_{inc} \neq \theta_n$, n = 1, ..., N. What if $\theta_{inc} = \theta_n$?
- There holds

$$u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{inc}}) = c \, k^2 \int_{\mathcal{D}} (\rho - 1) \left(u_{\mathrm{i}} + u_{\mathrm{s}}
ight) \overline{u_{\mathrm{i}}} \, d\boldsymbol{x}.$$

- No solution if \mathcal{D} has corners and under certain assumptions on ρ .
- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014
- Corners and edges always scatter, J. Elschner, G. Hu, 2015
- And if \mathcal{D} is smooth? \Rightarrow The problem seems open.

Imposing invisibility in the direction θ_{inc} requires to impose invisibility in all directions $\theta \in \mathbb{S}^1$!

By Rellich's lemma, this implies $u_{\rm s} \equiv 0$ in $\mathbb{R}^2 \setminus \overline{\mathcal{D}} \Rightarrow$ we are back to the continuous ITEP (with a strong assumption on the incident field).

18

Data and algorithm

• We can solve the fixed point problem using an iterative procedure: we set $\vec{\tau}^{0} = (0, \dots, 0)^{\top}$ then define

$$\vec{\tau}^{\,n+1} = G^{\varepsilon}(\vec{\tau}^{\,n}).$$

▶ At each step, we solve a scattering problem. We use a P2 finite element method set on the ball B_8 . On ∂B_8 , a truncated Dirichlet-to-Neumann map with 13 harmonics serves as a transparent boundary condition.

▶ For the numerical experiments, we take $D = B_1$, M = 3 (3 directions of observation) and

$$\begin{array}{ll}
\theta_{\rm inc} = (\cos(\psi_{\rm inc}), \sin(\psi_{\rm inc})), & \psi_{\rm inc} = 0^{\circ} \\
\theta_1 = (\cos(\psi_1), \sin(\psi_1)), & \psi_1 = 90^{\circ} \\
\theta_2 = (\cos(\psi_2), \sin(\psi_2)), & \psi_2 = 180^{\circ} \\
\theta_3 = (\cos(\psi_3), \sin(\psi_3)), & \psi_3 = 225^{\circ}
\end{array}$$

Results: coefficient ρ at the end of the process

Results: scattered field

Figure: $|u_s|$ at the end of the fixed point procedure in logarithmic scale. As desired, we see it is very small far from \mathcal{D} in the directions corresponding to the angles 90°, 180° and 225°. The domain is equal to B₈.

Results: far field pattern

Figure: The dotted lines show the directions where we want u_s^{∞} to vanish.

1 Introduction

2 Non-scattering wavenumbers

3 Invisible inclusions

Discreteness of non-scattering eigenvalues

For a given obstacle, is there an incident field that does not scatter?

- How to proceed to prove discreteness of non-scattering wavenumbers for situations other than multistatic backscattering measurements?
- Can we relax assumptions on ρ ?
 - Can we prove existence of non-scattering wavenumbers in this setting?

Discreteness of non-scattering eigenvalues

For a given obstacle, is there an incident field that does not scatter?

How to proceed to prove discreteness of non-scattering wavenumbers for situations other than multistatic backscattering measurements?

Can we relax assumptions on ρ ?

Can we prove existence of non-scattering wavenumbers in this setting?

Invisibility

For a given frequency, how to build an invisible obstacle?

An important issue: can we reiterate the process to construct larger defects in the reference medium?

• Can we hide small Dirichlet obstacles (flies)? Work in progress...

Thank you for your attention!!!