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Abstract. In this paper, we examine the interior transmission problem for Maxwell’s

equations in the case where both ε and µ, the physical parameters of the scattering

medium, differ from ε0 and µ0 modeling the background medium. Using the T -

coercivity method, we propose an alternative approach to the classical techniques

to prove that this problem is of Fredholm type and that the so-called transmission

eigenvalues form at most a discrete set. The T -coercivity approach allows us to deal

with cases where ε − ε0 and µ − µ0 can change sign. We also provide results of

localization and Faber-Krahn type inequalities for the transmission eigenvalues.
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1. Introduction

The term “interior transmission eigenvalue problem” refers to a family of spectral

problems which appear in scattering theory. In particular, they arise when one is

interested in the reconstruction of an inclusion embedded in a background medium from

multi-static measurements of scattered fields at a given frequency. These problems,

unlike conventional transmission problems, involve two similar PDEs in the same

domain, coupled via transmission conditions on the boundary. The values of the

frequency for which the homogeneous interior transmission problem admits nontrivial

solutions are called transmission eigenvalues. More physically, transmission eigenvalues

can be seen as frequencies for which there exists an incident field, superposition of

incident plane waves, such that the corresponding scattered field is arbitrary small. An

important issue is to prove that transmission eigenvalues form at most a discrete set

with infinity as the only accumulation point.

In this paper, we will concentrate on interior transmission eigenvalue problems in

electromagnetism. The permittivity and permeability of the scattering medium are

denoted ε and µ whereas the physical parameters of the background medium are ε0
and µ0. To simplify the notations, we introduce A and N such that ε = ε0N and

µ = µ0A
−1. Research has focused primarily on the case where the scattering medium

is characterized by one contrast function: A 6= Id,N = Id or A = Id,N 6= Id. Both

the scalar [16, 27, 17, 18] and Maxwell [20, 11, 7] problems have been widely studied

but questions remain open. We note that a nice step forward was made recently by

Sylvester for the scalar problem in the case A = Id,N = nId, n being a scalar function.

In [28], he indeed proved that the eigenvalues form at most a discrete set as soon as

n− 1 is positive (or negative) in a neighbourhood of the boundary. To our knowledge,

it is still an open problem to prove an equivalent result when A 6= Id,N = Id.

In practice, it is quite restrictive to model the scattering medium by only one

parameter. Therefore, some authors have introduced an interior transmission eigenvalue

problem with A 6= Id and N 6= Id [6, 21, 13]. From a technical point of view, the

sesquilinear form associated with the natural variational formulation of this interior

transmission problem exhibits a sign-changing in its principal part. Consequently,

the associated operator is not strongly elliptic and its study is not standard. One

observes an equivalent difficulty in the study of the transmission problem between a

dielectric and a negative metamaterial in the time-harmonic regime. To tackle it, we

can use the T -coercivity technique [5, 2, 4, 8, 10]. The idea consists in testing, in

variational formulations, not directly against the field, but against a simple geometrical

transformation of the field. This allows one to restore some properties of positivity for

the associated operators. In [4], thanks to this simple approach, we have been able to

extend the results of [6, 13] for the scalar problem associated with (2): only the values of

A− Id in a neighbourhood of the boundary actually matter for determining whether or

not the problem is of Fredholm type. In this paper, we complete the results obtained in

[13] for the Maxwell problem. More precisely, we prove, using the T -coercivity method,
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that this problem is of Fredholm type and that transmission eigenvalues form at most a

discrete set in situations for which A− Id and N − Id are either positive or negative in

a neighbourhood of the boundary and can change sign inside the domain. Under more

restrictive conditions on A and N , we also provide estimates for the first eigenvalue.

Another important question for these interior transmission eigenvalue problems is

to prove the existence of transmission eigenvalues which can then help in determining the

values of the physical parameters of the inclusion. This question will not be dealt with

here. Indeed, up to now, the T -coercivity approach appears inefficient to show these kind

of results because the formulation we work on, although it presents some useful property

of positivity, is not symmetric. This prevents using the nice min-max arguments (see

[18, 12, 9]). Hence, the question of existence of real transmission eigenvalues when A−Id
or N − Id change sign, both for scalar and Maxwell problems, remains open.

This paper is organized as follows. In section 2, we formulate the interior

transmission eigenvalue problem in some “H(curl )” type space X. We then present

the idea of the T -coercivity studying the scalar problem which appears in the Helmholtz

decomposition of X. Although we can restore some positivity property using the T -

coercivity approach in X, this is not sufficient to apply the analytic Fredholm theorem

because X is not compactly imbedded in L2(D) × L2(D) (D is the domain). Hence,

we introduce in section 3 a formulation of the transmission eigenvalue problem in X0,

which is the space “orthogonal” to gradients in the Helmholtz decomposition. The next

section is dedicated to prove a result of compact imbedding of X0 into L2(D)×L2(D).

Then, we proceed to the study of the interior transmission eigenvalue problem using the

analytical Fredholm theorem in the case where A ≤ A?Id in a neighbourhood of the

boundary, where A? is a constant such that A? < 1. In section 6, we summarize the

equivalent results when A?Id ≤ A in a neighbourhood of the boundary, with 1 < A?.

Finally, we discuss the cases where A−Id and/or N−Id change sign in a neighbourhood

of the boundary.

2. Setting of the problem

2.1. Basic definitions

Consider D ⊂ R3 a bounded simply connected domain with Lipschitz connected

boundary ∂D. The unit outward normal vector to ∂D will be denoted ν. We study the

problem of scattering of the electric field in the time-harmonic regime by an inclusion

whose permeability and permittivity are given by ε(x) = ε0N(x) and µ(x) = µ0A(x)−1.

To simplify the presentation, we assume that ε0 and µ0 are constant but considering a

background medium which is not homogeneous would only induce minor corrections in

the analysis we provide. Here, A, N ∈ L∞(D,C3×3) are matrix valued functions such

that A(x) and N(x) are hermitian for almost all x ∈ D. Furthermore, we suppose that
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A−1, N−1 ∈ L∞(D,C3×3) and we denote

A− := inf
x∈D

inf
ξ∈C3,|ξ|=1

(ξ · A(x)ξ) > 0 ; A+ := sup
x∈D

sup
ξ∈C3,|ξ|=1

(ξ · A(x)ξ) <∞ ;

N− := inf
x∈D

inf
ξ∈C3,|ξ|=1

(ξ ·N(x)ξ) > 0 and N+ := sup
x∈D

sup
ξ∈C3,|ξ|=1

(ξ ·N(x)ξ) <∞.
(1)

In this paper, A? > 1, A? < 1, N? > 1 and N? < 1 will be constants which will allow to

state some assumptions on the values of A and N in a neighborhood of the boundary.

On the other hand, V will always refer to a neighbourhood of ∂D, i.e. an open set of

R3 such that ∂D ⊂ (V ∩D).

If O is an open subset of R3, we denote indistinctly (·, ·)O the inner products of

L2(O) := L2(O,C) and L2(O) := L2(O,C3), and ‖ · ‖O the associated norms. We also

denote H1(D) instead of H1(D,C). The space H(curl, D) is defined as the closure of

C∞(D,C3) for the norm

‖u‖H(curl,D) := (u,u)
1/2
H(curl,D) with (u,v)H(curl,D) := (u,v)D + (curl u, curl v)D.

The subset of the elements of H(curl, D) such that the tangential trace vanishes on

∂D is denoted H0(curl , D).

H0(curl , D) := {v ∈H(curl, D) |v × ν = 0 on ∂D}.
The tangential trace is well-defined (see for example [19] or [26]).

Definition 2.1 The elements k ∈ C such that there exists a pair (u,w) 6= (0, 0) solving

the problem

Find (u,w) ∈H(curl, D)×H(curl, D) such that:

curl (Acurl u)− k2Nu = 0 in D

curl curlw − k2w = 0 in D

ν × (u−w) = 0 on ∂D

ν × (Acurl u− curlw) = 0 on ∂D

(2)

are called transmission eigenvalues.

Here, w and u denote respectively the incident electric field which does not scatter and

the total electric field inside the inclusion. One classically proves that (u,w) satisfies

(2) if and only if (u,w) satisfies the problem

Find (u,w) ∈X such that, for all (u′,w′) ∈X,∫
D

Acurl u · curl u′ − curlw · curlw′ dx = k2
∫
D

Nu · u′ −w ·w′ dx, (3)

with X := {(u,w) ∈ H(curl, D) × H(curl, D) |u − w ∈ H0(curl , D)}. Let us

introduce the sesquilinear form on X ×X
ak((u,w), (u′,w′)) := (Acurl u, curl u′)D − (curlw, curlw′)D

−k2 ((Nu,u′)D − (w,w′)D) .

We remark that if (u,w) satisfies problem (3), then for all (ϕ, ψ) ∈ H1(D)×H1(D) such

that ϕ−ψ ∈ H1
0 (D) (in this case, (∇ϕ,∇ψ) ∈X because (∇ϕ−∇ψ)× ν = 0 on ∂D),

we have

k2 ((Nu,∇ϕ)D − (w,∇ψ)D) = 0. (4)
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This leads us to introduce the spaces

S := {(ϕ, ψ) ∈ H1(D)×H1(D) |ϕ− ψ ∈ H1
0 (D) and (ϕ, 1)∂D = (ψ, 1)∂D = 0};

X0 := {(u,w) ∈X | (Nu,∇ϕ)D − (w,∇ψ)D = 0, ∀(ϕ, ψ) ∈ S}. (5)

Here, (·, ·)∂D denotes the inner product of L2(∂D). The condition (ϕ, 1)∂D = (ψ, 1)∂D =

0 for elements (ϕ, ψ) of S is only used to set the constants: if (c1, c2) ∈ S ∩ C2

then c1 = c2 = 0. One can check that ((ϕ, ψ), (ϕ′, ψ′)) 7→ ((ϕ, ψ), (ϕ′, ψ′))S :=

(∇ϕ,∇ϕ′)D + (∇ψ,∇ψ′)D defines an inner product on S. Let us state a lemma

characterizing the elements of X0.

Lemma 2.2 Let (u,w) be an element of X. The pair (u,w) belongs to X0 if and only

if div (Nu) = divw = 0 in D and ν · (Nu−w) = 0 on ∂D.

Proof Consider (u,w) an element of X0. By definition, one has

(Nu,∇ϕ)D − (w,∇ψ)D = 0, ∀(ϕ, ψ) ∈ S.

Taking, (ϕ, ψ) = (ζ, 0) (resp. (ϕ, ψ) = (0, ζ)) for ζ ∈ C∞0 (D), one finds div (Nu) = 0

(resp. divw = 0). Now, if ζ ∈ H1(D), one can write

〈ν · (Nu−w), ζ〉H−1/2(∂D), H1/2(∂D)

= (div (Nu−w), ζ)D + (Nu−w,∇ζ)D
= (Nu,∇(ζ − λζ))D − (w,∇(ζ − λζ))D = 0.

Above, λζ is the number (ζ, 1)∂D/(1, 1)∂D.

Reciprocally, if (u,w) ∈X satisfies div (Nu) = divw = 0 in D and ν · (Nu−w) = 0,

then for (ϕ, ψ) ∈ S, one has

(Nu,∇ϕ)D − (w,∇ψ)D
= 〈ν ·Nu, ϕ〉H−1/2(∂D), H1/2(∂D) − 〈ν ·w, ψ〉H−1/2(∂D), H1/2(∂D)

= 〈ν · (Nu−w), ϕ〉H−1/2(∂D), H1/2(∂D) = 0.

This ends the proof.

Now, let us consider the scalar problem

Find (ϕ, ψ) ∈ S such that, for all (ϕ′, ψ′) ∈ S,∫
D

N∇ϕ · ∇ϕ′ −∇ψ · ∇ψ′ dx = f((ϕ′, ψ′)),
(6)

where f ∈ S ′ (the topological dual space to S). The study of this problem will be useful

for two reasons. First, in the sequel, we will need informations about X0 ∩ ∇S, which

is exactly equal to the set of the gradients of the elements of the kernel of (6). Secondly,

this will allow us to present the T -coercivity technique on a very simple case.

2.2. Outline of the T -coercivity technique: study of the scalar problem

Define the sesquilinear form b((ϕ, ψ), (ϕ′, ψ′)) :=

∫
D

N∇ϕ ·∇ϕ′−∇ψ ·∇ψ′ dx and, with

the help of the Riesz representation theorem, the operator B from S to S such that,

∀((ϕ, ψ), (ϕ′, ψ′)) ∈ S × S, (B(ϕ, ψ), (ϕ′, ψ′))S = b((ϕ, ψ), (ϕ′, ψ′)).



ITEP for Maxwell’s equations and T -coercivity 6

Notice that b is not coercive on S (nor “coercive+compact”). The idea of the T -

coercivity (see [5, 2, 4]) consists in considering an equivalent formulation to (6) replacing

b by bT defined by

bT ((ϕ, ψ), (ϕ′, ψ′)) := b((ϕ, ψ), T (ϕ′, ψ′)), ∀(ϕ′, ψ′) ∈ S,
where T is an ad hoc isomorphism of S. Indeed, (ϕ, ψ) satisfies b((ϕ, ψ), (ϕ′, ψ′)) =

f((ϕ′, ψ′)) for all (ϕ′, ψ′) ∈ S if, and only if, it satisfies bT ((ϕ, ψ), (ϕ′, ψ′)) = f(T (ϕ′, ψ′))

for all (ϕ′, ψ′) ∈ S. Let us consider for example T (ϕ, ψ) = (ϕ − 2ψ,−ψ). Notice that

(ϕ− 2ψ)− (−ψ) = ϕ−ψ ∈ H1
0 (D) and (ϕ− 2ψ, 1)∂D = (−ψ, 1)∂D = 0, so T (ϕ, ψ) ∈ S.

Moreover, since T 2 = Id, T is an isomorphism of S.

For all (ϕ, ψ) ∈ S and all η > 0, one has, using Young’s inequality,

|bT ((ϕ, ψ), (ϕ, ψ))| = |(N∇ϕ,∇ϕ)D + (∇ψ,∇ψ)D − 2(N∇ϕ,∇ψ)D|
≥ (N∇ϕ,∇ϕ)D + (∇ψ,∇ψ)D − 2|(N∇ϕ,∇ψ)D|
≥ (N∇ϕ,∇ϕ)D + (∇ψ,∇ψ)D − η(N∇ϕ,∇ϕ)D − η−1(N∇ψ,∇ψ)D
≥ (1− η)(N∇ϕ,∇ϕ)D + (1− η−1N+)(∇ψ,∇ψ)D.

Suppose that N+ < 1. Taking η such that N+ < η < 1, one proves that bT is coercive

on S. Using Lax-Milgram theorem and since T is an isomorphism of S, one deduces

that the operator B is an isomorphism of S when N+ < 1. Working in the same way

with T (ϕ, ψ) = (ϕ,−ψ + 2ϕ) to deal with the case 1 < N−, one can state the following

lemma.

Lemma 2.3 Assume that N+ < 1 or 1 < N−. Then the operator B associated with the

scalar problem (6) is an isomorphism of S.

Now, we wish to weaken the assumption on N .

Proposition 2.4 Assume there exists a neighbourhood V of ∂D such that the function

N satisfies N ≤ N?Id < Id or Id < N?Id ≤ N a.e. on D ∩ V . Then the operator B

associated with the scalar problem (6) satisfies the equality B = I + K where I is an

isomorphism of S and K a compact operator of S.

Remark 2.5 Under the assumptions of Proposition 2.4, one has classically (see

[30, 25]) the alternative:

• either B is injective and then this operator is an isomorphism of S;

• or B has a non empty kernel of finite dimension ker B = span((ϕ1, ψ1), . . . , (ϕN , ψN))

and then the problem (6) has a solution (defined up to a linear combination of the

elements of ker B) if and only if the source term f satisfies the compatibility con-

ditions f((ϕk, ψk)) = 0 for k = 1 . . . N .

Proof Let χ ∈ C∞(D, [0; 1]) be a cut-off function with support in V ∩D equal to 1 in a

neighbourhood of ∂D. Let us focus on the case N ≤ N?Id < Id a.e. on D ∩ V . Define

T (ϕ, ψ) = (ϕ − 2χψ,−ψ). Given (ϕ, ψ) ∈ S, one checks that T (ϕ, ψ) ∈ S. Also, there

holds T 2 = Id so T is an isomorphism of S. For all ((ϕ, ψ), (ϕ′, ψ′)) ∈ S × S, one has

bT ((ϕ, ψ), (ϕ′, ψ′))

= (N∇ϕ,∇ϕ′)D + (∇ψ,∇ψ′)D − 2(N∇ϕ,∇(χψ′))D
= (N∇ϕ,∇ϕ′)D + (∇ψ,∇ψ′)D − 2(Nχ∇ϕ,∇ψ′)D − 2(N∇ϕ, ψ′∇χ)D.



ITEP for Maxwell’s equations and T -coercivity 7

Define the continuous operator I from S to S such that for all ((ϕ, ψ), (ϕ′, ψ′)) ∈ S×S,

(I (ϕ, ψ), T (ϕ′, ψ′))S = (N∇ϕ,∇ϕ′)D + (∇ψ,∇ψ′)D − 2(Nχ∇ϕ,∇ψ′)D.

Let us prove that I is an isomorphism. For all (ϕ, ψ) ∈ S, using Young’s inequality,

one can write for all η > 0

2|(Nχ∇ϕ,∇ψ)D| = 2|(Nχ∇ϕ,∇ψ)V | ≤ η(N∇ϕ,∇ϕ)V + η−1N?(∇ψ,∇ψ)V .

We deduce

|(I (ϕ, ψ), T (ϕ, ψ))S| ≥ (N∇ϕ,∇ϕ)D + (∇ψ,∇ψ)D − 2|(Nχ∇ϕ,∇ψ)D|
≥ (N∇ϕ,∇ϕ)D\V + (∇ψ,∇ψ)D\V

+(1− η)(N∇ϕ,∇ϕ)V + (1− η−1N?)(∇ψ,∇ψ)V .

Taking η such that N? < η < 1, this proves that ((ϕ, ψ), (ϕ′, ψ′)) 7→
(I (ϕ, ψ), T (ϕ′, ψ′))S is coercive. Thus, I is an isomorphism from S. Now, define

K := B −I . For all ((ϕ, ψ), (ϕ′, ψ′)) ∈ S × S, there holds

(K (ϕ, ψ), T (ϕ′, ψ′))S = −2(N∇ϕ, ψ′∇χ)D.

Let us show that K is a compact operator. Consider a bounded sequence (ϕm, ψm)

of elements of S. Define (ϕ′m, ψ
′
m) := T−1K (ϕm, ψm). The sequence (ϕ′m, ψ

′
m) is

bounded in S because T−1 and K are continuous operators. Since the imbedding of S in

L2(D)× L2(D) is compact, we can extract a subsequence from (ϕm, ψm) (still denoted

(ϕm, ψm)) such that (ϕ′m, ψ
′
m) converges in L2(D) × L2(D). Define ϕlm := ϕl − ϕm,

ψlm := ψl − ψm and ψ′lm := ψ′l − ψ′m. One has

(K (ϕlm, ψlm),K (ϕlm, ψlm))S = −2(N∇ϕlm, ψ′lm∇χ)D ≤ C ‖ψ′lm‖D.

Thus, the sequence K (ϕlm, ψlm) is a Cauchy sequence of S, so it converges. This proves

that K is a compact operator of S. One proceeds in the same way to deal with the

case Id < N?Id ≤ N a.e. on D ∩ V working this time with T (ϕ, ψ) = (ϕ,−ψ + 2χϕ).

3. A sufficient condition for the discreteness of transmission eigenvalues

Let us go back to the study of problem (3). If T is an isomorphism of X, then (u,w)

is a solution of (3) if and only if (u,w) satisfies

aTk ((u,w), (u′,w′)) := ak((u,w),T (u′,w′)) = 0, ∀(u′,w′) ∈X. (7)

Again, as for the scalar problem, the idea is to use an ad hoc isomorphism T of X

to restore some property of positivity for the principal part of aTk . However, this is

not enough to apply the analytic Fredholm theorem because the imbedding of X in

L2(D) × L2(D) is not compact. Classically for Maxwell’s equations, the compactness

will be obtained by taking into account the free divergence condition working in the

space X0. If k is a non-trivial transmission eigenvalue, we know, according to (4),



ITEP for Maxwell’s equations and T -coercivity 8

that the associated pair of eigenvectors belongs to X0. This leads us to introduce the

problem

Find (u,w) ∈X0 such that, for all (u′,w′) ∈X0,

aTk ((u,w), (u′,w′)) = l((u′,w′)),
(8)

where l ∈X0
′ (the topological dual space to X0). Define the operator A T

k from X0 to

X0 such that, for all ((u,w), (u′,w′)) ∈X0 ×X0,

(A T
k (u,w), (u′,w′))H(curl,D)2 = aTk ((u,w), (u′,w′)). (9)

If (u,w) is a pair of eigenvectors associated with the transmission eigenvalue k 6= 0,

then we have A T
k (u,w) = 0. Consequently, to show that the interior transmission

eigenvalues form at most a discrete set, it is sufficient to prove that A T
k is injective for

all k ∈ C\S where S is a discrete (or empty) set of the complex plane. In the next

section, we prove a result of compact imbedding of X0 into L2(D)×L2(D) so that, as

previously announced, we can use the analytic Fredholm theorem.

Remark 3.1 Assume that the scalar operator B is an isomorphism of S (a sufficient

condition for this assumption to be satisfied is N+ < 1 or 1 < N−). Then one can easily

show that if A T
k is not injective, then k is a transmission eigenvalue. In this case, k 6= 0

is a transmission eigenvalue if and only if A T
k is not injective.

4. Study of the space X0

4.1. Compactness property of X0

Theorem 4.1 Assume that there exists a neighbourhood V of ∂D such that the function

N satisfies N ≤ N?Id < Id or Id < N?Id ≤ N a.e. on D ∩ V . Then X0 is compactly

imbedded in L2(D)×L2(D).

Proof Define the classical spaces, for ξ ∈ L∞(D,C),

V N(ξ; D) := {u ∈H(curl , D) | div (ξu) = 0 in D, u× n = 0 on ∂D} ,
V T (ξ; D) := {u ∈H(curl , D) | div (ξu) = 0 in D, ξu · n = 0 on ∂D} .

Consider a bounded sequence (um,wm) of elements of X0. According to Lemma 2.2,

one has div (Num+wm) = 0 in D which has a connected boundary. Hence, there exists

(see theorem 3.12 in [1]) an element sm ∈ V T (1; D) such that Num +wm = curl sm.

On the other hand, since div (Num −wm) = 0 in the simply connected domain D and

ν · (Num − wm) = 0 on ∂D (again Lemma 2.2), there exists according to theorem

3.17 in [1] an element dm ∈ V N(1; D) such that Num − wm = curl dm. Then de-

fine ϕm := (sm + dm)/2 and ψm := (sm − dm)/2. One has um = N−1 curlϕm and

wm = curlψm.

Let us show that we can extract subsequences from (curlϕm) and (curlψm) which

converge in L2(D). Define the space

X̃0 := {(ϕ,ψ) ∈X | divϕ = divψ = 0 in D, ν · (ϕ+ψ) = 0 on ∂D}. (10)
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In Lemma 4.2 below, we prove that X̃0 is compactly imbedded in L2(D) × L2(D)

and that the map (ϕ,ψ) 7→ (‖curlϕ‖2D + ‖curlψ‖2D)1/2 defines on this space a

norm equivalent to the canonical norm. Consequently, the sequence (ϕm,ψm) is

bounded in X̃0, and there is a subsequence (still denoted (ϕm,ψm)) which converges

in L2(D) × L2(D). Define ϕlm := ϕl − ϕm, ψlm := ψl − ψm, ulm := ul − um and

wlm := wl −wm. Then, we write

curlN−1curlϕlm = curl ulm
curl curlψlm = curlwlm.

(11)

Consider, as for the study of the scalar problem, a cut-off function χ ∈ C∞(D, [0; 1])

with support in V ∩D and equal to 1 in a neighbourhood of ∂D. Let us study the case

Id < N?Id ≤ N a.e. on D∩V . Multiply the equations (11) respectively by ϕlm−2χψlm

and ψlm (to deal with the case N ≤ N?Id < Id a.e. on D ∩ V , just multiply by ϕlm
and ψlm − 2χψlm). Integrating by parts, we find

(N−1curlϕlm, curl (ϕlm − 2χψlm))D
+ 〈ν × (N−1curlϕlm), (ν × (ϕlm − 2χψlm))× ν〉∂D = (curl ulm,ϕlm − 2χψlm)D

(12)

and

(curlψlm, curlψlm)D + 〈ν × curlψlm, (ν ×ψlm)× ν〉∂D
= (curlwlm,ψlm)D.

(13)

Since N−1curlϕlm − curlψlm = ulm − wlm, the function N−1curlϕlm − curlψlm

belongs to H0(curl , D). Remembering that ϕlm −ψlm ∈H0(curl , D), we obtain

〈ν × (N−1curlϕlm), (ν × (ϕlm − 2χψlm))× ν〉∂D + 〈ν × curlψlm, (ν ×ψlm)× ν〉∂D
= 〈ν × curlψlm, (ν × (−ϕlm))× ν〉∂D + 〈ν × curlψlm, (ν ×ϕlm)× ν〉∂D = 0.

Therefore, adding up (12) and (13) leads to

(N−1curlϕlm, curlϕlm)D + (curlψlm, curlψlm)D
−2|(N−1curlϕlm, curl (χψlm))D|

≤ C (‖curl ulm‖D‖ϕlm‖D + ‖curl ulm‖D‖ψlm‖D + ‖curlwlm‖D‖ψlm‖D).

(14)

But, for all α > 0, β > 0, we have, according to Young’s inequality,

2 |(N−1 curlϕlm, curl (χψlm))D|

≤ 2 |(χN−1 curlϕlm, curlψlm)D|+ 2 |(N−1 curlϕlm,∇χ×ψlm)D|

≤ α (N−1 curlϕlm, curlϕlm)V + α−1 (N−1 curlψlm, curlψlm)V

+β (N−1 curlϕlm, curlϕlm)V + β−1 (N−1(∇χ×ψlm),∇χ×ψlm)V

≤ α (N−1 curlϕlm, curlϕlm)V + α−1N−1? (curlψlm, curlψlm)V

+β (N−1 curlϕlm, curlϕlm)V + C β−1 (ψlm,ψlm)V

(15)



ITEP for Maxwell’s equations and T -coercivity 10

with C > 0 which only depends on χ and N . Plugging (15) in (14), we obtain

(N−1curlϕlm, curlϕlm)D\V + (curlψlm, curlψlm)D\V

+(1− α− β)(N−1curlϕlm, curlϕlm)V

+(1− α−1N−1? )(curlψlm, curlψlm)V

≤ C (‖curl ulm‖D‖ϕlm‖D + ‖curlwlm‖D‖ψlm‖D + ‖curl ulm‖D‖ψlm‖D
+ β−1‖ψlm‖2D).

(16)

Since 1 < N?, we can choose α < 1 such that (1−α−1N−1? ) > 0. Taking 0 < β < 1−α,

we obtain the estimate

‖curlϕlm‖2D + ‖curlψlm‖2D ≤ C (‖curl ulm‖D‖ϕlm‖D + ‖curl ulm‖D‖ψlm‖D
+ ‖curlwlm‖D‖ψlm‖D + ‖ψlm‖2D).

Thus, the sequences (curlϕm) and (curlψm) are Cauchy sequences for the L2(D)

norm. This proves that (um,wm) = (N−1curlϕm, curlψm) converges in L2(D) ×
L2(D).

Lemma 4.2 The space X̃0 defined in (10) is compactly imbedded in L2(D) × L2(D).

Moreover, the map (ϕ,ψ) 7→ (‖curlϕ‖2D + ‖curlψ‖2D)1/2 defines on X̃0 a norm

equivalent to the canonical norm.

Proof Let (ϕm,ψm) be a bounded sequence of elements of X̃0. The sequences

(ϕm − ψm) and (ϕm + ψm) are respectively bounded in V N(1; D) and V T (1; D).

According to the Weber theorem [29], we can extract from (ϕm −ψm) and (ϕm +ψm)

subsequences which converge in L2(D). Writing, ϕm = (ϕm+ψm)/2+(ϕm−ψm)/2 and

ψm = (ϕm+ψm)/2− (ϕm−ψm)/2, this proves that we can extract a subsequence from

(ϕm,ψm) which converges in L2(D)×L2(D). Moreover, since the map v 7→ ‖curl v‖D
defines a norm on V N(1; D) and V T (1; D), we obtain the second part of the lemma.

4.2. Equivalent norms on X0

In this paragraph, we want to determine under which criterion the map (u,w) 7→
(‖curl u‖2D +‖curlw‖2D)1/2 defines on X0 a norm which is equivalent to the canonical

norm.

Proposition 4.3 Suppose there exists a neighbourhood V of ∂D such that the function

N satisfies N ≤ N?Id < Id or Id < N?Id ≤ N a.e. on D ∩ V . Suppose also that the

operator B associated with the scalar problem (6) is injective (∇ ker B = X0 ∩ ∇S =

{0}). Then the map (u,w) 7→ (‖curl u‖2D + ‖curlw‖2D)1/2 defines on X0 a norm

equivalent to the canonical norm.

Definition 4.4 Under the assumptions of Proposition 4.3, we will denote CP > 0

the smallest constant such that

‖u‖2D + ‖w‖2D ≤ CP (‖curl u‖2D + ‖curlw‖2D), ∀(u,w) ∈X0. (17)
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Proof of Proposition 4.3 It is sufficient to prove that (17) holds for some CP > 0.

Suppose there exists a sequence (um,wm) of elements of X0 such that

∀m ∈ N, ‖um‖2D + ‖wm‖2D = 1 and lim
m→∞

‖curl um‖2D + ‖curlwm‖2D = 0.

By Theorem 4.1, we can extract from (um,wm) a sequence (still denoted (um,wm))

which converges to some (u,w) ∈ X0 in L2(D) × L2(D). By construction, one has

‖u‖2D + ‖w‖2D = 1 and curl u = curlw = 0. Since ∂D is simply connected, one

deduces (see [14], theorem 8) that there exists (ϕ, ψ) ∈ S such that (u,w) = (∇ϕ,∇ψ).

We then notice that B(∇ϕ,∇ψ) = (0, 0). Since we have supposed that B was injective,

one deduces (u,w) = (0, 0). This leads to a contradiction because we must have

‖u‖2D + ‖w‖2D = 1.

5. Case A ≤ A?Id, with A? < 1, in a neighbourhood of the boundary

Let us go back to the study of the operator A T
k defined in (9), where, for the moment,

T is an abstract isomorphism of X. In this paragraph, we suppose there exists a

neighbourhood V of ∂D such that A ≤ A?Id a.e. in V , with A? < 1. Again,

χ ∈ C∞(D, [0; 1]) designates a cut-off function with support in V ∩ D and equal to

1 in a neighbourhood ∂D. Define the operator T : X →X such that

T (u,w) = (u− 2χw,−w). (18)

It is an isomorphism because T 2 = Id.

5.1. Fredholm property for the operator A T
k

Lemma 5.1 Assume that A ≤ A?Id < Id and N ≤ N?Id < Id a.e. on D ∩ V . Then

there exists k = iκ, with κ ∈ R, such that the operator A T
k is an isomorphism of X0.

Proof Let us show that the sesquilinear form aTiκ is coercive for some κ ∈ R. For all

(u,w) ∈X0, one can write∣∣aTiκ((u,w), (u,w))
∣∣

= |(Acurl u, curl u)D + (curlw, curlw)D − 2(Acurl u, curl (χw))D

+ κ2 ((Nu,u)D + (w,w)D − 2(Nu, χw)D)|

≥ (Acurl u, curl u)D + (curlw, curlw)D + κ2 ((Nu,u)D + (w,w)D)

−2 |(Acurl u, curl (χw))D| − 2κ2 |(Nu, χw)D| .

(19)
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But, for all η > 0, α > 0, one has, according to Young’s inequality,

2 |(Acurl u, curl (χw))D|

≤ 2 |(χAcurl u, curlw)D|+ 2 |(Acurl u,∇χ×w)D|

≤ η (Acurl u, curl u)V + η−1 (Acurlw, curlw)V

+α (Acurl u, curl u)V + α−1 (A(∇χ×w),∇χ×w)V

≤ η (Acurl u, curl u)V + η−1A∗ (curlw, curlw)V

+α (Acurl u, curl u)V + C α−1 (w,w)V

(20)

with C > 0 which only depends on χ and on A. On the other hand, for all β > 0,

2 |(Nu, χw)D| ≤ β(Nu,u)V + β−1(Nw,w)V

≤ β(Nu,u)V + β−1N∗(w,w)V .
(21)

Thus, plugging (20) and (21) in (19), one obtains, for all η > 0, α > 0, β > 0,∣∣aTiκ((u,w), (u,w))
∣∣

≥ (Acurl u, curl u)D\V + (curlw, curlw)D\V

+κ2
(

(Nu,u)D\V + (w,w)D\V

)
+(1− η − α)(Acurl u, curl u)V + (1− η−1A∗)(curlw, curlw)V

+κ2(1− β)(Nu,u)V + (κ2(1− β−1N∗)− C α−1)(w,w)V .

(22)

Let us choose first η > 0 to have both (1 − η) > 0 and (1 − η−1A?) > 0 (recall that

A? < 1). Then, let us take α > 0 such that (1− η−α) > 0. Finally, let us choose β > 0

so that (1− β) > 0 and (1− β−1N?) > 0 (recall that N? < 1). It just remains to take

a value of κ sufficiently large (in absolute value) to obtain∣∣aTiκ((u,w), (u,w))
∣∣ ≥ c (‖u‖2H(curl,D) + ‖w‖2H(curl,D))

where c is a constant independent of (u,w) ∈X0. Thus, for a value of κ large enough,

aTiκ is coercive. With the Lax-Milgram theorem, one can then conclude that A T
iκ is an

isomorphism of X0 for such a κ.

We deduce the

Theorem 5.2 Assume that A ≤ A?Id < Id a.e. on D ∩ V . Assume also that

N ≤ N?Id < Id or Id < N?Id ≤ N a.e. on D ∩ V . Then for all k ∈ C, the

operator A T
k satisfies the equality A T

k = I + Kk where I is an isomorphism of X0

that is independent of k, and Kk is a compact operator of X0.

Proof Introduce I the operator such that, for all ((u,w), (u′,w′)) ∈X0 ×X0,

(I (u,w), (u′,w′))H(curl,D)2 = aiκ,1/2((u,w),T (u′,w′)), (23)

with T defined in (18) and

aiκ,1/2((u,w), (u′,w′)) = (Acurl u, curl u′)D − (curlw, curlw′)D
+κ2 ((2−1u,u′)D − (w,w′)D) .
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According to Lemma 5.1 (notice that 2−1Id < Id), we can choose κ ∈ R such that I

is an isomorphism of X0. Since, by assumption, N ≤ N?Id < Id or Id < N?Id ≤ N

a.e. on D ∩V , Theorem 4.1 indicates that the imbedding of X0 in L2(D)×L2(D) is

compact. This proves that A T
k −I is a compact operator of X0.

5.2. Discreteness of the transmission eigenvalues

Suppose the assumptions of Theorem 5.2 to be true. Reintroduce I : X0 →X0 the

isomorphism defined in (23). For all ((u,w), (u′,w′)) ∈X0 ×X0, one has

((A T
k −I )(u,w), (u′,w′))H(curl,D)2 =−k2 ((Nu,u′)D + (w,w′)D − 2(Nu, χw′)D)

−κ2 ((2−1u,u′)D + (w,w′)D − 2(2−1u, χw′)D) .

This leads us to define the operators F and G from X0 to X0 such that, for all

((u,w), (u′,w′)) ∈X0 ×X0,

(F (u,w), (u′,w′))H(curl,D)2 = − ((Nu,u′)D + (w,w′)D − 2(Nu, χw′)D) ;

(G (u,w), (u′,w′))H(curl,D)2 = −κ2
(
(2−1u,u′)D + (w,w′)D − 2(2−1u, χw′)D

)
.

One has A T
k = I + k2F + G ⇔ A T

k I −1 = Id+ k2FI −1 + G I −1. Here, Id denotes

the identity operator of X0. According to Theorem 4.1, under the assumptions of

Theorem 5.2, the imbedding of X0 in L2(D)× L2(D) is compact. Consequently F ,

G , and thus FI −1, G I −1, are compact operators from X0 to X0. In addition, the

map k 7→ k2FI −1 +G I −1 from C to the Banach space of bounded operators from X0

to X0 is polynomial and so analytic. Thanks to the analytical Fredholm theorem (see

[15, theorem 8.26] or [23, corollary 1.1.1]), one distinguishes two cases for the family of

operators {A T
k I −1}k∈C or equivalently for the family of operators {A T

k }k∈C. Either,

for all k ∈ C, A T
k is not injective. Or there exists k ∈ C such that A T

k is injective

and then A T
k is injective for all k ∈ C\S where S is a discrete (or empty) set of the

complex plane.

Theorem 5.3 Assume that A ≤ A?Id < Id and N ≤ N?Id < Id a.e. on D∩V . Then

the set of transmission eigenvalues is at most discrete in C.

Proof Lemma 5.1 ensures that there exists κ ∈ R such that A T
iκ is an isomorphism

of X0. Thus, A T
k is injective for all k ∈ C\S where S is a discrete (or empty) set of

the complex plane. For k ∈ C\S , this implies that the only solution of the problem (7)

(and consequently of the problems (2) and (3)) is the zero solution.

Theorem 5.4 Assume that A+ < 1. Suppose also that the operator B associated

with the scalar problem (6) is injective (a sufficient condition for this assumption to

be satisfied is N+ < 1 or 1 < N−). Then the set of transmission eigenvalues is at most

discrete in C.

Proof Using the proof of Lemma 5.1 with χ = 1, one finds there exist two constants

C1, C2 > 0 independent of k such that, for all (u,w) ∈X0,∣∣aTk ((u,w), (u,w))
∣∣ ≥ C1(‖curl u‖2D + ‖curlw‖2D)− C2|k|2(‖u‖2D + ‖w‖2D).
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Using the Proposition 4.3 on equivalent norms on X0, one deduces that aTk is coercive

on X0×X0 for |k|2 < C1/(C2CP ), where CP is defined in (17). Thus, the operator A T
k

is an isomorphism of X0 for small values (in modulus) of k. One can conclude using

the analytical Fredholm theorem.

5.3. Localization of the transmission eigenvalues

Now, using a trick from [22] (see the proof of theorem 3.6.1 p.102), we show a result of

localization of the transmission eigenvalues.

Theorem 5.5 Assume that A ≤ A?Id < Id and N ≤ N?Id < Id a.e. on D ∩ V .

Then there exist positive constants ρ and δ such that if k ∈ C satisfies |k| > ρ and

|<e k| < δ |=mk| then k is not a transmission eigenvalue.

Proof Let k = iκ, κ ∈ R. Lemma 5.1 shows that, for |κ| sufficiently large, one has

the estimate, for all (u,w) ∈X0,∣∣aTk ((u,w), (u,w))
∣∣ ≥ C1(‖curl u‖2D + ‖curlw‖2D) + C2 κ

2(‖u‖2D + ‖w‖2D), (24)

where the constants C1 > 0, C2 > 0 are independent of κ.

Let us consider now k = iκ eiθ with θ ∈ [−π/2; π/2]. One checks that∣∣aTk ((u,w), (u,w))− aTiκ((u,w), (u,w))
∣∣ ≤ C3 κ

2
∣∣1− e2iθ∣∣ (‖u‖2D + ‖w‖2D), (25)

with C3 > 0 independent of κ. Combining (24) and (25), one finds∣∣aTk ((u,w), (u,w))
∣∣

≥
∣∣aTiκ((u,w), (u,w))

∣∣− C3 κ
2
∣∣1− e2iθ∣∣ (‖u‖2D + ‖w‖2D)

≥ C1(‖curl u‖2D + ‖curlw‖2D) + (C2 − C3

∣∣1− e2iθ∣∣)κ2(‖u‖2D + ‖w‖2D).

Taking θ sufficiently small to have, for example, C3

∣∣1− e2iθ∣∣ ≤ C2/2, one then deduces

the result.

5.4. An estimate for the first transmission eigenvalue

Theorem 5.6 Assume that A+ < 1. Assume also that the operator B associated

with the scalar problem (6) is injective (a sufficient condition for this assumption

to be satisfied is N+ < 1 or 1 < N−). If k ∈ C satisfies the estimate |k|2 <

(A−(1 −
√
A+))/(CP max(N+, 1)(1 +

√
N+)), with CP defined in (17), then k is not

a transmission eigenvalue.
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Proof Following the lines of the proof of Lemma 5.1 with χ = 1, one can write, for

all (u,w) ∈X0, ∣∣aTk ((u,w), (u,w))
∣∣

= |(Acurl u, curl u)D + (curlw, curlw)D − 2(Acurl u, curlw)D

−k2 ((Nu,u)D + (w,w)D − 2(Nu,w)D)|

≥ (Acurl u, curl u)D + (curlw, curlw)D − 2|(Acurl u, curlw)D|

−|k|2 ((Nu,u)D + (w,w)D + 2|(Nu,w)D|)

≥ (1−
√
A+)((Acurl u, curl u)D + (curlw, curlw)D)

−|k|2(1 +
√
N+)((Nu,u)D + (w,w)D).

Therefore, for k ∈ C such that |k|2 < (A−(1−
√
A+))/(CP max(N+, 1)(1 +

√
N+)), aTk

is coercive.

6. Case A?Id ≤ A, with 1 < A?, in a neighbourhood of the boundary

In this paragraph, we suppose that there exists a neighbourhood V of ∂D such that

A?Id ≤ A a.e. in V , with 1 < A?. Again, χ ∈ C∞(D, [0; 1]) designates a cut-off

function with support in V ∩ D equal to 1 in a neighbourhood of ∂D. Define the

operator T : X → X such that T (u,w) = (u,−w + 2χu). It is an isomorphism

because T 2 = Id. As in the previous section, we prove the following results.

Theorem 6.1 Assume that Id < A?Id ≤ A a.e. on D ∩ V . Assume also that

N ≤ N?Id < Id or Id < N?Id ≤ N a.e. on D ∩ V . Then for all k ∈ C, the

operator A T
k satisfies the equality A T

k = I + Kk where I is an isomorphism of X0

that is independent of k, and Kk is a compact operator of X0.

Theorem 6.2 Assume that Id < A?Id ≤ A and Id < N?Id ≤ N a.e. on D∩V . Then

the set of transmission eigenvalues is at most discrete in C. Moreover, there exists

positive constants ρ and δ such that if k ∈ C satisfies |k| > ρ and |<e k| < δ |=mk| then

k is not a transmission eigenvalue.

Theorem 6.3 Assume that 1 < A−. Assume also that the operator B associated

with the scalar problem (6) is injective (a sufficient condition for this assumption

to be satisfied is N+ < 1 or 1 < N−). Then the set of transmission eigenvalues

is at most discrete in C. Moreover, if k ∈ C satisfies the estimate |k|2 < (1 −
1/
√
A−)/(CP max(N+, 1)(1 + 1/

√
N−)), with CP defined in (17), then k is not a

transmission eigenvalue.

7. Discussion

All over this paper, we have been obliged to suppose that A−Id and N−Id were positive

or negative in a neighbourhood of the boundary to use the T -coercivity technique. A
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natural question then is: what happens if A − Id and/or N − Id change sign in a

neighbourhood of the boundary?

In [24], using the Shapiro-Lopatinskii condition, the authors provide necessary and

sufficient conditions for ellipticity of the scalar interior transmission problem associated

with (2) in the case where A and N are smooth. Actually, when A − Id changes

sign, or worse, vanishes in a neighbourhood of the boundary, as written in [4], we

think there are geometries and values of A for which the scalar interior transmission

problem is not Fredholm inH1 because of the appearance of “strong” singularities‡. This

result is proved in [2] for the transmission problem between a dielectric and a negative

metamaterial, and in [3], we derive a functional framework in which Fredholmness is

recovered. To be precise, let us mention that the situation we studied in these two articles

corresponds to a situation where A−Id changes sign in one point of the boundary for the

scalar interior transmission problem. The case where A − Id vanishes on a non-empty

open subset of the boundary is much more intricate and the definition of a functional

framework in which Fredholmness could be recovered, as it has been done naturally in

the very particular case A = Id, is an open problem.

For the Maxwell problem, the situation is even more obscure. Indeed, the coefficient

N also matters in establishing the Fredholm property because it determines whether

or not the perturbation of the principal part is compact. The determination of

an appropriate functional framework to study the interior transmission problem for

Maxwell’s equations when A− Id and/or N − Id change sign/vanish on the boundary

is far from being clear.
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