Exact zero transmission during the Fano resonance
phenomenon in non symmetric waveguides
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Abstract

We investigate a time-harmonic wave problem
in a waveguide. We work at low frequency so
that only one mode can propagate. It is known
that the scattering matrix exhibits a rapid vari-
ation for real frequencies in a vicinity of a com-
plex resonance located close to the real axis.
This is the so-called Fano resonance phenomenon.
And when the geometry presents certain prop-
erties of symmetry, there are two different real
frequencies such that R = 0 or T' = 0, where R,
T denote the reflection and transmission coefhi-
cients. In this work, we prove that without the
assumption of symmetry of the geometry, quite
surprisingly, there is always one real frequency
such that 7' = 0. In this case, all the energy
sent in the waveguide is reflected.
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1 Setting of the problem
Q 5

Figure 1: Original waveguide € (left) and per-
turbed geometry Q° (right).

Let © C R? be a connected waveguide which
coincides with the strip {(z,y) € R x (0;1)} for
|z| > d where d > 0 is given (see Figure 1 left).
Propagation of acoustic waves in 2 with sound
hard walls leads to study the problem

Au+du = 0 inQ

1
d,u = 0 on 0f. (1)

For A € (0;72), only two waves w*(z,y) =
VAT can propagate in ). The scattering of
the incident rightgoing wave w™ yields a solu-

tion of (1) admitting the expansion

for x < —d
for x > d.

wr+Rw™ + ...,

U+ = Twt+..., (2)

Here R € C is a reflection coefficient, T' € C
is a transmission coefficient and the dots stand
for terms which are exponentially decaying at
infinity. Similarly, there is a solution u_ of (1)
associated with the incident leftgoing wave w™.
We denote R, T the corresponding scattering
coefficients (T is the same for u; and u_). We
define the scattering matrix

— RT 2x2
5'_<TR> C=*=,

which is unitary (s5' = Id). We assume that
the geometry is such that the Neumann Lapla-
cian in 2 admits a simple eigenvalue A\ € (0; 72).
In the sequel, we perturb a bit the geometry,
so that this real eigenvalue becomes a complex
resonance, and we study the behaviour of the
scattering matrix for real frequencies in a neigh-

bourhood of \°.

2 Perturbation of the frequency and of
the geometry

We perturb the geometry from some smooth
compactly supported profile function H with
amplitude € > 0 as in Figure 1 right. We de-
note Q° the new waveguide and s(e, \), T'(e, ),
R(e,)\), R(e, \) the quantities introduced above
in the geometry ¢ at frequency A. For short,
we set 50 = 5(0,\%), T° = T(0, \%), R® = R(0, \?),
R® = R(0,\%). Decomposition in Fourier series
guarantees that the eigenfunctions associated
with A%, the trapped modes, behave at infinity
as Kye V™ Nl cos(my) 4 ... where K1 € C.
In [1], the following theorem is proved.

Theorem 1 Assume that (K4, K_) # (0,0).
There is a quantity ¢(H) € R, which depends
linearly on H, such that when € — 0,

s(e, A0 +eX) =524+ 0(e) for N # ((H),

and, for any p € R,

T

s(e, N+ el(H) +e%p) =%+ — U
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In this expression T = (a,b) € C x C depends
only on Q and i = Ap+ B for some unessential
real constants A, B with A # 0.

Theorem 1 shows that the mapping s(-,-) is
not continuous at (0, \°) (setting where trapped
modes exist). And for g small fixed, the scat-

tering matrix A — s(gg, A) exhibits a quick change

in a neighbourhood of \° + g¢f(H): this is the
Fano resonance phenomenon. When (K, K_) =
(0,0) a faster Fano resonance phenomenon oc-
curs. In the sequel, to simplify we denote s°(u),

T¢(u), R5(1), R (1) the values of s, T, R, R in
QF at the frequency A = \°+ef(H)+¢£?1. When
Qf is symmetric with respect to an axis orthogo-
nal to the direction of propagation of waves, one
can deduce quite simply from Theorem 1 that
the complex curves p — T¢(p) and p — R°(p)
pass through zero for ¢ small enough (see [1]).
In the next section, we explain how to show that
without assumption of symmetry, in ¢, there
is still a real frequency closed to A° such that
the transmission coefficient is zero. However in
general p+— R°(u) does not pass through zero.

3 Exact zero transmission

Theorem 2 Assume that T° # 0. Then there
is €9 > 0 such that for all e € (0;e0], there is
p € R such that T¢(u) = 0.

PROOF. Theorem 1 provides the estimate
7% () =T ()| < Ce (3)

ab

ifi = (laf® + [b])/2°

For any compact set I C R, the constant C' > 0
in (3) can be chosen independent of p € 1.

* First, we study the set {T*(u), u € R}.
Classical results concerning the Mobius trans-
form guarantee that {72 (u), u € R} coincides
with €2 \ {T°} where € is a circle passing
through T°. Let us show that € also passes
through zero. One finds that T°%¥(u) = 0 for
some p € R if and only if there holds

lal? + |b]? ab

An intermediate calculus of [1] implies R0@ +
T = a and T°@+ R°b = b. From this and the
unitarity of s which imposes R® = —ROT? /ﬁ,
we can obtain (4). Denote p, the value of

with — T(u) = T° +

such that 7% () = 0 and for € > 0, define the
interval I = (p, — \/; pis + v/€). From (3), for
e > 0 small, we know that the curve {T°(u), p €
I¢} passes close to zero. Now, using the unitary
structure of s°(u) as in [2], we show that this
curves passes exactly through zero for € small.
* Assume by contradiction that for all £ > 0,
w — T%(u) does not pass through zero in I..
Since s°(p) is unitary, there holds R®(u) T (p)+
T¢(u) RE(p) = 0 and so

—RE(n)/RE () = T° (1) /T (u)
But if g — T°(u) does not pass through zero on
I, one can verify that the point T¢(u)/T¢(n) =
e2arg(T* () must run rapidly on the unit cir-
cle for p € I, as ¢ — 0. On the other hand,

R®(11)/Re (1) tends to a constant on I, as e — 0.
This way we obtain a contradiction. [l

Remark 3 The fact that €% passes through
zero is quite mysterious. Without assumption
of symmetry, we do not have physical reason to
explain this miracle.

Y e I¢.

In the geometry of Figure 2, first we find that
trapped modes exist for e = 0 and VA0 &~ 1.2395.
Then we approximate (FEM) T'(e,\) (x) and
R(e, \) (o) for VX € (1.2;1.3) and € = 0.05. As
predicted, we observe that A — T'(e,\) passes
through zero around A\°. Finally, we display the
real part of uy in QF for £ = 0.05 and VX =
1.2449. In this setting, we have T'(g, \) ~ 0.

|

Figure 2: Zero transmission in a waveguide.
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