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Abstract

We consider the theoretical study of time harmonic Maxwell’s equations
in presence of sign-changing coefficients, in a two-dimensional configuration.
Classically, the problems for both the Transverse Magnetic and the Tran-
verse Electric polarizations reduce to an equivalent scalar Helmholtz type
equation. Consequences of the presence of sign-changing coefficients in this
scalar equation have been already studied in previous papers. We summarize
here the main results. Then we focus on the alternative approach which re-
lies on the two-dimensional vectorial formulations of the TM or TE problems,
and we exhibit some unexpected effects of the sign-change of the coefficients.
In the process, we provide new results on the scalar equations.

Keywords: Maxwell’s equation, transverse polarization, metamaterial,
plasmonics, time harmonic regime, Fredholm alternative, compact
embedding

Introduction

The recent and promising developments of photonic metamaterials [13,
14] and of plasmonics [12, 1] raised new issues in the theoretical and numerical
study of time harmonic Maxwell’s equations: we are concerned here with the
possible sign-change of the dielectric permittivity and/or of the magnetic
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permeability. This sign-change occurs for instance at the interface between
a metal and a classical medium (vacuum or dielectric) at optical frequencies,
when the metal presents a dielectric permittivity with a negligible imaginary
part and a negative real part. This property is essential for the existence of
plasmonic surface waves. Sign-change of the coefficients also occurs at the
interface between a dielectric and a so-called left-handed metamaterial, for
which both the dielectric permittivity and the magnetic permeability take
negative real values (with again a small imaginary part that we suppose
negligible in the following).

We have already obtained several results related to this topic [4, 5, 6, 2, 8]
for both the theoretical and the numerical aspects. In particular, we have
carried out a rather complete analysis of the corresponding scalar problem
in [2]. More precisely, we have proved that the equation

−div (µ−1∇ϕ) − ω2εϕ = f (1)

in a bounded domain Ω, with f ∈ L2(Ω) and with Dirichlet boundary condi-
tions, may be strongly ill-posed in the usual H1 framework for a sign-changing
function µ, and we have derived conditions on µ which guarantee that the
problem is of Fredholm type. The main ingredient in [2] is the so-called T-
coercivity concept, which consists in finding an isomorphism T of H1

0(Ω) such
that the bilinear form

(ϕ, ψ) 7→

∫

Ω

µ−1∇ϕ · ∇(Tψ)

is coercive on H1
0(Ω). The method is powerful although quite simple, since

the operators T are build by elementary geometrical arguments.
These results have direct counterparts for the two-dimensional Maxwell’s

equations: indeed, it is well-known that these equations give rise to two sys-
tems of equations, without any coupling, corresponding respectively to the
so-called Transverse Electric (TE) and Transverse Magnetic (TM) polariza-
tions. Moreover, each of them reduces to a scalar equation similar to (1),
where ϕ is the component of the electric or magnetic field parallel to the
direction of invariance of the medium and of the data. At first sight, it seems
that the study of two-dimensional Maxwell’s equations with sign-changing
coefficients does not raise specific questions, and that all results can be de-
duced from the study of the scalar problem. But in fact, this is not true.
One aim of the present paper is to exhibit some interesting and very spe-
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cific difficulties which occur when we consider the two-dimensional vectorial
formulations of the TM and TE problems.

A possible motivation of choosing a vectorial formulation instead of a
scalar one is the following one: a numerical resolution of the TM problem
using the scalar formulation provides a good approximation of the electric
field, which is the unknown of the scalar problem, whereas it provides a poor
approximation of the magnetic field, as it corresponds to the derivatives of
the scalar unknown. On the contrary, discretizing the vectorial formulation
gives an accurate approximation of the magnetic field in the appropriate
norms to measure it.

From the mathematical point of view, the proofs of the new results col-
lected in sections 3 and 4 use again the T-coercivity concept, but differently
from [2]. Indeed, the operators T are no longer built from geometrical trans-
formations. Instead, we define them in a more abstract way, using the well-
posedness of other problems. This way, we exhibit strong relations between
scalar problems (1) with Dirichlet and Neumann conditions. As a conse-
quence, a very complete description of the results for the Neumann problem
can be directly deduced from [2], where only the Dirichlet problem has been
considered. Finally, we deduce well-posedness results for the vectorial prob-
lem from the well-posedness of associated scalar problems.

The outline of the paper is as follows. In the next section, we briefly derive
the TE and TM systems of equations and their equivalent scalar and vectorial
formulations. On the sequel of the paper, we focus on the TE problem. The
approach based on the scalar equation is discussed in section 2, where we
recall the main results concerning scalar transmission problems with sign-
changing coefficients. Section 3 is devoted to the vectorial formulation: we
introduce two hypotheses, respectively related to the Dirichlet and Neumann
scalar problems, which are proved to be equivalent and such that the vectorial
formulation satisfies a Fredholm property. At this stage, a question remains:
what happens for the vectorial approach when this hypothesis is not satisfied?
This point is discussed in section 4.

1. Mathematical formulations for the Transverse Electric and Mag-

netic problems

1.1. The equations for the TE and TM polarizations

We consider a domain which is invariant in one direction and bounded
in the transverse ones. More precisely, we introduce a domain Ω of R2, that
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is an open bounded connected set, with a connected Lipschitz boundary;
then, we define D := {(x, y, z) ∈ Ω × R} and we suppose that the dielectric
permittivity ε and the magnetic permeability µ inD are real-valued functions
of (x, y) ∈ Ω, which means that they are independent from z. Since we are
interested by sign-changing coefficients, we suppose only that ε ∈ L∞(Ω),
µ ∈ L∞(Ω), ε−1 ∈ L∞(Ω) and µ−1 ∈ L∞(Ω). Notice in particular that
vanishing ε or µ are forbidden.

Perfect conductor

Ω2

Ω1

n

τ
x

y

z

Figure 1: A model problem: Ω is the union of the two subdomains Ω1 and Ω2 and ε|Ω1
> 0,

µ|Ω1
> 0, ε|Ω2

< 0 and/or µ|Ω2
< 0

In presence of a current density J , the time-harmonic electromagnetic
field (E,H) is solution of Maxwell’s equations:

iωεE + curl H = J and −iωµH + curl E = 0 in D, (2)

where a time behavior in e−iωt is assumed, ω > 0. We suppose moreover that
D is bounded by a perfect conductor, so that the tangential trace of E and
the normal trace of H vanish on ∂D:

E × ν = 0 and µH · ν = 0 on ∂D (3)

where ν denotes the unit outward normal vector field to ∂D.

Remark 1.1. Using (2) and (3), one finds easily that ε−1(curl H−J)×ν =
0 on ∂D.
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If we suppose that the current density J is independent from z, the problem
becomes completely independent from z and the simplification ∂ ·

∂z
= 0 leads

to the following expanded equations where we have set J := (Jx, Jy, Jz)
t,

E := (Ex, Ey, Ez)
t and H := (Hx, Hy, Hz)

t:

iωεEx +
∂Hz

∂y
= Jx, iωεEy −

∂Hz

∂x
= Jy, iωεEz +

∂Hy

∂x
−
∂Hx

∂y
= Jz,

−iωµHx +
∂Ez

∂y
= 0, −iωµHy −

∂Ez

∂x
= 0, −iωµHz +

∂Ey

∂x
−
∂Ex

∂y
= 0.

(4)

Denoting by n = (nx, ny)
t the unit outward normal vector field to ∂Ω, and

by τ = (τx, τy)
t = (ny,−nx)

t the vector such that (τ ,n) is an orthonormal
basis, boundary conditions can be recast as

µ(Hxnx +Hyny) = 0, Ez = 0, Exny − Eynx = 0,

ε−1

[(

∂Hz

∂y
− Jx

)

ny −

(

∂Hz

∂x
− Jy

)

nx

]

= 0.
(5)

As far as the functional framework is concerned, we suppose classically that
J := (Jx, Jy, Jz)

t ∈ L2(Ω)3 and, for the sake of simplicity, we suppose in
addition that div J = 0. Then, extending what is done for classical materials,
we look for a square-integrable electromagnetic field (E,H).

Classically, it appears that equations (4)-(5) can be equivalently written
as two uncoupled systems for (H⊥, Ez) and (E⊥, Hz), where we have intro-
duced the transverse fields E⊥ := (Ex, Ey)

t and H⊥ := (Hx, Hy)
t. We also

introduce, for the sake of conciseness, the following 2D differential operators:

u 7−→ curl u =

(

∂u

∂y
,−

∂u

∂x

)t

and u = (ux, uy)
t 7−→ curl u =

∂uy

∂x
−
∂ux

∂y
.

The first problem involves the unknowns (H⊥, Ez) and is called the TE
problem (where TE stands for Transverse Electric):

Find Ez ∈ L2(Ω) and H⊥ ∈ L2(Ω) such that:
iωεEz + curl H⊥ = Jz in Ω,

−iωµH⊥ + curlEz = 0 in Ω,
Ez = 0 on ∂Ω,

µH⊥ · n = 0 on ∂Ω,

(6)

where L2(Ω) := L2(Ω)2.
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The second one involves the unknowns (E⊥, Hz) and is called the TM
problem (for Transverse Magnetic):

Find Hz ∈ L2(Ω) and E⊥ ∈ L2(Ω) such that:
−iωµHz + curl E⊥ = 0 in Ω,
iωεE⊥ + curlHz = J⊥ in Ω,

ε−1(curlHz − J⊥) · τ = 0 on ∂Ω,
E⊥ · τ = 0 on ∂Ω.

(7)

1.2. Functional spaces and Green formulas

In what follows, we use classical functional spaces whose definitions are
recalled below:

H(curl ; Ω) :=
{

u ∈ L2(Ω) | curlu ∈ L2(Ω)
}

;

H(div ; Ω) :=
{

u ∈ L2(Ω) | div u ∈ L2(Ω)
}

;
HN (curl ; Ω) := {u ∈ H(curl ; Ω) |u · τ = 0 on ∂Ω} ;
VN(ε; Ω) := {u ∈ H(curl ; Ω) | div (εu) = 0, u · τ = 0 on ∂Ω} ;
VT (µ; Ω) := {u ∈ H(curl ; Ω) | div (µu) = 0, µu · n = 0 on ∂Ω} .

(8)

We denote (·, ·)Ω, resp. ‖ · ‖Ω, the scalar product, resp. the norm, of both
spaces L2(Ω) and L2(Ω). Some classical results from [11] will be used in the
sequel:

Theorem 1.2. The application v 7→ v · n (resp. v 7→ v · τ ) defined on
C ∞(Ω)2 can be extended by continuity to a surjective linear application from
H(div ; Ω) (resp. H(curl ; Ω)) in H−1/2(∂Ω). Moreover, the following Green
formulas hold:

(v,∇ϕ)Ω + (divv, ϕ)Ω = 〈v · n, ϕ〉∂Ω
, ∀(ϕ,v) ∈ H1(Ω) × H(div ; Ω), (9)

(v, curlϕ)Ω − (curl v, ϕ)Ω = 〈v · τ , ϕ〉∂Ω , ∀(ϕ,v) ∈ H1(Ω) × H(curl ; Ω).(10)

As a consequence, one has:

Corollary 1.3.

VT (µ; Ω) =
{

u ∈ H(curl ; Ω) | (µu,∇ϕ)Ω = 0, ∀ϕ ∈ H1(Ω)
}

,

VN(ε; Ω) =
{

u ∈ HN (curl ; Ω) | (εu,∇ϕ)Ω = 0, ∀ϕ ∈ H1
0(Ω)

}

.
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1.3. Equivalent scalar and vectorial formulations of the TE problem

From now on, we focus on the TE problem (6), but a very similar study
can be made for the TM problem (7).

Classically, one can eliminate the unknown H⊥ and derive an equivalent
scalar formulation for Ez. Alternatively, one can eliminate Ez to derive a
two-dimensional vectorial formulation for H⊥. This is explained below.

Theorem 1.4. Second order scalar formulation.
1) If (H⊥, Ez) satisfies problem (6) then Ez is a solution of

Find Ez ∈ H1
0(Ω) such that :

∫

Ω

µ−1∇Ez · ∇v − ω2εEzv =

∫

Ω

iωJzv, ∀v ∈ H1
0(Ω).

(11)

2) Conversely if Ez satisfies problem (11) then (H⊥, Ez) = ((iωµ)−1
curlEz, Ez)

is a solution of (6).

Proof. 1) If (H⊥, Ez) satisfies (6) then Ez ∈ H1
0(Ω) and

div (µ−1∇Ez) = −curl (µ−1curlEz) = −iω curlH⊥ = −ω2εEz − iωJz.

This proves that Ez satisfies (11).
2) Suppose conversely that Ez is a solution of (11). Then, div (µ−1∇Ez) +
ω2εEz = −iωJz. Defining H⊥ := (iωµ)−1curlEz ∈ L2(Ω), one clearly
has −iωµH⊥ + curlEz = 0. Moreover, µH⊥ · n = (iω)−1 curlEz · n =
(iω)−1 ∇Ez · τ = 0 since Ez ∈ H1

0(Ω). Finally

curl H⊥ = (iω)−1curl (µ−1curlEz) = −(iω)−1div (µ−1∇Ez) = Jz − iωεEz,

which ends the proof.

Let us now consider the vectorial formulation for H⊥:

Proposition 1.5. Second order vectorial formulation.
1) If (H⊥, Ez) satisfies problem (6) then H⊥ is a solution of

Find H⊥ ∈ H(curl ; Ω) such that :
∫

Ω

ε−1curl H⊥curlv − ω2µH⊥ · v =

∫

Ω

ε−1Jzcurl v, ∀v ∈ H(curl ; Ω).
(12)

2) Conversely, if H⊥ satisfies problem (12) then

(H⊥, Ez) = (H⊥, i(ωε)
−1(curlH⊥ − Jz))

is a solution of (6).
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Proof. 1) Suppose (H⊥, Ez) is a solution of (6). Then, one has: iωEz +
ε−1curl H⊥ = ε−1Jz. Multiplying by curlv for v ∈ H(curl ; Ω), integrating
by parts and using Ez ∈ H1

0(Ω) with curlEz = iωµH⊥, we get (12).
2) Conversely, if H⊥ satisfies (12), let us set Ez = i(ωε)−1(curl H⊥ − Jz) ∈
L2(Ω). In this case, the following equation is clearly satisfied: iωεEz +
curl H⊥ = Jz. On the other hand, from (12), we get curl (ε−1curlH⊥) −
ω2µH⊥ = curl (ε−1Jz) which leads to

−iωµH⊥ + curlEz = 0. (13)

In particular, Ez ∈ H1(Ω). Then using (12), we obtain (Ez, curl v)Ω =
iω(µH⊥,v)Ω for all v ∈ H(curl ; Ω). Using next (13) and the surjectiv-
ity of the tangential trace from H(curl ; Ω) in H−1/2(∂Ω) (Theorem 1.2), we
deduce that Ez = 0 on ∂Ω. Finally µH⊥ · n = 0 on ∂Ω results from (13).

2. Mathematical study of the scalar formulation for Ez

From Theorem 1.4, it results that well-posedness of the TE problem (6)
is equivalent to the well-posedness of the scalar problem (11). This leads us
to focus now on the theoretical properties of formulation (11). We consider
first the classical case of a positive µ and then the case of a sign-changing µ.
We say that µ is sign-changing if infΩ µ < 0 and supΩ µ > 0 where inf and
sup stand for essential infimum and supremum. Remind that, by hypothesis,
µ−1 ∈ L∞(Ω) so that such a function µ is bounded away from zero.

Let us first introduce some notations which will be useful in the sequel of
the paper.

2.1. Notations and preliminary results

Let u ∈ H1
0(Ω). By Riesz representation Theorem, there exists a unique

f ∈ H1
0(Ω) such that

(∇f,∇v)Ω = (µ−1∇u,∇v)Ω, ∀v ∈ H1
0(Ω).

If we set A
1/µ
D u = f (where the index D stands for the Dirichlet condition),

it is straightforward that A
1/µ
D ∈ L(H1

0(Ω)), and we have:

(∇(A
1/µ
D u),∇v)Ω = (µ−1∇u,∇v)Ω, ∀(u, v) ∈ H1

0(Ω) × H1
0(Ω). (14)
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Notice, again by Riesz Theorem, that the action of any continuous linear form
ℓ on H1

0(Ω) can be equivalently written ℓ(v) = (∇f,∇v)Ω for all v ∈ H1
0(Ω),

for some f ∈ H1
0(Ω). As a consequence, proving the well-posedness of

Find u ∈ H1
0(Ω) such that :

∫

Ω

µ−1∇u · ∇v = ℓ(v), ∀v ∈ H1
0(Ω),

amounts to proving that A
1/µ
D is an isomorphism of H1

0(Ω).

In the same way, we define for all ω ∈ C the operator A
1/µ
D (ω) ∈ L(H1

0(Ω))
such that:

∀(u, v) ∈ H1
0(Ω) × H1

0(Ω),

(∇(A
1/µ
D (ω)u),∇v)Ω = (µ−1∇u,∇v)Ω − ω2(εu, v)Ω,

(15)

and the well-posedness of problem (11) is a consequence of the invertibility

of A
1/µ
D (ω). We will use extensively the following result which is a direct

consequence of the compact embedding of H1
0(Ω) into L2(Ω) (cf. [9, Theorem

8.26]).

Lemma 2.1. Suppose that A
1/µ
D = A

1/µ
D (0) is an isomorphism of H1

0(Ω).

Then for all ω ∈ C, A
1/µ
D (ω) is a Fredholm operator. Moreover, A

1/µ
D (ω) is

an isomorphism for all ω2 ∈ C\S , where S is at most a countable set with
no accumulation points.

When A
1/µ
D (ω) is a Fredholm operator, existence of a solution to problem (11)

is equivalent to its uniqueness: in this case, we will say that problem (11) is
of Fredholm type.
If µ is a positive real-valued function, the mathematical analysis of (11) is
very classical.

Lemma 2.2. Suppose
inf
Ω
µ > 0.

Then problem (11) is of Fredholm type and it is well-posed for all ω2 ∈ C\S ,
where S = {ω2

1, ω
2
2 · · · } is a countable set of real numbers. Moreover, the

following alternative holds:

1. either infΩ ε > 0 and then S ⊂ R+∗ and limω2
n = +∞ ;

2. or ε is sign-changing and then the sequence (ω2
n) accumulates at +∞

and −∞.
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Proof. Using Lax-Milgram Theorem and the positivity of µ, it is clear that
A

1/µ
D is an isomorphism. Then we can apply Lemma 2.1. Finally, the alter-

native comes from classical results of spectral theory of selfadjoint compact
operators. We refer for instance to [10] and Refs. therein for the case of a
sign-changing coefficient ε.

2.2. The results for a sign-changing µ

Let us consider now the more difficult case where µ is sign-changing,
which has been extensively studied in previous papers of the authors [6, 2].
We give here a review of the main results of [2]. We suppose that Ω is the
union of two (sub)domains Ω1 and Ω2, where µ|Ω1

> 0 and µ|Ω2
< 0. The

interface between the two subdomains is denoted by Σ:

Σ = int(∂Ω1 ∩ ∂Ω2) = ∂Ω1 \ ∂Ω = ∂Ω2 \ ∂Ω.

Some fundamental results are established for particular geometries and are
the main tools for the general result.

The symmetric case. The simplest case is that of a domain which is sym-
metrical with respect to the interface.

Lemma 2.3. Suppose that Σ is included in a straight line ∆ ⊂ R
2 and that

Ω2 is the image of Ω1 by the mirror symmetry of axis ∆. Then, condition

infΩ1
µ

supΩ2
|µ|

> 1 or
infΩ2

|µ|

supΩ1
µ
> 1, (16)

implies that problem (11) is of Fredholm type and is well-posed for all ω2 ∈
C\S , where S is at most a countable set with no accumulation points.

Proof. It is proved in [2], Theorem 3.1, that A
1/µ
D is an isomorphism as soon

as (16) is fulfilled. The Lemma follows, proceeding like in the proof of the
previous Lemma.

Remark 2.4. 1. Notice that if µ takes constant values µi in Ωi for i = 1
and 2, the condition on µ reduces to µ1/µ2 6= −1. This condition is

sharp: indeed, A
1/µ
D has an infinite dimensional kernel when µ1/µ2 =

−1 (cf. [2, Theorem 6.1]), so that A
1/µ
D (ω) is not a Fredholm operator

for all ω in this case.
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2. If only µ has a sign-change (infΩ ε > 0), a more precise description of
the structure of S can be given: S = {ω2

1, ω
2
2 · · · } is a countable set

of real numbers and the sequence (ω2
n) accumulates at +∞ and −∞.

On the other hand, if the coefficients µ and ε are both sign-changing,
this result is no longer true. In particular, complex eigenfrequencies
can appear.

The corner case. Let us describe now what happens when the interface Σ
presents a corner:

Lemma 2.5. Suppose that Ω is a disk of radius R > 0 and that, for some
α ∈]0, 2π[, we have in polar coordinates:

Ω1 := {(r cos θ, r sin θ) | 0 < r < R, 0 < θ < α} ,
Ω2 := {(r cos θ, r sin θ) | 0 < r < R, α < θ < 2π} .

Then, condition

infΩ1
µ

supΩ2
|µ|

> Iα or
infΩ2

|µ|

supΩ1
µ
> Iα, (17)

where

Iα = max

(

2π − α

α
,

α

2π − α

)

,

implies that problem (11) is of Fredholm type and is well-posed for all ω2 ∈
C\S , where S is at most a countable set with no accumulation points.

Proof. It is proved in [2], Theorem 3.3, that A
1/µ
D is an isomorphism as soon

as (17) is fulfilled. Again, the Lemma follows, proceeding like in the proof of
Lemma 2.2.

Remark 2.6. 1. If µ takes constant values µi in Ωi for i = 1 and 2, the
condition on µ reduces to µ1/µ2 /∈ [−Iα,−1/Iα], which is an interval
which always contains −1, and reduces to {−1} if and only if α = π.

2. Point 2. of Remark 2.4 is also true for this configuration.

3. We have proved in [3] that for µ1/µ2 ∈] − Iα,−1/Iα[, problem (11) is
indeed ill-posed, due to a strange black-hole phenomenon at the corner.
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A general result. Let us consider now a more general geometry: we suppose
that Ω2 is an inclusion inside Ω, so that Σ = ∂Ω2 and ∂Ω1 = ∂Ω ∪ Σ. We
suppose moreover that Σ is a polygonal (closed) curve. Then, combining a
localization technique with the previous Lemmas 2.3 and 2.5 as in [2], we
obtain the following

Lemma 2.7. Let α1, α2, · · · , αN denotes the angles at the N vertices of Σ.
Then, condition

infΩ1
µ

supΩ2
|µ|

> Iα or
infΩ2

|µ|

supΩ1
µ
> Iα, (18)

where
Iα = max (Iα1

, Iα1
, · · · , IαN

) ,

implies that problem (11) is of Fredholm type.

In the particular geometry of figure 1, one has for instance Iα = 3.
In fact, condition (18) can be weakened. Indeed, one can prove that it is

sufficient to consider the values of µ near the interface, and even their limits
on the interface when µ1 and µ2 are continuous functions. Moreover, it is not
necessary to impose a global condition on the whole interface Σ. For instance,
on the straight parts of Σ, it suffices to impose (µ1/µ2)(x) 6= −1. Finally,
the case of a curvilinear polygon can be treated with similar arguments. We
refer the reader to a more complete description of the results in [2].

Remark 2.8. The result of Lemma 2.7 is weaker than those of Lemmas 2.3
and 2.5. By virtue of analytic Fredholm theorem, to prove that problem (11)
is well-posed for all ω2 ∈ C\S where S is discrete, we need uniqueness for
one value of ω. This can be obtained when only µ has a sign-change and
infΩ ε > 0, and again in this case, S is a set of real numbers accumulating
at +∞ and −∞. However, to the best of our knowledge, there is no such
result in the general case of both sign-changing coefficients.

3. Mathematical study of the vectorial formulation for H⊥

Let us turn now to the analysis of the vectorial formulation of the TE
problem.
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3.1. A formulation in a space of divergence free fields

Like in the classical case of positive coefficients, the mathematical analysis
of problem (12) is not straightforward: indeed, Fredholm theory cannot be
applied because the embedding of H(curl ; Ω) into L2(Ω) is not compact. As
usual, the solution consists in taking into account the equation div (µH⊥) =
0 which is a direct consequence of (12) and Corollary 1.3. First we have the

Proposition 3.1. If (H⊥, Ez) satisfies problem (6), then H⊥ is a solu-
tion of

Find H⊥ ∈ VT (µ; Ω) such that :
∫

Ω

ε−1curlH⊥curl v − ω2µH⊥ · v =

∫

Ω

ε−1Jzcurlv, v ∈ VT (µ; Ω).
(19)

The study of this formulation for sign-changing coefficients ε and µ raises
several questions which are addressed in the next section. But first of all, we
need some reciprocal statement to Proposition 3.1. And surprisingly, for a
sign-changing µ, the equivalence between (19) and (6) may fail. To illustrate
this phenomenon, let us define the space of functions with zero mean-value:

H1
#(Ω) := {v ∈ H1(Ω) |

∫

Ω

v = 0}.

Classically, the mapping (u, v) 7→ (∇u,∇v)Ω defines a scalar product on
H1

#(Ω). Let us introduce now, using Riesz Theorem, the bounded operator
Aµ

N : H1
#(Ω) → H1

#(Ω) such that

(∇(Aµ
Nu),∇v)Ω = (µ∇u,∇v)Ω, ∀(u, v) ∈ H1

#(Ω) × H1
#(Ω), (20)

where the subscript N stands for the Neumann boundary condition.
When µ is strictly positive, Lax-Milgram Theorem shows that Aµ

N is an
isomorphism of H1

#(Ω). But for a sign-changing µ, Aµ
N may not be invertible.

In particular, it can happen that there exists λN ∈ H1
#(Ω) \ {0} such that

(cf. [2])
(µ∇λN ,∇v)Ω = 0, ∀v ∈ H1

#(Ω).

In other words there exists λN ∈ kerAµ
N with λN 6= 0. Then H⊥ = ∇λN is

a solution of (19) with Jz = 0. On the other hand, there is no Ez ∈ H1
0(Ω)

such that (Ez,∇λN) is a solution of (6) with Jz = 0. As a consequence, (19)
and (6) are not equivalent in this case. That is why the next Proposition
requires that Aµ

N is injective :

13



Proposition 3.2. Suppose that the following hypothesis holds:

(HN (µ)) Aµ
N is an isomorphism.

If H⊥ satisfies (19), then the pair (H⊥, Ez) = (H⊥, i(ωε)
−1(curlH⊥ − Jz))

is a solution of problem (6).

Proof. Suppose that H⊥ satisfies (19). To prove that (H⊥, Ez) is a solution
of (6), it suffices to prove that H⊥ satisfies (12) and then to use Proposition
1.5. Since Aµ

N is an isomorphism, we can define for v ∈ H(curl ; Ω) the
unique ψ ∈ H1

#(Ω) such that (µ∇ψ,∇ψ′)Ω = (µv,∇ψ′)Ω for all ψ′ ∈ H1
#(Ω).

By Corollary 1.3, v − ∇ψ ∈ VT (µ; Ω). Plugging v − ∇ψ in (19), we get
(ε−1curlH⊥, curlv)Ω − ω2(µH⊥,v)Ω = (ε−1Jz, curl v)Ω, which proves that
H⊥ satisfies (12).

3.2. A result of compact embedding

To prove the well-posedness of (19) by using Fredholm theory, we need
a result of compactness of the embedding of VT (µ; Ω) in L2(Ω). Such a
result can fail for sign-changing µ (see Proposition 7.1 of [7]). We give here
a general abstract proof of this result under an appropriate hypothesis on µ:

Theorem 3.3. Suppose that the following hypothesis holds:

(HD(1/µ)) A
1/µ
D is an isomorphism.

Then the embedding of VT (µ; Ω) into L2(Ω) is compact.

Remark 3.4. Notice that hypothesis (HD(1/µ)) already appeared in Lemma 2.1.
Then in Lemmas 2.3, 2.5 and 2.7,we have established more explicit conditions
on µ to ensure that (HD(1/µ)) is satisfied.

Proof. Let us consider a bounded sequence (un) of VT (µ; Ω). For n ∈ N, we
set fn := curlun. The sequence (fn) is bounded in L2(Ω). Since divµun = 0
in Ω and µun ·n = 0 on ∂Ω, and since ∂Ω is a connected set, there exists, by
Theorem 3.12 of [11], a bounded sequence ϕn of H1

0(Ω) such that curlϕn =
µun. To prove the Theorem, we just have to prove that we can extract from
curlϕn, or equivalently from ∇ϕn, a subsequence which converges in L2(Ω).
Using Green formula (10), we deduce that for all ϕ′ ∈ H1

0(Ω),

(curl un, ϕ
′)Ω = (µ−1curlϕn, curlϕ′)Ω = (µ−1∇ϕn,∇ϕ

′)Ω,

14



which can be written, using the operator A
1/µ
D defined by (14):

(fn, ϕ
′)Ω = (∇(A

1/µ
D ϕn),∇ϕ′)Ω.

Then setting ϕmn := ϕm − ϕn and fmn := fm − fn, and finally choosing
ϕ′ = A

1/µ
D ϕmn above, we obtain

(∇(A
1/µ
D ϕmn),∇(A

1/µ
D ϕmn))Ω = (fmn, A

1/µ
D ϕmn)Ω.

Since (A
1/µ
D ϕn) is a bounded sequence of H1

0(Ω), it admits by Rellich Theorem
a subsequence strongly convergent in L2(Ω). Then from the previous equality,

it results that (A
1/µ
D ϕn) is a Cauchy sequence in H1

0(Ω). Since A
1/µ
D is an

isomorphism, the sequence ϕn is also a Cauchy sequence in H1
0(Ω), which

ends the proof of the Theorem.

Corollary 3.5. Suppose hypotheses (HN (µ)) and (HD(1/µ)) hold. Then the
application (u,v) 7→ (curlu, curl v)Ω defines a scalar product on VT (µ; Ω).

Proof. Let us prove the existence of a positive constant C such that

‖u‖Ω ≤ C ‖curlu‖Ω , ∀u ∈ VT (µ; Ω). (21)

By contradiction, consider a sequence (un) of VT (µ; Ω) such that

∀n ∈ N, ‖un‖Ω = 1 and lim
n→∞

‖curl un‖Ω = 0.

By the compact embedding result we have just proved, there exists a subse-
quence, still denoted (un), which converges to u in L2(Ω). By construction,
‖u‖Ω = 1 and curl u = 0 in Ω. Since ∂Ω is a connected set, we deduce
from Theorem 3.2 of [11] the existence of ϕ ∈ H1

#(Ω) such that u = ∇ϕ.
Since u ∈ VT (µ; Ω), we have ϕ ∈ kerAµ

N , which implies ϕ = 0 because by
hypothesis, Aµ

N is an isomorphism. This implies u = 0, which contradicts
‖u‖Ω = 1.

15



3.3. Equivalence between hypotheses (HD(1/µ)) and (HN(µ))

Two hypotheses on µ naturally emerged naturally above, hypotheses
(HN(µ)) and (HD(1/µ)). We prove in the next subsection that these two
hypotheses are in fact equivalent.

Theorem 3.6. Hypotheses (HD(1/µ)) and (HN(µ)) are equivalent. In other
words, the operator Aµ

N : H1
#(Ω) → H1

#(Ω), defined by (20), is an isomor-

phism if and only if the operator A
1/µ
D : H1

0(Ω) → H1
0(Ω), defined by (14), is

an isomorphism.

Proof. Suppose Aµ
N is an isomorphism. For u ∈ H1

0(Ω), there exists a unique
ϕ ∈ H1

#(Ω) such that (µ∇ϕ,∇ϕ′)Ω = (µ∇u, curlϕ′)Ω for all ϕ′ ∈ H1
#(Ω).

Since (µ∇ϕ,∇ϕ′)Ω = (µ curlϕ, curlϕ′)Ω, we have, curl (µ(∇u−curlϕ)) = 0
and µ(∇u−curlϕ) ·τ = 0 on ∂Ω. But ∂Ω is a connected set, so there exists
a unique ψ ∈ H1

0(Ω) such that µ(∇u − curlϕ) = ∇ψ (cf. Theorem 3.2 in
[11]). Let us denote by T : H1

0(Ω) → H1
0(Ω) the bounded operator defined by

Tu = ψ.
For all v ∈ H1

0(Ω), we get

(∇(A
1/µ
D (Tu)),∇v)Ω = (µ−1∇(Tu),∇v)Ω

= (∇u− curlϕ,∇v)Ω

= (∇u,∇v)Ω.

Finally, we have proved that A
1/µ
D ◦T is equal to the identity in H1

0(Ω), which

proves the invertibility of A
1/µ
D , since A

1/µ
D is self-adjoint.

Conversely, suppose Aµ
D is an isomorphism. We can proceed in a similar

manner as in the first part of the proof. For u ∈ H1
#(Ω), let ϕ ∈ H1

0(Ω) be
the unique solution of (µ−1∇ϕ,∇ϕ′)Ω = (µ−1∇u, curlϕ′)Ω, ∀ϕ′ ∈ H1

0(Ω).
Noting that (µ−1∇ϕ,∇ϕ′)Ω = (µ curlϕ, curlϕ′)Ω, we get, curl (µ−1(∇u −
curlϕ)) = 0 and consequently (see again Theorem 3.2 in [11]), there exists
a unique ψ ∈ H1

#(Ω) such that µ−1(∇u − curlϕ) = ∇ψ. For the bounded
operator T : H1

#(Ω) → H1
#(Ω) such that Tu = ψ, we obtain for all v ∈ H1

#(Ω)

(∇(Aµ
N (Tu)),∇v)Ω = (µ∇(Tu),∇v)Ω

= (∇u− curlϕ,∇v)Ω

= (∇u,∇v)Ω.

We conclude that Aµ
N is an isomorphism of H1

#(Ω) with (Aµ
N )−1 = T.
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3.4. Mathematical study of problem (19)

Now, we have all the ingredients to study problem (19), if we assume that
hypothesis (HD(1/µ)) (or equivalently hypothesis (HN(µ))) holds.

Theorem 3.7. Suppose the equivalent hypotheses (HD(1/µ)) and (HN(µ)))
hold. Then problem (19) is of Fredholm type and is well-posed for all ω2 ∈
C\S , where S is at most a countable set with no accumulation points.

Remark 3.8. This result may be surprising, since we have only a hypothesis
on µ and no hypothesis on ε (except ε ∈ L∞(Ω) and ε−1 ∈ L∞(Ω)). In
other words, the sign-change of ε which may appear in the bilinear form
(ε−1curlu, curl v)Ω has no influence on the 2D Maxwell problem.

Proof. Let us define, using Riesz Theorem and Corollary 3.5, the bounded
operator AT (ω) : VT (µ; Ω) → VT (µ; Ω) such that, for all (u,v) ∈ VT (µ; Ω)×
VT (µ; Ω), there holds

(curl (AT (ω)u), curl v)Ω = (ε−1curl u, curlv)Ω − ω2(µu,v)Ω. (22)

Let us prove first that AT (0) is an isomorphism.
Given u ∈ VT (µ; Ω), there exists a unique ϕ ∈ H1

0(Ω) such that −∆ϕ =
ε curlu and then a unique ψ ∈ H1

#(Ω) such that

(µ∇ψ,∇ψ′)Ω = (µ curlϕ,∇ψ′)Ω ∀ψ′ ∈ H1
#(Ω).

We denote by T : VT (µ; Ω) → VT (µ; Ω) the bounded operator which maps
u ∈ VT (µ; Ω) to Tu = curlϕ−∇ψ ∈ VT (µ; Ω).

For all (u,v) ∈ VT (µ; Ω) × VT (µ; Ω), we get

(curl (AT (0)(Tu)), curl v)Ω = (ε−1curl (Tu), curlv)Ω

= (ε−1curl (curlϕ−∇ψ), curlv)Ω

= (−ε−1∆ϕ, curl v)Ω

= (curl u, curlv)Ω.

Consequently AT (0) ◦T is equal to the identity of VT (µ; Ω), which proves a
fortiori since AT (0) is selfadjoint that AT (0)−1 = T.

Then, by Theorem 3.3, AT (ω) is a compact perturbation of the isomor-
phism AT (0) for all ω ∈ C and the Theorem follows.
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4. Relaxing hypothesis (HD(1/µ))

The results we have obtained above are satisfactory when the equivalent
hypotheses (HD1/µ)) and (HN(µ)) hold. Indeed, the previous analysis pro-
vides a coherent description of the two approaches, relying respectively on
the scalar and on the vectorial formulation of the TE problem.

But what happens if (HD(1/µ)) does not hold? More precisely, suppose
that the scalar problem (11) in Ez is well-posed. This means that the operator

A
1/µ
D (ω) is an isomorphism, which does not imply in general that A

1/µ
D =

A
1/µ
D (0) is an isomorphism. It implies only that A

1/µ
D is a Fredholm operator.

In what follows, we consider the case where A
1/µ
D (ω) is an isomorphism

and A
1/µ
D is a Fredholm operator with a kernel which is not reduced to {0} (see

[7] for some examples). Then, by Theorem 3.6, Aµ
N is not an isomorphism.

We will see more precisely that Aµ
N is also a Fredholm operator with a kernel

which is not reduced to {0}. Then, as explained just before Proposition 3.2,
the vectorial formulation (19) is in this case not equivalent to the initial TE
problem. The relevant question is then, how to study the vectorial problem
(12)?

4.1. An additional result on the operators A
1/µ
D and Aµ

N

Theorem 4.1. The operator Aµ
N : H1

#(Ω) → H1
#(Ω) is a Fredholm operator

if and only if A
1/µ
D : H1

0(Ω) → H1
0(Ω) is a Fredholm operator. Moreover, if

Aµ
N and A

1/µ
D are Fredholm operators, then dim kerA

1/µ
D = dim kerAµ

N .

Proof. Suppose Aµ
N is a Fredholm operator. If Aµ

N is injective, then Aµ
N is an

isomorphism and then, by Theorem 3.6, A
1/µ
D is also an isomorphism. Let us

consider here the case where Aµ
N has a non-trivial kernel vect(λ1

N , · · · , λ
nN

N )
where the λi

N are such that (∇λi
N ,∇λ

j
N)Ω = δij .

To prove that A
1/µ
D is a Fredholm operator, we build a right parametrix

for A
1/µ
D , i.e. a right inverse to A

1/µ
D modulo a compact operator. So, we are

looking for a bounded operator T and a compact operator K of H1
0(Ω) such

that A
1/µ
D ◦ T + K is equal to the identity operator of H1

0(Ω).
We proceed by generalizing the proof of Theorem 3.6 and by using the fol-
lowing result, which is a straightforward consequence of the Fredholm alter-
native: giving a continuous linear form ℓ on H1

#(Ω), the problem

Find ϕ ∈ H1
#(Ω) such that (µ∇ϕ,∇ϕ′)Ω = ℓ(ϕ′), ∀ϕ′ ∈ H1

#(Ω),
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admits solutions if and only if

ℓ(λi
N) = 0, i = 1, · · · , nN . (23)

Moreover, there is a unique solution ϕ ∈ SN where

SN = {ψ ∈ H1
#(Ω) such that (∇ψ,∇λi

N)Ω = 0, i = 1, · · · , nN}. (24)

In particular, for all u ∈ H1
0(Ω), there exists a unique ϕ ∈ SN satisfying

(µ∇ϕ,∇ϕ′)Ω = (µ(∇u−

nN
∑

i=1

βiΓi
N), curlϕ′)Ω, ∀ϕ′ ∈ H1

#(Ω), (25)

where we have set βi := (µ∇u, curlλi
N) and Γi

N := µ−1curl λi
N , i = 1 . . . nN .

Note that (25) can be rewritten as (µ(∇u−
∑nN

i=1 β
iΓi

N−curlϕ), curlϕ′)Ω =
0, ∀ϕ′ ∈ H1

#(Ω). As a consequence, curl (µ(∇u−
∑nN

i=1 β
iΓi

N −curl ϕ)) = 0,

and µ(∇u−
∑nN

i=1 β
iΓi

N −curl ϕ)·τ = 0 on ∂Ω. By Theorem 3.2 of [11], there
exists a unique ψ ∈ H1

0(Ω) such that µ(∇u −
∑nN

i=1 β
iΓi

N − curlϕ) = ∇ψ.
Then defining T : H1

0(Ω) → H1
0(Ω) by Tu = ψ and K : H1

0(Ω) → H1
0(Ω) by

(∇(Ku),∇v)Ω =

nN
∑

i=1

(µ∇u, curlλi
N)(Γi

N ,∇v), ∀v ∈ H1
0(Ω),

one can check that (∇(A
1/µ
D (Tu)),∇v)Ω = (∇u,∇v)Ω − (∇(Ku),∇v)Ω for all

v ∈ H1
0(Ω). Consequently, A

1/µ
D ◦ T + K = Id. Moreover, K is a compact

operator because its range is finite dimensional, of dimension less or equal to
nN . Since A

1/µ
D is selfadjoint, this proves that A

1/µ
D is a Fredholm operator

whose kernel has a dimension less or equal to nN . This can be rewritten:
dim kerA

1/µ
D ≤ dim kerAµ

N .

We can prove conversely that if A
1/µ
D is a Fredholm operator, then Aµ

N is a

Fredholm operator and dim kerAµ
N ≤ dim kerA

1/µ
D , which ends the proof.

4.2. An augmented vectorial formulation

In this subsection, we suppose that Aµ
N has a non-trivial kernel and we

use the notations of the proof of Theorem 4.1. In particular, by the definition

(24) of SN , we have H1
#(Ω) = kerAµ

N

⊥

⊕ SN . Let us introduce now the space

ṼT (µ; Ω) := {u ∈ H(curl ; Ω) | (µu,∇ϕ)Ω = 0, ∀ϕ ∈ SN} .
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Since SN ⊂ H1
#(Ω), by Corollary 1.3, we have VT (µ; Ω) ⊂ ṼT (µ; Ω); more-

over, the embedding is strict and by simple arguments, one can prove that
there exists an antidual basis of (∇λi

N), denoted by Λi
N ∈ ṼT (µ; Ω), i =

1 . . . nN , such that (µΛi
N ,∇λ

j
N)Ω = δij , for j = 1 . . . nN and as a consequence

ṼT (µ; Ω) = VT (µ; Ω) ⊕ vect(Λi
N )nN

i=1.

Proposition 4.2. Second order vectorial formulation (augmented).
1)If (H⊥, Ez) is a solution of (6) then H⊥ is a solution of

Find H⊥ ∈ ṼT (µ; Ω) such that :
∫

Ω

ε−1curlH⊥curl v − ω2µH⊥ · v =

∫

Ω

ε−1Jzcurlv, ∀v ∈ ṼT (µ; Ω).
(26)

2) If H⊥ satisfies (26), the pair (H⊥, Ez) = (H⊥, i(ωε)
−1(curl H⊥ − Jz)) is

a solution of problem (6).

Proof. The first implication is straightforward. Conversely, suppose H⊥

satisfies (26). To prove that (H⊥, Ez) = (H⊥, i(ωε)
−1(curl H⊥ − Jz)) is

a solution of (6), it suffices to prove that H⊥ satisfies (12) and then use
Proposition 1.5.

For v ∈ H(curl ; Ω), there is a unique ψ ∈ SN such that (µ∇ψ,∇ψ′)Ω =
(µv,∇ψ′)Ω for all ψ′ ∈ SN , so that the field v − ∇ψ belongs to ṼT (µ; Ω).
Injecting v − ∇ψ in (26), we get (ε−1curl H⊥, curl v)Ω − ω2(µH⊥,v)Ω =
(ε−1Jz, curl v)Ω which ends the proof.

Again, to study the augmented formulation (26), we need a result of compact
embedding which is given by the

Theorem 4.3. The embedding of ṼT (µ; Ω) in L2(Ω) is compact and the
application u 7→ ‖curl v‖Ω +

∑nN

i=1 |α
i|, where u = v +

∑nN

i=1 α
iΛi

N with v ∈

VT (µ; Ω) and (α1, . . . , αnN ) ∈ RnN , defines a norm on ṼT (µ; Ω), equivalent
to the norm (‖ · ‖2

Ω + ‖curl · ‖2
Ω)1/2.

Proof. With obvious notations, consider un = vn +
∑nN

i=1 α
i
nΛ

i
N a bounded

sequence of ṼT (µ; Ω). To prove the Theorem, it suffices to prove that (vn)
has a subsequence converging in L2(Ω). Following the proof of Theorem
3.3, we introduce the bounded sequence ϕn of H1

0(Ω), strongly converging in
L2(Ω), such that curlϕn = µvn and we have for all ϕ′ ∈ H1

0(Ω):

(µ−1curlϕn, curlϕ′)Ω = (µ−1∇ϕn,∇ϕ
′)Ω = (∇ϕn,∇(A

1/µ
D ϕ′))Ω

= (curl vn, ϕ
′)Ω.
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On the other hand, we have established in the proof of Theorem 4.1 that
A

1/µ
D ◦ T + K = Id where T and K are respectively a bounded and a compact

operator of H1
0(Ω). Then setting ϕmn = ϕm − ϕn and curl vmn = curl vm −

curl vn, and taking ϕ′ = Tϕmn, we obtain

‖∇ϕmn‖
2
Ω = (curl vmn, Tϕmn)Ω + (∇ϕmn,∇(Kϕmn))Ω.

By the boundedness of T and the compactness of K, one can easily deduce
that ∇ϕn is a Cauchy sequence of L2(Ω), which ends the proof.

We have now all necessary ingredients to prove the

Theorem 4.4. Suppose that A
1/µ
D (ω) is an isomorphism, then (26) is well-

posed, and problem (6) has one, and only one, solution.

Proof. The idea is again to build an operator T̃ : ṼT (µ; Ω) → ṼT (µ; Ω)
such that for all u ∈ ṼT (µ; Ω),

(ε−1curl u, curl T̃u)Ω = (curl u, curlu)Ω.

The Theorem follows by using the compactness result proved in Theorem 4.3
together with Proposition 4.2.

To build an operator T̃, consider for u ∈ ṼT (µ; Ω) the unique ϕ ∈ H1
0(Ω)

such that −∆ϕ = ε curlu and the unique ψ ∈ SN such that (µ∇ψ,∇ψ′)Ω =
(µ curlϕ,∇ψ′)Ω for all ψ′ ∈ SN . Then we set T̃u = curlϕ−∇ψ.

This last result allows us to provide, in a systematic way, a vectorial formula-
tion for H⊥ which is both well-posed and equivalent to problem (6), as soon

as this last problem has a unique solution. Either A
1/µ
D is an isomorphism

and the classical formulation (19) in VT (µ; Ω) can be used, or A
1/µ
D has a

non trivial kernel, and one should work in ṼT (µ; Ω) with formulation (26).
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