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Abstract. Some electromagnetic materials have, in a given frequency range, an e�ective dielectric
permittivity and/or a magnetic permeability which are real-valued negative coe�cients when dissipa-
tion is neglected. They are usually called metamaterials. We study a scalar transmission problem
between a classical dielectric material and a metamaterial, set in an open, bounded subset of Rd, with
d = 2, 3. Our aim is to characterize occurences where the problem is well-posed within the Fred-
holm (or coercive + compact) framework. For that, we build some criteria, based on the geometry
of the interface between the dielectric and the metamaterial. The proofs combine simple geometrical
arguments with the approach of T -coercivity, introduced by the �rst and third authors and co-worker.
Furthermore, the use of localization techniques allows us to derive well-posedness under conditions that
involve the knowledge of the coe�cients only near the interface. When the coe�cients are piecewise
constant, we establish the optimality of the criteria.

1. Introduction

In electromagnetism, one can model materials that exhibit real-valued strictly negative electric permittivity
and/or magnetic permeability, within given frequency ranges. These so-called metamaterials, or left-handed
materials, raise unusual questions. Among others, in a domain Ω of Rd (d = 2, 3), divided into a classical
dielectric material and a metamaterial, proving the existence of electromagnetic �elds, and computing them,
is a challenging issue (see for instance [11, 19, 21, 23, 24]). For example, let us consider a problem in a two-
dimensional domain, set in the time-harmonic regime with pulsation ω > 0. Then, the transmission problems
in the Transverse Magnetic and Transverse Electric modes can be reduced to scalar problems like

div(σ∇u) + ω2 ς u = f in Ω,
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with a source term f , and (σ, ς) equal to (ε−1, µ) or (µ−1, ε), where ε is the dielectric permittivity and µ is the
magnetic permeability, plus boundary conditions. Also, when (σ, ς) = (ε, 0), one models typically electrostatic
�elds in two- or three-dimensional domains. Let us mention that the extension to the full Maxwell system of
equations, which raises additional di�culties (such as compact imbedding results, cf. [2, 6]), is not treated in
this paper.

Mathematically speaking, let σk ∈ L∞(Ωk), k = 1, 2, be real-valued functions such that

σ1 ≥ c1 > 0 a.e. in Ω1 and σ2 ≤ c2 < 0 a.e. in Ω2,

with ck, k = 1, 2, constant numbers. De�ne σ ∈ L∞(Ω) in the following way: σ := σk in Ωk, k = 1, 2, and
consider ς ∈ L∞(Ω). In other words, there is a dielectric material in Ω1, and a metamaterial in Ω2, and we
have Ω = Ω1 ∪Ω2 (Ω1 ∩Ω2 = ∅). We assume that Ω, Ω1 and Ω2 are domains of Rd (d = 2, 3). We recall that a
domain is an open, bounded and connected subset of Rd (d = 2, 3) with a Lipschitz boundary.
We supplement the PDE with a homogeneous Dirichlet boundary condition, which writes u = 0 on ∂Ω. The case
of the Neumann boundary condition could be handled similarly. In this setting, the source term f belongs to
H−1(Ω), and solutions u are sought in H1

0 (Ω). As the imbedding of H1
0 (Ω) into H−1(Ω) is compact, it is enough

to study the principal part of the PDE u 7→ div(σ∇u). Hence, we study the operator A : u 7→ −div(σ∇u) of
L(H1

0 (Ω),H
−1(Ω)) (the set of linear continuous mappings from H1

0 (Ω) to H−1(Ω)), associated with the problem

(P)
Find u ∈ H1

0 (Ω) such that
−div(σ∇u) = f in Ω.

Classically, one proves that u is a solution to (P) if, and only if, u solves �Find u ∈ H1
0 (Ω) such that a(u, v) = l(v)

for all v ∈ H1
0 (Ω)�, with respectively

a(u, v) = (σ∇u,∇v)Ω, l(v) =H−1(Ω) ⟨f, v⟩H1
0 (Ω) .

Above, (·, ·)Ω is the usual scalar product of (L2(Ω))d, whereas H−1(Ω) ⟨·, ·⟩H1
0 (Ω) denotes the duality product

between H−1(Ω) and H1
0 (Ω). Of course, because of the sign shift of σ across the interface Σ dividing Ω, the

form a is not coercive over H1
0 (Ω)×H1

0 (Ω). In particular, one can not apply the Lax-Milgram theorem.

To overcome this di�culty, one can use the T -coercivity approach, introduced in [3]. Note that T -coercivity
can be seen as a reformulation of the classical inf-sup theory [5], using explicit operators to achieve the inf-sup
condition. Let us recall the main features of this method. If there exists an isomorphism T of H1

0 (Ω) such that
the bilinear form (u, v) 7→ a(u, T v) is coercive, then the Lax-Milgram theorem now applies. Indeed, the problem
�Find u ∈ H1

0 (Ω) such that a(u, T v) = l(T v) for all v ∈ H1
0 (Ω)� is well-posed. In addition, because T is an

isomorphism of H1
0 (Ω), one solves in this way the original problem �Find u ∈ H1

0 (Ω) such that a(u, v) = l(v) for
all v ∈ H1

0 (Ω)�. Therefore, within this framework, one has to �nd suitable operators T . In [3,26], it is shown that
A is actually an isomorphism of L(H1

0 (Ω),H
−1(Ω)) if max (infΩ1 σ1/supΩ2

|σ2|, infΩ2 |σ2|/supΩ1
σ1) > IΣ ≥ 1,

where IΣ is a constant number, that depends only on the geometry of the interface Σ between the dielectric
material and the metamaterial. However, the value of IΣ is not explicitly provided: indeed, it is de�ned with
the help of the norms of abstract operators. In this paper, we shall complement the results of [3] in two ways.
First, we provide some explicit values of the constants. Second, we localize the derivation of the extrema to a
neighborhood of the interface Σ. To achieve those aims, we prove that the problem (P) is well-posed in the
sense that the operator A is Fredholm, using simple, geometrically de�ned, operators T : if uniqueness holds
then the problem (P) is well-posed, otherwise a non-trivial, �nite dimensional kernel can appear. Let us em-
phasize that this implies a fortiori that the problem with equation div(σ∇u) + ω2 ς u = f in Ω and boundary
conditions is well-posed in the Fredholm sense.
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In the case where σ1 and σ2 are constant numbers, there exist in the literature at least two other approaches
that allow one to tackle problem (P). With the help of integral equations, it was �rst proven in [8] by Costabel-
Stephan that, when the interface Σ is smooth (of C 2-class), problem (P) is well-posed in the Fredholm sense
if, and only if, the contrast κσ := σ2/σ1 is di�erent from −1. Second, the in�uence of corners over the interface
was speci�cally studied in [4] (see also [9] and [22]). The authors proved that, when there is a right angle on
the interface, problem (P), with a right-hand side f in L2(Ω), is not well-posed in the Fredholm sense if, and
only if, κσ ∈ [−3;−1/3] (similar results can be obtained for any value of the angle). Note that we recover those
results within the framework we develop hereafter, with the explicit operators T . In this sense, we shall refer
to them as optimal results.

The outline is the following. After introducing some notations and proving a preliminary result, we �rst study
elementary cases, in simple geometries of R2 (d = 2). Then, we combine those results with a localization
technique, to solve the problem (P) in the Fredholm sense, in general geometries of R2, and provide some
applications when σk, k = 1, 2, are smooth and/or constants. In particular, we prove that one can obtain a
criterion, based only on the values of the contrast on the interface. Finally, we discuss the optimality of the
results we obtain in a domain of R2. Last, we provide elements of the approach in a domain of R3 (d = 3).
We cover in particular the elementary cases, which can not always be reduced to 2D con�gurations: as an
illustrative example, we study the problem set in a domain like Fichera's corner.

2. Notations and a preliminary result

Before we proceed, let us introduce some notations.
Given O an open set of Rd, (·, ·)O denotes the usual scalar products of L2(O) and (L2(O))d, ∥·∥O the associated
norms, ∥ · ∥Lp(O) the norm of Lp(O) or (Lp(O))d (p ∈ [1,∞] \ {2}), and �nally ∥ · ∥H1

0 (O) = ∥∇·∥O the norm of

H1
0 (O) and ∥ · ∥H−1(O) the norm of H−1(O).

The boundaries ∂Ω and ∂Ωk, k = 1, 2, are divided as follows: let Γk := ∂Ω ∩ ∂Ωk, for k = 1, 2. Obviously, the
interface Σ is such that Σ = Ω1 ∩ Ω2. L

p-norms (p ∈ [1,∞]) over Σ are written as above, with Σ replacing O.
Then, if v is measurable in Ω, we use the notations vk := v|Ωk

, k = 1, 2. Next, we introduce1

σ+
1 := sup

Ω1

σ1 , σ+
2 := sup

Ω2

|σ2| , σ−
1 := inf

Ω1

σ1 and σ−
2 := inf

Ω2

|σ2|.

Whenever applicable, the contrast κσ := σ2/σ1 will be de�ned over Σ: for instance as a constant number when
σk, k = 1, 2 are constant numbers, or as an element of C 0(Σ) when σk, k = 1, 2 are resp. continuous over Ωk,
k = 1, 2.
Last, we de�ne the Sobolev spaces

H1
0,Γk

(Ωk) :=
{
v|Ωk

, v ∈ H1
0 (Ω)

}
, k = 1, 2.

Let us now prove the result below.

Theorem 2.1. Consider an operator R1 ∈ L(H1
0,Γ1

(Ω1),H
1
0,Γ2

(Ω2)) with matching condition (R1u1)|Σ = u1|Σ
for all u1 ∈ H1

0,Γ1
(Ω1), and de�ne

T1 u =

{
u1 in Ω1

−u2 + 2R1 u1 in Ω2
. (1)

If σ−
1 /σ

+
2 > ∥R1∥2, then the form a is T1-coercive and A : u 7→ −div(σ∇u) is an isomorphism from H1

0 (Ω) to
H−1(Ω).

1Everywhere, we write sup for sup ess, respectively inf for inf ess.
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Consider an operator R2 ∈ L(H1
0,Γ2

(Ω2),H
1
0,Γ1

(Ω1)) with matching condition (R2u2)|Σ = u2|Σ for all u2 ∈
H1

0,Γ2
(Ω2), and de�ne

T2 u =

{
u1 − 2R2 u2 in Ω1

−u2 in Ω2
. (2)

If σ−
2 /σ

+
1 > ∥R2∥2, then the form a is T2-coercive and A : u 7→ −div(σ∇u) is an isomorphism from H1

0 (Ω) to
H−1(Ω).

Proof. By construction, T1 belongs to L(H1
0 (Ω)). In addition, one has T1 ◦ T1 = Id. In particular, T1 is an

isomorphism of H1
0 (Ω). Let us compute now a(u, T1 u), for u ∈ H1

0 (Ω). With the help of Young's inequality,
one can write, for all η > 0,

a(u, T1 u) = (σ1 ∇u1,∇u1)Ω1 + (|σ2| ∇u2,∇u2)Ω2 − 2(|σ2| ∇u2,∇(R1 u1))Ω2

≥ (σ1 ∇u1,∇u1)Ω1 + (|σ2| ∇u2,∇u2)Ω2 − η (|σ2| ∇u2,∇u2)Ω2 − 1/η (|σ2| ∇(R1 u1),∇(R1 u1))Ω2

≥ ((σ1 − ∥R1∥2 σ+
2 /η)∇u1,∇u1)Ω1 + (|σ2| (1− η)∇u2,∇u2)Ω2 .

As a consequence, if σ−
1 /σ

+
2 > ∥R1∥2, then there exists C > 0 such that

C ∥u∥2H1
0 (Ω) ≤ a(u, T1 u), ∀u ∈ H1

0 (Ω).

In other words, a is T1-coercive.
On the other hand, one has T2 ∈ L(H1

0 (Ω)) and T2 ◦ T2 = Id. Given u ∈ H1
0 (Ω), we �nd for all η > 0,

a(u, T2 u) ≥ (σ1(1− η)∇u1,∇u1)Ω1 + ((|σ2| − ∥R2∥2 σ+
1 /η)∇u2,∇u2)Ω2 .

Therefore, if σ−
2 /σ

+
1 > ∥R2∥2, then there exists C > 0 such that

C ∥u∥2H1
0 (Ω) ≤ a(u, T2 u), ∀u ∈ H1

0 (Ω),

i.e. a is T2-coercive.
To conclude the proof, we know that there exists an isomorphism T of H1

0 (Ω), such that the continuous, bilinear

form (u, v) 7→ ã(u, v) = a(u, T v) is coercive over H1
0 (Ω)×H1

0 (Ω). Evidently, v 7→ l̃(v) = l(T v) is a continuous,
linear form over H1

0 (Ω). According to Lax-Milgram's theorem, there exists one, and only one, u ∈ H1
0 (Ω) such

that ã(u, v) = l̃(v) for all v ∈ H1
0 (Ω), with continuous dependency with respect to the data l̃. Recall that T

is an isomorphism of H1
0 (Ω). So, there exists one, and only one, u ∈ H1

0 (Ω) such that a(u, v) = l(v) for all
v ∈ H1

0 (Ω), with continuous dependency with respect to the data l. We conclude that A is an isomorphism. �
In the rest of the paper, R1 denotes an operator of L(H1

0,Γ1
(Ω1),H

1
0,Γ2

(Ω2)), and R2 denotes an operator of

L(H1
0,Γ2

(Ω2), H
1
0,Γ1

(Ω1)). Also, T1 and T2 denote the operators of L(H1
0 (Ω)) respectively de�ned by (1) and

(2), for operators R1 and R2 that ful�ll the matching conditions.

3. A study of elementary cases: global conditions

Let us explicit operators that ensure T -coercivity, on a series of particular geometries. In a second step (see
�4), we shall handle general geometries. The underlying idea is to provide a criterion, based on the values of σ,
that allows one to prove that A is an isomorphism from H1

0 (Ω) to H−1(Ω).

3.1. Symmetric domain

Let Ω be a symmetric domain, in the sense that Ω1 and Ω2 can be mapped from one to the other with the
help of a re�ection symmetry. Without loss of generality, we assume that the interface Σ is included in the line
of equation y = 0 (see �gure 1 for an example). In this case, we can prove the result below.
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Figure 1. A symmetric geometry.

Theorem 3.1. (symmetric domain) Assume that

max(σ−
1 /σ

+
2 , σ

−
2 /σ

+
1 ) > 1.

Then, there exists an isomorphism T ∈ L(H1
0 (Ω)) such that the form a is T -coercive and A : u 7→ −div(σ∇u)

is an isomorphism from H1
0 (Ω) to H−1(Ω).

Proof. Consider the operators R1 and R2 respectively de�ned by (R1 u1)(x, y) = u1(x,−y) and (R2 u2)(x, y) =
u2(x,−y). Clearly, one has the matching conditions (Rkuk)|Σ = uk|Σ for all uk ∈ H1

0,Γk
(Ωk), k = 1, 2. Moreover,

∥Rk∥ = 1, for k = 1, 2. The conclusion follows from theorem 2.1. �

Remark 3.2. In the case where σ1 and σ2 are constant numbers, theorem 3.1 shows that A is an isomorphism
as soon as the contrast κσ = σ2/σ1 is not equal to −1.

3.2. Interior vertex

Figure 2. (Left) Geometry of an interior vertex. (Middle, right) Geometries of a boundary vertex.

Consider the geometry of �gure 2�left. More precisely, let us denote by (r, θ) the polar coordinates centered
at O with θ = 0 on the half-line Ox (positive x). Given R > 0 and 0 < α < 2π, let us de�ne

Ω1 := {(r cos θ, r sin θ) | 0 < r < R, 0 < θ < α} ;
Ω2 := {(r cos θ, r sin θ) | 0 < r < R, α < θ < 2π} .

Theorem 3.3. (interior vertex) Assume that

max(σ−
1 /σ

+
2 , σ

−
2 /σ

+
1 ) > Iα, with Iα := max(

2π − α

α
,

α

2π − α
).
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Then, there exists an isomorphism T ∈ L(H1
0 (Ω)) such that the form a is T -coercive and A : u 7→ −div(σ∇u)

is an isomorphism from H1
0 (Ω) to H−1(Ω).

Proof. We keep the same notations for functions expressed either in cartesian coordinates or in polar coordi-
nates. Consider the operators R1 and R2 respectively de�ned by (R1 u1)(ρ,Θ) = u1(ρ,

α
α−2π (Θ − 2π)) and

(R2 u2)(ρ,Θ) = u2(ρ,
α−2π

α Θ + 2π). By construction, one has the matching condition (R1 u1)(ρ, α) = u1(ρ, α)

and (R1 u1)(ρ, 2π) = u1(ρ, 0), for all u1 ∈ H1
0,Γ1

(Ω1). Let us now compute the norm of R1. For that, let

u1 ∈ H1
0,Γ1

(Ω1). Performing the change of variables (r, θ) = (ρ, α
α−2π (Θ− 2π)), we �nd successively

∥∇(R1 u1)∥2Ω2
=

∫
Ω2

(
∂(R1 u1)

∂ρ

)2

+
1

ρ2

(
∂(R1 u1)

∂Θ

)2

ρdρdΘ

≤ 2π − α

α

∫
Ω1

(
∂u1

∂r

)2

rdrdθ +
α

2π − α

∫
Ω1

1

r2

(
∂u1

∂θ

)2

rdrdθ

≤ Iα ∥∇u1∥2Ω1
;

so ∥R1∥2 ≤ Iα.

Similarly, the matching condition holds for R2 on the interface, and ∥R2∥2 ≤ Iα.
The conclusion follows thanks to theorem 2.1. �

Remark 3.4. One has −1 ∈ [−Iα;−1/Iα]. Also, if α = π this interval reduces to {−1}, which is consistent
with our analysis of symmetric domains (see �3.1).

Remark 3.5. When σ1 are σ2 are constant numbers, theorem 3.3 implies that A is an isomorphism if κσ =
σ2/σ1 /∈ [−Iα;−1/Iα]. For instance, if α = π/2, there holds [−Iα;−1/Iα] = [−3;−1/3]. So, given κσ ∈
]−∞;−3[ ∪ ]−1/3; 0[, we know that A is an isomorphism.

Remark 3.6. More generally, one could consider an operator R†
1 de�ned by (R†

1 u1)(ρ,Θ) = u1(ρ, g1(Θ)) where
g1 is a C 1 di�eomorphism from [α; 2π] to [0;α] such that g1(2π) = 0 and g1(α) = α. Then, one obtains

∥R†
1∥2 = max(∥g′1∥L∞([α;π]), ∥1/(g′1)∥L∞([α;π])). According to the mean value theorem, one has ∥R†

1∥2 ≥ Iα, so
our choice g1(Θ) = α

α−2π (Θ − 2π) is optimal in this con�guration. That will not always be the case in 3D

(see �7.4).

3.3. Boundary vertex

Given R > 0 and 0 < α < γ < 2π, let us introduce, with (r, θ) the polar coordinates de�ned as before:

Ω1 := {(r cos θ, r sin θ) | 0 < r < R, 0 < θ < α} ;
Ω2 := {(r cos θ, r sin θ) | 0 < r < R, α < θ < γ} .

Theorem 3.7. (boundary vertex) Assume that
σ−
1 /σ

+
2 > 1 or σ−

2 /σ
+
1 >

γ − α

α
if α ≤ γ/2 ;

σ−
2 /σ

+
1 > 1 or σ−

1 /σ
+
2 >

γ − α

α
if α ≥ γ/2.

Then, there exists an isomorphism T ∈ L(H1
0 (Ω)) such that the form a is T -coercive and A : u 7→ −div(σ∇u)

is an isomorphism from H1
0 (Ω) to H−1(Ω).
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Proof. Let us consider �rst that α ≤ γ/2 (�gure 2�middle), with the operators R1 and R2, respectively de�ned
by

(R1 u1)(ρ,Θ) =

{
u1(ρ, 2α−Θ) if Θ ≤ 2α

0 else
; (R2 u2)(ρ,Θ) = u2(ρ,

α− γ

α
Θ+ γ) .

One proves the results as before (see theorems 3.1 (for R1) and 3.3 (for R2)).
Similarly, one can handle the case where α ≥ γ/2 (�gure 2�right). �

Remark 3.8. If α = γ/2, we recover the result on symmetric domains (see theorem 3.1).

Remark 3.9. Consider that σ1 and σ2 are constant numbers. Then, for instance with γ = π and α = π/4, the
previous result indicates that A is an isomorphism, as soon as κσ ∈ ]−∞;−3[ ∪ ]−1; 0[.

3.4. Interface of C 1-class

Let us conclude this overview of particular cases with a study of a smooth interface Σ. Let f be a real-valued

Figure 3. Geometry for an interface of C 1-class.

function that belongs to C 1([0; 1]), and let L > 0. Let us introduce (see �gure 3)

Ω := {(x, y) | 0 < x < 1, f(x)− L < y < f(x) + L} ;
Ω1 := {(x, y) | 0 < x < 1, f(x) < y < f(x) + L} ;
Ω2 := {(x, y) | 0 < x < 1, f(x)− L < y < f(x)} .

Theorem 3.10. Assume that

max(σ−
1 /σ

+
2 , σ

−
2 /σ

+
1 ) > (1 + 2 ∥f ′∥L∞(Σ) + 4 ∥f ′∥2L∞(Σ)).

Then, there exists an isomorphism T ∈ L(H1
0 (Ω)) such that the form a is T -coercive and A : u 7→ −div(σ∇u)

is an isomorphism from H1
0 (Ω) to H−1(Ω).

Proof. De�ne respectively the operators R1 and R2 by (R1 u1)(s, t) = u1(s, 2f(s) − t) and (R2 u2)(s, t) =
u2(s, 2f(s) − t). We note that if (s, t) ∈ Σ, then t = f(s) and accordingly (R1 u1)(s, t) = u1(s, 2f(s) − t) =
u1(s, t), for all u1 ∈ H1

0,Γ1
(Ω1). Next, let us bound the norm of R1. Given u1 ∈ H1

0,Γ1
(Ω1) and using the change
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of variables (x, y) = (s, 2f(s)− t), we �nd

∥∇(R1 u1)∥2Ω2
=

∫
Ω2

(
∂(R1 u1)

∂s

)2

+

(
∂(R1 u1)

∂t

)2

dsdt

≤
∫
Ω1

(
∂u1

∂x
+ 2f ′(x)

∂u1

∂y

)2

+

(
∂u1

∂y

)2

dxdy

≤
∫
Ω1

(
∂u1

∂x

)2

+ 4 |f ′(x)|

∣∣∣∣∣∂u1

∂x

∣∣∣∣∣
∣∣∣∣∣∂u1

∂y

∣∣∣∣∣+ 4 |f ′(x)|2
(
∂u1

∂y

)2

+

(
∂u1

∂y

)2

dxdy

≤ (1 + 2 ∥f ′∥L∞(Σ) + 4 ∥f ′∥2L∞(Σ)) ∥∇u1∥2Ω1

It follows that ∥R1∥2 ≤ (1 + 2 ∥f ′∥L∞(Σ) + 4 ∥f ′∥2L∞(Σ)).

Reversing the roles of Ω1 and Ω2, one recovers the matching condition for R2, and moreover ∥R2∥2 ≤ (1 +

2 ∥f ′∥L∞(Σ) + 4 ∥f ′∥2L∞(Σ)).

The conclusion follows from theorem 2.1. �

Remark 3.11. In the special case where f ′ is uniformly equal to 0, the domain Ω is symmetric and the result
is identical to the one of theorem 3.1.

4. A study of general geometries via localization

The problem (P) is said to be well-posed in the Fredholm sense when the operator A ∈ L(H1
0 (Ω),H

−1(Ω))
is Fredholm of index 0. Let us recall the de�nition below (see for instance [14,25]).

De�nition 4.1. Let X and Y be two Banach spaces, and B an operator of L(X,Y ). The operator B is Fredholm
if

i) dim kerB < ∞, ImB is closed.
ii) dim cokerB < ∞, where cokerB := Y/ImB.

When B is a Fredholm operator, its index is de�ned by indB := dim kerB − dim cokerB.

4.1. Setting of the problem and additional notations

We recall that Ω is a domain of R2, that is an open, bounded and connected subset of R2 with a Lipschitz
boundary. The domain Ω is divided into two open subsets Ω1 and Ω2 by an interface Σ, namely Ω1 ∪ Ω2 = Ω,
Ω1 ∩ Ω2 = ∅ and Ω1 ∩ Ω2 = Σ. Let n be the unit normal vector to Σ, going from Ω1 to Ω2. Below, we make a
number of regularity assumptions, focusing on the corners and endpoints of the interface:

• The subsets Ω1 and Ω2 have a Lipschitz boundary.
• The interface Σ is of C 1-class, to the exception of a �nite number of interior vertices Sint = {xi, 1 ≤

i ≤ Nint}. And, for 1 ≤ i ≤ Nint, the subsets Ω1 and Ω2 coincide with open cones in a neighborhood
Vi of xi, locally in Ω:

Ω1 ∩ Vi = K1(x
i) ∩ Vi and Ω2 ∩ Vi = K2(x

i) ∩ Vi,
where K1(x

i) and K2(x
i) are open cones, centered at xi.

(3)

• There are either 0 or 2 endpoints, called boundary vertices: Sext := Σ ∩ ∂Ω = {xi, Nint + 1 ≤ i ≤
Nint +Next}, with Next ∈ {0, 2}. And, for Nint + 1 ≤ i ≤ Nint +Next, the subsets Ω1 and Ω2 coincide
with open cones in a neighborhood Vi of xi, locally in Ω: i.e., (3) holds.
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Figure 4. Notations for xi ∈ Sint -
αi = αi

2.
Figure 5. Notations for xi ∈ Sext -
αi = αi

1.

For each index i, we de�ne the aperture αi
k ∈ ]0; 2π[ of the cone Kk(x

i), k = 1, 2. We introduce γi := αi
1 + αi

2

and αi := min(αi
1, α

i
2). Evidently, one has γ

i = 2π for interior vertices, and γi < 2π for boundary vertices. On
the other hand, at an interior vertex xi, Σ is not of C 1-class, so 0 < αi < π.
We denote by (ri, θi) the polar coordinates centered at xi with the angle θi such that

K1(x
i) is isometric to

{
(ri cos θi, ri sin θi) | ri > 0, 0 < θi < αi

1

}
;

K2(x
i) is isometric to

{
(ri cos θi, ri sin θi) | ri > 0, αi

1 < θi < γi
}
.

We let S1
ext := {xi ∈ Sext |αi

1 ≤ αi
2}, S2

ext := {xi ∈ Sext |αi
2 < αi

1} and S := Sint ∪ Sext. The cardinality of S
is denoted by N .

Finally, we de�ne

Iαi :=
γi − αi

αi
for 1 ≤ i ≤ N.

Remark 4.2. Given any interior vertex, there holds Iαi > 1. The same is true for any boundary vertex of
S2
ext. On the other hand, for a boundary vertex of S1

ext, one has only Iαi ≥ 1 (it can happen that Iαi = 1).

4.2. Statement of the result

In our setting, we shall prove that A is Fredholm, under some conditions on the geometry of the domain Ω
and on σ.
Below, we let B(x, d) be the open ball centered at x with radius d.

Theorem 4.3. Assume that either 1. or 2. below holds:

1. • ∀x ∈ Σ\S (smooth part of the interface): ∃d > 0, inf
B(x,d)∩Ω1

σ1 > sup
B(x,d)∩Ω2

|σ2|,

• ∀xi ∈ Sint ∪ S2
ext: ∃d > 0, inf

B(xi,d)∩Ω1

σ1 > Iαi sup
B(xi,d)∩Ω2

|σ2|,

• ∀xi ∈ S1
ext: ∃d > 0, inf

B(xi,d)∩Ω1

σ1 > sup
B(xi,d)∩Ω2

|σ2| ;

2. • ∀x ∈ Σ\S (smooth part of the interface): ∃d > 0, inf
B(x,d)∩Ω2

|σ2| > sup
B(x,d)∩Ω1

σ1,

• ∀xi ∈ Sint ∪ S1
ext: ∃d > 0, inf

B(xi,d)∩Ω2

|σ2| > Iαi sup
B(xi,d)∩Ω1

σ1,

• ∀xi ∈ S2
ext: ∃d > 0, inf

B(xi,d)∩Ω2

|σ2| > sup
B(xi,d)∩Ω1

σ1.

Then, the operator A : u 7→ −div(σ∇u) of L(H1
0 (Ω),H

−1(Ω)) is Fredholm of index 0.

Remark 4.4. Under the assumptions of theorem 4.3, if A is injective, then A is an isomorphism of H1
0 (Ω) into

H−1(Ω). On the other hand, it can happen that the dimension of kerA is �nite and not equal to 0.
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The proof is divided in several steps, following �5, chapter 2 of Lions-Magenes [13], �6.3 of Kozlov-Maz'ya-
Rossmann [12] or �4.1.2 of Nazarov-Plamenevsky [15]. First, we introduce a partition of unity, which �ts the
geometry of the domain (and of the interface). Then, we prove an a priori estimate for solutions to (P), with
the help of T -coercivity. To reach that goal, we use the T -coercivity framework that we developed previously
on a series of elementary cases. Finally, a classical application of Peetre's lemma leads to the conclusion.

4.3. Construction of a partition of unity

Let xi ∈ S. According to one of the two assumptions (case 1. or case 2.) of theorem 4.3, there exists di > 0
such that (B(xi, di) ∩ Ω) ⊂ Vi, where Vi is the neighborhood of xi that appears in (3), and

inf
B(xi,di)∩Ω1

σ1 > Iαi sup
B(xi,di)∩Ω2

|σ2| if xi ∈ Sint ∪ S2
ext

inf
B(xi,di)∩Ω1

σ1 > sup
B(xi,di)∩Ω2

|σ2| if xi ∈ S1
ext

 in case 1. ;

inf
B(xi,di)∩Ω2

|σ2| > Iαi sup
B(xi,di)∩Ω1

σ1 if xi ∈ Sint ∪ S1
ext

inf
B(xi,di)∩Ω2

|σ2| > sup
B(xi,di)∩Ω1

σ1 if xi ∈ S2
ext

 in case 2. .

For 1 ≤ i ≤ N , let ζi ∈ C∞(Ω) be a truncation function, equal to 1 in B(xi, di/2) ∩ Ω, with support included
in (B(xi, di) ∩ Ω) ⊂ Vi, and such that ζi is a function of the radius ri only, and 0 ≤ ζi ≤ 1.

Next, de�ne Σr := Σ\
N∪
i=1

B(xi, di/2), and let x ∈ Σr. According to the assumption on the smooth part of Σ,

there exists dx > 0 such that B(x, dx) ⊂ Ω\S, and

inf
B(x,dx)∩Ω1

σ1 > sup
B(x,dx)∩Ω2

|σ2| or inf
B(x,dx)∩Ω2

|σ2| > sup
B(x,dx)∩Ω1

σ1. (4)

On the other hand, as Σ is of piecewise C 1-class, it coincides locally with the graph of a function fx of C 1(R)
(see Annex C of [10]). Let s0 ∈ R be such that x = (s0, f

x(s0)). Up to a rotation of the coordinates system,
one can assume that fx′(s0) = 0.
Consider next three real numbers ax, bx and δx > 0 such that the set

Ωx :=
{
(s, t) ∈ R2 | ax < s < bx, fx(s)− δx < t < fx(s) + δx

}
(5)

is included in B(x, dx), and such that ax < s0 < bx (so that x belongs to Ωx). Choosing the direction of the
coordinate axes, one can ensure that Ωx ∩ Ω1 and Ωx ∩ Ω2 coincide respectively with Ωx

1 and Ωx
2 , that are

de�ned by
Ωx

1 :=
{
(s, t) ∈ R2 | ax < s < bx, fx(s) < t < fx(s) + δx

}
;

Ωx
2 :=

{
(s, t) ∈ R2 | ax < s < bx, fx(s)− δx < t < fx(s)

}
.

But fx′ is continuous at s = s0 and it vanishes there, so according to (4) one can take ax and bx close enough
to s0 so that

inf
Ωx

1

σ1 > sup
Ωx

2

|σ2| (1 + 2 ∥f ′∥L∞([ax;bx]) + 4 ∥f ′∥2L∞([ax;bx]))

or inf
Ωx

2

|σ2| > sup
Ωx

1

σ1 (1 + 2 ∥f ′∥L∞([ax;bx]) + 4 ∥f ′∥2L∞([ax;bx])).
(6)

Consider next

Ω̃x :=
{
(s, t) ∈ R2 | ax + (s0 − ax)/2 < s < bx − (bx − s0)/2, f

x(s)− δx/2 < t < fx(s) + δx/2
}
.
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Figure 6. Situation in a neighborhood of x.

By construction, Ω̃x is a neighborhood of x, and Ω̃x ⊂ Ωx.

The set Σr is compact, so one can extract from the set (Ω̃x)x∈Σr
a �nite collection, denoted by (Õi)NΣ

i=1, whose

union covers Σr. Further, for 1 ≤ i ≤ NΣ, we let Oi denote the open set Ωx associated with Ω̃x = Õi. Thus, it
is possible to introduce a bounded, open set O0 (of R2) which does not intersect Σ, and such that

Ω ⊂

(
O0 ∪ (

NΣ∪
i=1

Õi) ∪ (
N∪
i=1

B(xi, di/2))

)
.

Next, consider

• a function χ0 ∈ C∞(Ω) whose support does not intersect Σ, equal to 1 in O0 and such that 0 ≤ χ0 ≤ 1 ;

• for 1 ≤ i ≤ NΣ, a function χi ∈ C∞(Ω), whose support is included in Oi, equal to 1 in Õi and such
that 0 ≤ χi ≤ 1 .

It follows that, for all x ∈ Ω,

NΣ∑
i=0

χi(x) +
N∑
i=1

ζi(x) ≥ 1; ∃i0 such that χi0(x) = 1 or ζi0(x) = 1.

4.4. A priori estimate for solutions to (P)

Given u ∈ H1
0 (Ω), let f := Au = −div(σ∇u) ∈ H−1(Ω). Let us prove there exists C > 0, independent of u,

such that

∥u∥H1
0 (Ω) ≤ C

(
∥Au∥H−1(Ω) + ∥u∥Ω

)
. (7)

For χ ∈ C∞(Ω), de�ne supp1χ :=
{
x ∈ Ω |χ(x) = 1

}
, so that one can write

∥u∥2H1
0 (Ω) ≤ ∥u∥2H1

0 (supp
1χ0) +

NΣ∑
i=1

∥u∥2H1
0 (supp

1χi) +

N∑
i=1

∥u∥2H1
0 (supp

1ζi)

≤
∥∥χ0u

∥∥2
H1

0 (Ω)
+

NΣ∑
i=1

∥∥χiu
∥∥2
H1

0 (Ω)
+

N∑
i=1

∥∥ζiu∥∥2
H1

0 (Ω)
.

(8)
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Then, let us establish estimates for the three terms of the right-hand side of (8).
First, ∥∥χ0u

∥∥2
H1

0 (Ω)
≤ C (|σ|∇(χ0u),∇(χ0u))Ω

≤ C
( ∣∣(|σ|u∇χ0,∇(χ0u))Ω

∣∣+ ∣∣(|σ|∇u,∇((χ0)2u))Ω
∣∣+ ∣∣(|σ|∇u, χ0u∇χ0)Ω

∣∣ )
≤ C

(
∥u∥Ω

∥∥χ0u
∥∥
H1

0 (Ω)
+ ∥f∥H−1(Ω)

∥∥(χ0)2u
∥∥
H1

0 (Ω)
+ ∥u∥H1

0 (Ω) ∥u∥Ω
)

≤ C
(
∥f∥H−1(Ω) ∥u∥H1

0 (Ω) + ∥u∥Ω ∥u∥H1
0 (Ω)

)
.

(9)

Using the operators T1 or T2 (see (1) or (2)) implicitly de�ned in the proof of theorem 3.10 over the domain
int(suppχi) (with a continuation by 0 in Ω\suppχi), one gets an operator of L(H1

0 (Ω)), denoted by T . Moreover,
one �nds∥∥χiu

∥∥2
H1

0 (Ω)
≤ C

∣∣(σ∇(χiu),∇(T (χiu)))Ω
∣∣

≤ C
( ∣∣(σ u∇χi,∇(T (χiu)))Ω

∣∣+ ∣∣(σ∇u,∇(χiT (χiu)))Ω
∣∣+ ∣∣(σ∇u, T (χiu)∇χi)Ω

∣∣ )
≤ C

(
∥f∥H−1(Ω) ∥u∥H1

0 (Ω) + ∥u∥Ω ∥u∥H1
0 (Ω)

)
.

(10)

Indeed, the operator T also belongs to L(L2(Ω)).
Along the same lines, one obtains∥∥ζiu∥∥2

H1
0 (Ω)

≤ C
(
∥f∥H−1(Ω) ∥u∥H1

0 (Ω) + ∥u∥Ω ∥u∥H1
0 (Ω)

)
(11)

because the operators T1 or T2 (see (1) or (2)) implicitly used in the proofs of theorems 3.3 and 3.7 (with a
continuation by 0 in Ω\supp ζi), all belong to L(H1

0 (Ω)) and L(L2(Ω)).

Finally, putting together the estimates (8), (9), (10) and (11), one concludes that the a priori estimate (7)
holds.

4.5. Concluding the proof of theorem 4.3

Let us recall a classical result, due to J. Peetre [20] (see also lemma 5.1 in [13, Ch. 2], or lemma 3.4.1 in [12]).

Lemma 4.5. Let X, Y and Z be three re�exive Banach spaces, such that X is compactly embedded into Z. Let
B ∈ L(X,Y ). Then the assertions below are equivalent:

i) dim kerB < ∞, and ImB is closed in Y ;
ii) there exists C > 0 such that

∥x∥X ≤ C (∥B x∥Y + ∥x∥Z), ∀x ∈ X.

On the one hand, H1
0 (Ω) is compactly embedded into L2(Ω), because Ω is a bounded subset of Rd. On the

other hand, cokerA is isomorphic to kerA (cf. [14], theorem 2.13). So theorem 4.3 follows from lemma 4.5, (7),
and indA = dimkerA− dim cokerA = 0.

5. Applications

5.1. Case of smooth coe�cients

In the case where σk ∈ C 0(Ωk), k = 1, 2, the statement of theorem 4.3 can be simpli�ed. The contrast
κσ = σ2/σ1 is considered here as an element of C 0(Σ).
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Theorem 5.1. (continuous coefficients) Assume that

either

 ∀x ∈ Σ\S (smooth part of Σ), κσ(x) < −1
∀xi ∈ Sint ∪ S2

ext, κσ(x) < −Iαi ,
∀xi ∈ S1

ext, κσ(x) < −1
or

 ∀x ∈ Σ\S (smooth part of Σ), κσ(x) > −1
∀xi ∈ Sint ∪ S1

ext, κσ(x) > −1/Iαi .
∀xi ∈ S2

ext, κσ(x) > −1

Then, the operator A : u 7→ −div(σ∇u) of L(H1
0 (Ω),H

−1(Ω)) is Fredholm of index 0.

5.2. Case of constant coe�cients

When in addition σk, k = 1, 2, are constant numbers, de�ne

R̂Σ := max

(
max

xi∈Sint∪S1
ext

Iαi , 1

)
, ŘΣ := max

(
max

xi∈Sint∪S2
ext

Iαi , 1

)
.

There holds the

Theorem 5.2. (constant coefficients) Assume that σ2/σ1 ∈ R∗
−\
[
−R̂Σ;−1/ŘΣ

]
. Then, the operator

A : u 7→ −div(σ∇u) of L(H1
0 (Ω),H

−1(Ω)) is Fredholm of index 0.

Remark 5.3. With the help of Lax-Milgram's theorem, one proves easily that the operator A is an isomorphism

of L(H1
0 (Ω),H

−1(Ω)) when κσ ∈ C\R−. One concludes that, when σ2/σ1 ∈ C∗\
[
−R̂Σ;−1/ŘΣ

]
, the operator

A is Fredholm of index 0.

Figure 7. A is Fredholm of index 0
when σ2/σ1 ∈ R∗

− \ {−1}.

Figure 8. A is Fredholm of index 0
when σ2/σ1 ∈ R∗

−\[−3;−1/3].

We provide some �practical� illustrations of these results in �gures 7, 8, 9 and 10.

Figure 9. A is Fredholm of index 0
when σ2/σ1 ∈ R∗

−\[−3;−1/3].
Figure 10. A is Fredholm of index 0
when σ2/σ1 ∈ R∗

−\[−7/3;−3/7].

6. Discussion on the assumptions on σ

In this section, we establish some results on the operator A : u 7→ −div(σ∇u) of L(H1
0 (Ω), H

−1(Ω)), in the
case where σ does not ful�ll all the assumptions of theorem 4.3. We use the contrast κσ = σ2/σ1 when σk,
k = 1, 2 are constant numbers. Loosely speaking, on a straight part of the interface for which κσ = −1, we will
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establish that the operator A is not Fredholm, because of a linear singularity distribution. Indeed, we shall prove
that, at any point x0 of the (open) straight part of Σ, one can build a sequence of functions (un)n that prevents
A from being a Fredholm operator (see theorem 6.2 below). On the other hand, if κσ ̸= −1, the operator A is
not Fredholm if there exist pointwise singularities, located at interior and/or boundary vertices of the interface.
This situation happens for values of the contrast lying in an interval (see theorem 6.4 below). In this latter
case, let us mention that Fredholm well-posedness can be recovered in another functional framework [1]. More
exotic situations are investigated in �6.4.

6.1. Case of the symmetric domain

Below, Ω is a symmetric domain.

Theorem 6.1. (symmetric domain & constant coefficients) Assume that

• κσ ̸= −1: then A is an isomorphism ;
• κσ = −1: then A is not a Fredholm operator (dim kerA = ∞).

Proof. We consider without loss of generality that the interface Σ is included in the line of Eq. y = 0 (see �gure
1).
Theorem 3.1 proves the result when κσ ̸= −1.
Next, consider that κσ = −1. In this case, we prove that kerA is an in�nite dimensional vector space. To that

aim, let g ∈ H
1/2
00 (Σ), i.e. g is an element of H1/2(Σ) such that its continuation by 0 to the whole line of Eq.

y = 0 belongs to H1/2(R). For k = 1, 2, consider then uk ∈ H1
0,Γk

(Ωk) such that ∆uk = 0 in Ωk

uk = 0 on Γk

uk = g on Σ
.

By the uniqueness of the solution, we �nd that u2(x, y) = u1(x,−y) a.e. in Ω2, and it follows that

σ1 ∂nu1 − σ2 ∂nu2 = −σ1( ∂yu1 + ∂yu2) = 0 a.e. on Σ.

Summing up, the element u of H1
0 (Ω) de�ned by u|Ωk

= uk for k = 1, 2 satis�es div(σ∇u) = 0 in Ω, and as

consequence Au = 0. As H
1/2
00 (Σ) is an in�nite dimensional vector space, the same is true for kerA. �

6.2. Locally straight interface and contrast equal to −1

Here, Ω is a domain of R2 which ful�lls the assumptions of �4.1.

Theorem 6.2. (locally straight interface & constant coefficients) Assume that κσ = −1, and that
there is an open part of Σ which is straight. Then A is not a Fredholm operator.

Remark 6.3. The result remains true, assuming only that σ1 and σ2 are locally constant, and take opposite
values, in a neighborhood of the straight part of Σ.

Proof. According to lemma 4.5, if A is a Fredholm operator, then there exists C > 0 such that

∥u∥H1
0 (Ω) ≤ C

(
∥Au∥H−1(Ω) + ∥u∥Ω

)
, ∀u ∈ H1

0 (Ω). (12)

Following Hadamard's example, one can classically prove that the Cauchy problem in the half-plane is not
well-posed by contradicting (12) (see for instance [16,17]).
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Let x0 be a point on the (open) straight part of Σ. Up to a rotation of the coordinates system, we can assume
that Σ is locally included in the line of Eq. s = 0, around x0. Next, let b > 0 be su�ciently small, so that
D := ]−b; b[× ]−b; b[ ⊂ Ω. For n ∈ N, de�ne

un(s, t) :=


sinhn(b+ s) sinnt

enb
in [−b; 0]× [−b; b] ;

sinhn(b− s) sinnt

enb
in [0; b]× [−b; b] .

(13)

Let χ0 ∈ C∞
0 (R) be an even truncation function, equal to 1 in a neighborhood of 0, with support included in

]−b; b[, and 0 ≤ χ0 ≤ 1. Now, let χ(s, t) := χ0(s)χ0(t). Then, the continuation of χun by 0 to Ω, still denoted
by χun, belongs to H1

0 (Ω). We prove now the estimate below, with C independent of n:

∥A (χun)∥H−1(Ω) ≤ C (∥Aun∥H−1(D) + ∥un∥D) . (14)

Recall that
∥A (χun)∥H−1(Ω) = sup

v∈H1
0 (Ω), ∥v∥

H1
0(Ω)

=1

|(σ∇(χun),∇v)Ω|.

On the other hand, given v ∈ H1
0 (Ω), one has

(σ∇(χun),∇v)Ω = (σ∇un,∇(χv))Ω + (σ un ∇χ,∇v)Ω − (∇un, σ v∇χ)Ω . (15)

Consider next each term of the right-hand side of (15) separately.

• First term:
|(σ∇un,∇(χv))Ω| ≤ C ∥div(σ∇un)∥H−1(D) ∥v∥H1

0 (Ω) . (16)

• Second term, using Cauchy-Schwarz inequality:

|(σ un ∇χ,∇v)Ω| ≤ C ∥un∥D ∥v∥H1
0 (Ω) . (17)

• Third term, integrated by parts:

(∇un, σ v∇χ)Ω = (un, div(σ v∇χ))D. (18)

Note that div(σ v∇χ) belongs to L2(Ω) (and so to L2(D)), because one has σ v∇χ|Ω1 ∈ H1(Ω1),
σ v∇χ|Ω2 ∈ H1(Ω2), and �nally ∂nχ = 0 on Σ. In addition, ∥div(σ v∇χ)∥D ≤ C ∥v∥H1

0 (Ω). Therefore,

(18) yields

|(∇un, σ v∇χ)Ω| ≤ C ∥un∥D ∥v∥H1
0 (Ω) . (19)

Adding up (16), (17) and (19) to bound the left-hand side of (15) leads to (14).

On the other hand, one can check by direct inspection that Aun = 0 in D. Indeed, on ] − b; 0[×] − b; b[ and
respectively on ]0; b[×]− b; b[, there holds ∆un = 0. Also, on the straight part of the interface, the trace of un

matches. Then, as un is symmetric with respect to the interface and as the contrast is equal to −1, this implies
that the �ux σ ∂nun also matches.
Next, ∥un∥D ≤ 2b ∥un∥L∞(D) < C, with C independent of n. Consequently, according to (14), (A (χun))n∈N∗

is bounded in H−1(Ω). But one can check, again by direct inspection (cf. lemma 8.1), that

∥χun∥H1
0 (Ω) −→

n→+∞
+∞.

This contradicts (12), which ends the proof. �
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6.3. Criterion at vertices

Here, Ω is a domain of R2 which ful�lls the assumptions of �4.1.

Theorem 6.4. (vertex & constant coefficients) Assume that either 1., 2. or 3. below holds:

1. there exists xi ∈ Sint such that κσ ∈ ]− Iαi ;−1/Iαi [;
2. there exists xi ∈ S1

ext such that κσ ∈ ]− Iαi ;−1];
3. there exists xi ∈ S2

ext such that κσ ∈ [−1;−1/Iαi [.

Then the operator A : u 7→ −div(σ∇u) of L(H1
0 (Ω),H

−1(Ω)) is not Fredholm.

Remark 6.5. If there exists xi ∈ Sint ∪ S1
ext such that κσ = −Iαi or if there exists xi ∈ Sint ∪ S2

ext such
that κσ = −1/Iαi , a logarithmic singularity appears (instead of a singularity in ri η below). Consequently, we
conjecture that the operator A is not Fredholm in those cases.

Proof. Let us focus on the proof of case 1.. In the rest of the proof, we omit the index i. If κσ = −1, theorem
6.2 allows us to show that A is not Fredholm. Now, assume that κσ ∈] − Iαi ;−1/Iαi [\{−1}: we prove in this
case that (12) cannot hold, using a classical idea in the theory of elliptic operators in non-smooth domains
(see for instance part V of the proof of theorem 1.2 of [15, page 104] or lemma 6.3.3 of [12]). For a value of
the contrast lying in ] − Iαi ;−1/Iαi [\{−1}, one can show that (follow �7.3.3 of [22]) there exists a singular
function S(r, θ) = ri ηφ(θ), with η ∈ R∗ and φ piecewise smooth2, such that div(σ∇S) = 0. This singular
function belongs to L2(Ω), but not to H1(Ω). Introduce next a cut-o� function χ ∈ C∞(R+), such that
χ(r) = 1 for r < d/2 and χ(r) = 0 for r > d, with d = di of �4.3. De�ne �nally Sn(r, θ) := ri η+1/nφ(θ) and
un(r, θ) := χ(r)Sn(r, θ). By construction, for n ∈ N∗, un belongs to H1

0 (Ω), and, according to lemma 8.2,

∃C > 0, ∀n, ∥un∥Ω < C and ∥un∥H1
0 (Ω) −→

n→+∞
+∞. (20)

To contradict (12), there remains to prove that the sequence (div(σ∇un))n∈N∗ is bounded in H−1(Ω), which is
the more involved part of the proof.
De�ne H1

0⋆(Ω) := {u ∈ H1
0 (Ω) |u = 0 in a neighbourhood of xi}. Since H1

0⋆(Ω) is dense in H1
0 (Ω) (see lemma

1.2.2 in [7]), one has

∥div(σ∇un)∥H−1(Ω) = sup
v∈H1

0⋆(Ω), ∥v∥
H1

0(Ω)
=1

|(σ∇un,∇v)Ω|.

As before, let us write

(σ∇un,∇v)Ω = (σ Sn∇χ,∇v)Ω − (∇Sn, σ v∇χ)Ω + (σ∇Sn,∇(χv))Ω

= (σ Sn∇χ,∇v)Ω + (Sn, div(σ v∇χ))Ω − (div(σ∇Sn), χv)Ω. (21)

Notice that div(σ v∇χ) belongs to L2(Ω) because one has σ v∇χ|Ω1 ∈ H1(Ω1), σ v∇χ|Ω2 ∈ H1(Ω2) and
∂nχ = 0 on Σ. In addition, one checks easily that

|(σ Sn∇χ,∇v)Ω + (Sn, div(σ v∇χ))Ω| ≤ C ∥Sn∥Ω ∥v∥H1
0 (Ω) . (22)

Now, let us study the third term of the right-hand side of (21). By a direct computation, one obtains

div(σ∇Sn) = σ (2i η + 1/n) ri η−2+1/nφ(θ)/n.

2More precisely, one �nds φ|Ω1 = a1 sinh(η θ)+ b1 cosh(η θ) and φ|Ω2 = a2 sinh(η θ)+ b2 cosh(η θ), where the constants a1, a2,

b1, b2 are chosen to ensure matching traces and �uxes on the interface Σ.
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Integrating by parts with respect to the variable r, one can write

−(div(σ∇Sn), χv)Ω = −(1/n)

∫ 2π

0

∫ d

0

σ (2i η + 1/n) ri η−2+1/nφ(θ) (χv) rdrdθ

= (1/n)

∫ 2π

0

∫ d

0

σ (2i η + 1/n)
ri η−1+1/n

i η + 1/n
φ(θ)

∂(χv)

∂r
rdrdθ.

Cauchy-Schwarz inequality leads to

|(σ∇Sn,∇(χv))Ω| ≤ (C/n)

(∫ 2π

0

∫ d

0

|σ (2i η + 1/n)|2
r−2+2/n

|i η + 1/n|2
|φ(θ)|2 rdrdθ

)1/2

∥v∥H1
0 (Ω) .

But,

(1/n)2
∫ 2π

0

∫ d

0

|σ (2i η + 1/n)|2
r−2+2/n

|i η + 1/n|2
|φ(θ)|2 rdrdθ ≤ C (1/n)2

∫ d

0

r−2+2/n rdr ≤ C/n.

Thus,

|(σ∇Sn,∇(χv))Ω| ≤ C ∥v∥H1
0 (Ω) /

√
n. (23)

Plugging (22) and (23) in (21), one �nally �nds

∥div(σ∇un)∥H−1(Ω) ≤ C (∥Sn∥Ω + 1/
√
n). (24)

Now, we recall that (Sn)n∈N∗ is bounded in L2(Ω). As a consequence, the limit (20) and Ineq. (24), together
with lemma 4.5, prove that A is not a Fredholm operator in the case where κσ ∈]− Iαi ;−1/Iαi [\{−1}.
The cases 2. and 3. of theorem 6.4 can be treated in a similar way. �

6.4. Further comments

Let us conclude by two cases not covered by theorem 4.3.
First, a domain Ω := ]−1; 1[ × ]−1; 1[, with subsets Ω1 := ]−1; 0[ × ]−1; 1[ and Ω2 := ]0; 1[× ]−1; 1[ (see �gure
11�left). Assume that σ = 1 in Ω1, σ = −2 in ]0; 1[ × ]0; 1[ in σ = β ∈ R∗

− in ]0; 1[ × ]−1; 0[. Given β > −1,
there holds, for all d > 0,

inf
B(O,d)∩Ω1

σ1 < sup
B(O,d)∩Ω2

|σ2| and inf
B(O,d)∩Ω2

|σ2| < sup
B(O,d)∩Ω1

σ1.

So, the assumptions of theorem 4.3 are not ful�lled and, as a consequence, one can not conclude that the
operator A of L(H1

0 (Ω),H
−1(Ω)) is Fredholm.

Remark 6.6. However, one can easily build by hand, for this simple con�guration, an ad hoc operator T that
allows one to prove T -coercivity directly for some β > −1. For that, the operator T is built using some line
symmetries. For u ∈ H1

0 (Ω), the action of T is de�ned by

(T u)(x, y) :=


ua(x, y)− 2ud(−x, y) in Ωa :=]− 1; 0[×]0; 1[
ub(x, y)− 2ud(−x,−y) in Ωb :=]− 1; 0[2

−2ua(−x,−y) + 2ub(−x, y)− uc(x, y) in Ωc :=]0; 1[×]− 1; 0[
−ud(x, y) in Ωd :=]0; 1[2

,

with uk := u|Ωk
, for k = a, b, c, d.
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On the other hand, if β < −1, then

inf
B(O,d)∩Ω2

|σ2| > sup
B(O,d)∩Ω1

σ1,

and theorem 4.3 allows to conclude that A is Fredholm (of index 0).
Second, a domain Ω := ]−1; 1[× ]−1; 1[, with subsets Ω1 := ]−1; 0[× ]0; 1[ ∪ ]0; 1[× ]−1; 0[ and Ω2 := ]−1; 0[×
]−1; 0[ ∪ ]0; 1[× ]0; 1[ (see �gure 11�right). Here, one cannot use theorem 4.3, because the boundaries ∂Ω1 and
∂Ω2 are not Lipschitz (see [3, Corrigendum]).

Figure 11. Two situations not covered by theorem 4.3: β > −1 on the left; λ ∈ R∗
− on the right.

7. Domains of R3

Generally speaking, one can use the same lines of thought to tackle the problem (P) in a domain Ω of R3.
Provided one can establish T -coercivity locally (cf. �3), one can prove that the operator A ∈ L(H1

0 (Ω),H
−1(Ω))

is Fredholm. The main di�erence is that one has to deal with a larger number of elementary cases, and among
them some can not be reduced to their lower-dimensional counterparts. Notations used previously are kept here.

We begin the study by elementary cases. We provide proofs only in the most illustrative cases.

7.1. Symmetric domain of R3

One obtains easily the same results as the ones stated in theorem 3.1.

7.2. Prismatic edges

Introduce the cylindrical coordinates (r, θ, z) centered on the edge, so that the cartesian coordinates are
mapped as (x, y, z) = (r cos θ, r sin θ, z). Let H > 0 denote the height of the cylinder, R > 0 its radius.

7.2.1. Interior edge

Consider the geometry of �gure 12�left. Given 0 < α < 2π, de�ne

Ω1 := {(r cos θ, r sin θ, z) | 0 < r < R, 0 < θ < α, 0 < z < H} ;
Ω2 := {(r cos θ, r sin θ, z) | 0 < r < R, α < θ < 2π, 0 < z < H} .

Theorem 7.1. ( interior edge in 3D) Assume that

max(σ−
1 /σ

+
2 , σ

−
2 /σ

+
1 ) > Iα, with Iα := max(

α

2π − α
,
2π − α

α
).

Then, there exists an isomorphism T ∈ L(H1
0 (Ω)) such that the form a is T -coercive and A : u 7→ −div(σ∇u)

is an isomorphism from H1
0 (Ω) to H−1(Ω).
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Figure 12. Geometry of prismatic edges: (left) interior edge. (Right) boundary edge.

Proof. De�ne the two operators R1 and R2 respectively by (R1 u1)(ρ,Θ, Z) = u1(ρ,
α

α−2π (Θ − 2π), Z) and

(R2 u2)(ρ,Θ, Z) = u2(ρ,
α−2π

α Θ + 2π, Z). As before, the matching condition holds for R1. We �nd as in

theorem 3.3 that ∥R1∥2 ≤ Iα. Similarly, the matching condition holds for R2 and ∥R2∥2 ≤ Iα. We conclude
the proof as usual (see theorem 2.1). �

7.2.2. Boundary edge

Consider the geometry of �gure 12�right. Given 0 < α < γ < 2π, de�ne

Ω1 := {(r cos θ, r sin θ, z) | 0 < r < R, 0 < θ < α, 0 < z < H} ;
Ω2 := {(r cos θ, r sin θ, z) | 0 < r < R, α < θ < γ, 0 < z < H} .

One obtains the same results as the ones of theorem 3.7.

7.3. Axisymmetric edges

Figure 13. Geometry of an interior axisymmetric edge.

We refer to the geometry of �gure 13, with toroidal coordinates (r, θ, φ) such that cartesian coordinates are
mapped as (x, y, z) = (cos θ (R + r cos φ), sin θ (R + r cos φ), r sin φ). Here, R > 0 denotes the radius of the
torus. Given 0 < d < R and 0 < α < 2π, de�ne

Ω1 := {(cos θ (R+ r cos φ), sin θ (R+ r cos φ), r sin φ) | 0 < r < d, 0 ≤ θ < 2π, 0 < φ < α} ;
Ω2 := {(cos θ (R+ r cos φ), sin θ (R+ r cos φ), r sin φ) | 0 < r < d, 0 ≤ θ < 2π, α < φ < 2π} .

Theorem 7.2. (axisymmetric interior edge in 3D) Assume that

max(σ−
1 /σ

+
2 , σ

−
2 /σ

+
1 ) >

1 + d/R

1− d/R
Iα, with Iα := max(

α

2π − α
,
2π − α

α
).
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Then, there exists an isomorphism T ∈ L(H1
0 (Ω)) such that the form a is T -coercive and A : u 7→ −div(σ∇u)

is an isomorphism from H1
0 (Ω) to H−1(Ω).

Proof. Introduce the operators R1 and R2 respectively de�ned by (R1 u1)(ρ,Θ,Φ) = u1(ρ,Θ, α
α−2π (Φ − 2π))

and (R2 u2)(ρ,Θ,Φ) = u2(ρ,Θ, α−2π
α Φ+ 2π). The matching conditions hold for R1 and R2.

To compute the norm of R1, let u1 ∈ H1
0,Γ1

(Ω1). With the help of the change of (toroidal) variables (r, θ, φ) =

(ρ,Θ, α
α−2π (Φ− 2π)), we �nd3

∥∇(R1 u1)∥2Ω2
=

∫
Ω2

((
∂(R1 u1)

∂ρ

)2

+
1

(R+ ρ cos Φ)2

(
∂(R1 u1)

∂Θ

)2
)

ρ (R+ ρ cosΦ) dρdΦdΘ

+

∫
Ω2

1

ρ2

(
∂(R1 u1)

∂Φ

)2

ρ (R+ ρ cosΦ) dρdΦdΘ

≤ 2π − α

α

∫
Ω1

(
∂u1

∂r

)2

r (R+ r cos (
2π − α

α
φ)) drdφdθ

+
2π − α

α

∫
Ω1

1

(R+ r cos ( 2π−α
α φ))2

(
∂u1

∂θ

)2

r (R+ r cos (
2π − α

α
φ)) drdφdθ

+
α

2π − α

∫
Ω1

1

r2

(
∂u1

∂φ

)2

r (R+ r cos (
2π − α

α
φ)) drdφdθ.

By direct inspection, one �nds

R+ r cos ( 2π−α
α θ)

R+ r cos θ
≤

1 + d/R

1− d/R
and

R+ r cos θ

R+ r cos ( 2π−α
α θ)

≤
1 + d/R

1− d/R
, ∀r ∈]0; d[, ∀θ ∈]0;α[,

so one obtains ∥R1∥2 ≤ 1+d/R
1−d/R Iα. Similarly, ∥R2∥2 ≤ 1+d/R

1−d/R Iα. We conclude as in the proof of theorem 2.1. �

Remark 7.3. If max(σ−
1 /σ

+
2 , σ

−
2 /σ

+
1 ) > Iα, then according to theorem 7.2, A : u 7→ −div(σ∇u) is an isomor-

phism from H1
0 (Ω) to H−1(Ω) for d/R small enough.

Remark 7.4. We focused here on the case of an interior axisymmetric edge. Boundary axisymmetric edges
can be handled as before, with a �nal result like theorem 3.7.

7.4. Conical vertex

Figure 14. Geometry of an interior conical vertex.

Consider the geometry of �gure 14, and the associated spherical coordinates (r, θ, φ) centered at the origin.
The cartesian coordinates are now mapped as (x, y, z) = (r cos θ, r sin θ cos φ, r sin θ sin φ). Let R > 0 and

3See �8.3 for complementary computations.
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0 < α < π, and de�ne

Ω1 := {(r cos θ, r sin θ cos φ, r sin θ sin φ), 0 < r < R, 0 ≤ θ < α, 0 ≤ φ < 2π} ;
Ω2 := {(r cos θ, r sin θ cos φ, r sin θ sin φ), 0 < r < R, α < θ ≤ π, 0 ≤ φ < 2π} .

Theorem 7.5. (conical interior vertex in 3D) Assume that4{
σ−
1 /σ

+
2 > Iα or σ−

2 /σ
+
1 > 1 if α ≤ π/2

σ−
2 /σ

+
1 > Iα or σ−

1 /σ
+
2 > 1 if α ≥ π/2

, with Iα := max(
1 + cosα

1− cosα
,
1− cosα

1 + cosα
).

Then, there exists an isomorphism T ∈ L(H1
0 (Ω)) such that the form a is T -coercive and A : u 7→ −div(σ∇u)

is an isomorphism from H1
0 (Ω) to H−1(Ω).

Proof. We consider the case α ≤ π/2.
De�ne the operators R1 and R2 by (R1 u1)(ρ,Θ,Φ) = u1(ρ, g1(Θ),Φ), and by (R2 u2)(ρ,Θ,Φ) = u2(ρ, g2(Θ),Φ).
Here, g1 is a C 1 di�eomorphism from [α;π] to [0;α] such that g1(π) = 0 and g1(α) = α whereas g2 is a C 1

di�eomorphism from [0;α] to [α;π] such that g2(0) = π and g2(α) = α. We denote h1 (resp. h2) the inverse of
g1 (resp. g2).
The matching conditions hold. We evaluate the norm of R1. Let u1 ∈ H1

0,Γ1
(Ω1). Performing the change of

variables (r, θ, φ) = (ρ, g1(Θ),Φ), we �nd successively

∥∇(R1 u1)∥2Ω2
=

∫
Ω2

(
∂(R1 u1)

∂ρ

)2

+
1

ρ2

(
∂(R1 u1)

∂Θ

)2

+
1

(ρ sin Θ)2

(
∂(R1 u1)

∂Φ

)2

ρ2 dρ sin Θ dΘdΦ

≤
∫
Ω1

(
∂u1

∂r

)2

r2 dr sin (h1(θ)) |h′
1(θ)| dθdφ

+

∫
Ω1

1

r2 |h′
1(θ)|2

(
∂u1

∂θ

)2

r2 dr sin (h1(θ)) |h′
1(θ)| dθdφ

+

∫
Ω1

1

(r sin h1(θ))2

(
∂u1

∂φ

)2

r2 dr sin (h1(θ)) |h′
1(θ)| dθdφ.

We get the bound

∥R1∥2 ≤ max

(
∥
|h′

1(θ)| sin (h1(θ))

sin θ
∥L∞(]0;α[), ∥

sin (h1(θ))

|h′
1(θ)| sin θ

∥L∞(]0;α[), ∥
|h′

1(θ)| sin θ

sin (h1(θ))
∥L∞(]0;α[)

)
.

Our aim is to exhibit an explicit admissible function θ 7→ h1(θ) which yields a right-hand side, as small as
possible. To achieve this end, we consider the following strategy: use functions h1 such that one of the three
above quotients is constant with respect to θ. More to the point, we take the map

h1(θ) = arccos(
cosα+ 1

cosα− 1
cos θ − 2

cosα

cosα− 1
), such that

|h′
1(θ)| sin (h1(θ))

sin θ
=

1 + cosα

1− cosα
, ∀θ ∈]0;α[.

One �nds also
sin (h1(θ))

|h′
1(θ)| sin θ

≤ 1,
|h′

1(θ)| sin θ

sin (h1(θ))
≤

1 + cosα

1− cosα
, ∀θ ∈]0;α[.

4The ratio (1 + cosα)/(1− cosα) is equal to the ratio of the solid angles.
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Thus, there holds ∥R1∥2 ≤ Iα.
On the other hand, for R2, we have to minimize

max

(
∥
|h′

2(θ)| sin (h2(θ))

sin θ
∥L∞(]α;π[), ∥

sin (h2(θ))

|h′
2(θ)| sin θ

∥L∞(]α;π[), ∥
|h′

2(θ)| sin θ

sin (h2(θ))
∥L∞(]α;π[)

)
.

Let us consider the stereographic map

g2(Θ) = 2 arctan(
tan(α/2)2

tan(Θ/2)
) so h2(θ) = 2 arctan(

tan(α/2)2

tan(θ/2)
).

One �nds
|h′

2(θ)| sin (h2(θ))

sin θ
≤ 1,

sin (h2(θ))

|h′
2(θ)| sin θ

= 1,
|h′

2(θ)| sin θ

sin (h2(θ))
= 1, ∀θ ∈]α;π[,

so ∥R2∥2 ≤ 1. We conclude as in the proof of theorem 2.1.
One proceeds similarly to deal with the case π/2 < α < π. �
Remark 7.6. In the case of the conical vertex, it is an open question to prove that the interval obtained in
theorem 7.5, with this particular choice of R1 and R2, is optimal. In other words, when the contrast lies in the
interval, which is, surprisingly, not �symmetric� with respect to −1, we do not know whether or not the operator
A is Fredholm. To address this question, we would have to compute the singularities but the computations are
much more involved than in a 2D con�guration.

7.5. Fichera's corner

In a domain of R3, it can happen that edges and vertices interact with one another, in ways which are not
covered by the approach we developed before for domains of R2. To illustrate this situation, we consider a
"famous" example, the so-called Fichera's corner. More precisely, let us de�ne Ω := ]−1; 1[

3
, with Ω1 := ]0; 1[

3
,

and Ω2 := Ω\Ω1.

Theorem 7.7. (Fichera's corner) Assume that

max(σ−
1 /σ

+
2 , σ

−
2 /σ

+
1 ) > 7.

Then, there exists an isomorphism T ∈ L(H1
0 (Ω)) such that the form a is T -coercive and A : u 7→ −div(σ∇u)

is an isomorphism from H1
0 (Ω) to H−1(Ω).

Proof. With the help of re�ection symmetries5, we de�ne the operator R1 by

(R1 u1)(x, y, z) =



u1(−x, y, z) in Ω1
2 := ]−1; 0[× ]0; 1[

2

u1(x,−y, z) in Ω2
2 := ]0; 1[× ]−1; 0[× ]0; 1[

u1(x, y,−z) in Ω3
2 := ]0; 1[

2 × ]−1; 0[

u1(−x,−y, z) in Ω4
2 := ]−1; 0[

2 × ]0; 1[
u1(−x, y,−z) in Ω5

2 := ]−1; 0[× ]0; 1[× ]−1; 0[

u1(x,−y,−z) in Ω6
2 := ]0; 1[× ]−1; 0[

2

u1(−x,−y,−z) in Ω7
2 := ]−1; 0[

3

.

Next, we de�ne R2 by

(R2 u2)(x, y, z) = u1
2(−x, y, z) + u2

2(x,−y, z) + u3
2(x, y,−z)

−u4
2(−x,−y, z)− u5

2(−x, y,−z)− u6
2(x,−y,−z)

+u7
2(−x,−y,−z).

5A similar approach has been recently used by Nicaise and Venel in [18] in a geometry of R2, with Ω := ]−1; 1[2 and Ω1 := ]0; 1[2.
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Above, (uℓ
2)ℓ=1,7 respectively denote the restriction of u2 to (Ωℓ

2)ℓ=1,7.

The matching conditions hold. Then, one obtains easily that for all u1 ∈ H1
0,Γ1

(Ω1), ∥∇(R1 u1)∥2Ω2
= 7 ∥∇u1∥2Ω1

.

On the other hand, for all u2 ∈ H1
0,Γ2

(Ω2), ∥∇(R2 u2)∥2Ω1
≤ 7 ∥∇u2∥2Ω2

. Indeed, there holds classically

(
∑7

k=1 ak)
2 ≤ 7

∑7
k=1 ak

2, for all (a1, . . . , a7) ∈ R7. We conclude as in the proof of theorem 2.1. �

7.6. General geometries in R3

To establish that the operator A is Fredholm, in the case of general geometries in R3, one can proceed by
localization, as in �4 (cf. theorem 4.3) and �5. Also, one can prove optimality results, in the same spirit of �6.

Figure 15. Joyeux Noël, aka. Merry Christmas!

We do not provide the details here, but instead comment on the case of Fichera's corner. For simplicity, let
us consider constant coe�cients σ1 and σ2, and a situation in which the contrast κσ = σ2/σ1 lies within the
critical interval [−7;−1/7], i.e. the case not covered by theorem 7.7. Loosely speaking, one �nds that

• If κσ = −1 then there exists a surface singularity distribution. Indeed, at each point standing on one
of the three (open) faces of the interface, one can build a sequence of functions that prevents A from
being Fredholm. To achieve this result, one extends the construction given in the proof of theorem 6.2.

• If κσ ∈] − 3;−1/3[ then there exists a linear singularity distribution: at each point standing on one of
the three (open) lines of the interface, one can build a sequence of functions that prevents A from being
Fredholm, using the pointwise singularities exhibited in theorem 6.4.

• If κσ ∈] − 7;−1/7[ then there exists a pointwise singularity, which can be build in the same spirit as
those of theorem 6.4.

8. Missing computations

8.1. Computations for theorem 6.2

Let b > 0 such that [−b; b]× [−b; b] ⊂ Ω. We de�ne (un)n as in (13), and a truncation function χ ∈ C∞
0 (R2),

equal to 1 in [−b/2; b/2]× [−b/2; b/2].

Lemma 8.1. There holds ∥χun∥H1
0 (Ω) −→

n→+∞
+∞.
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Proof. Introduce D̃ := [−b/2; b/2]× [−b/2; b/2], and write

∥χun∥2H1
0 (Ω) ≥ ∥∇un∥2D̃ ≥ ∥∂tun∥2D̃

≥ 2

∫ b/2

−b/2

∫ b/2

0

n2 cos2 nt
sinh2 n(b− s)

e2nb
ds dt

≥ 2n2

∫ b/2

−b/2

cos2 nt dt

∫ b/2

0

sinh2 n(b− s)

e2nb
ds

≥ 2n2

[
b

2
+

sinnb

2n

]∫ b/2

0

sinh2 n(b− s)

e2nb
ds.

But one has

4

∫ b/2

0

sinh2 n(b− s)

e2nb
ds =

∫ b/2

0

e−2ns − 2e−2nb + e2ns−4nb ds

= (
1

2n
−

e−nb

2n
)− (b e−2nb) + e−4nb(

enb

2n
−

1

2n
) ∼

1

2n
.

Hence, there exists C > 0, such that for large n, one has ∥χun∥2H1
0 (Ω) > C n. �

8.2. Computations for theorem 6.4

De�ne un(r, θ) := χ(r)Sn(r, θ) where χ is a cut-o� function equal to 1 for 0 ≤ r ≤ d/2 and Sn(r, θ) :=
ri η+1/nφ(θ).

Lemma 8.2. There holds ∥un∥H1
0 (Ω) −→

n→+∞
+∞.

Proof. One writes

∥un∥2H1
0 (Ω) ≥

∫ 2π

0

∫ d/2

0

r−2+2/n|∂θφ|2 rdrdθ

≥ C

∫ d/2

0

r−1+2/ndθ

≥ C n (d/2)2/n/2 −→
n→∞

+∞.

�

8.3. Toroidal coordinates

Considering the geometry of �gure 13, introduce the change of variables (x, y, z) = (cos θ (R+r cos φ), sin θ (R+
r cos φ), r sin φ), for R > 0. The jacobian associated with this change of variables is

 cos θ cosφ − sin θ (R+ r cosφ) −r cos θ sinφ
sin θ cosφ cos θ (R+ r cosφ) −r sin θ sinφ

sinφ 0 r cosφ

 .
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The elementary volume in toroidal coordinates is then r (R+ r cosφ) drdφdθ.
Also, the gradient in toroidal coordinates writes

∇u =


∂u

∂r
1

R+ r cosφ

∂u

∂θ
1

r

∂u

∂φ

 .
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