On the breathing of spectral bands in periodic quantum waveguides with inflating resonators

Lucas Chesnel1*,*[∗] **, Sergei A. Nazarov**²

¹Inria, UMA/Ensta Paris, Institut Polytechnique de Paris, Palaiseau, France

²Saint-Petersburg State University, St. Petersburg, Russia

[∗]Email: lucas.chesnel@inria.fr

Abstract

We are interested in the lower part of the spectrum $\sigma(A^{\varepsilon})$ of the Dirichlet Laplacian in a thin waveguide Π*^ε* obtained by repeating periodically a pattern, itself constructed by scaling an inner field geometry Ω by a small factor $\varepsilon > 0$. The Floquet-Bloch theory ensures that $\sigma(A^{\varepsilon})$ has a band-gap structure. Due to the Dirichlet boundary conditions, the bands all move to $+\infty$ as $O(\varepsilon^{-2})$ when $\varepsilon \to 0^+$. Concerning their widths, the results depend on the dimension of the so-called space of almost standing waves in Ω that we denote by X_{\dagger} . Generically, i.e. for most Ω , there holds $X_{\dagger} = \{0\}$ and the lower part of $\sigma(A^{\varepsilon})$ is very sparse, made of bands of length at most $O(\varepsilon)$ as $\varepsilon \to 0^+$. For certain Ω however, we have dim $X_{\dagger} = 1$ and then there are bands of length $O(1)$ which allow for wave propagation in Π*^ε* . We study the behaviour of the spectral bands when perturbing Ω around a particular Ω_{\star} where dim $X_{\dagger} = 1$. We show a breathing phenomenon of $\sigma(A^{\varepsilon})$: when inflating Ω around Ω_{\star} , the spectral bands rapidly expand before shrinking. In the process, a band dives below the normalized threshold, stops breathing and becomes extremely short as Ω continues to inflate.

Keywords: Quantum waveguide, thin periodic lattice, threshold resonance, spectral bands.

1 Setting of the problem

Figure 1: Geometries of Ω (top left), ω^{ε} (top right) and Π^{ε} (bottom).

Let $\Omega \subset \mathbb{R}^2$ be a waveguide which coincides with the strip $\mathbb{R} \times (-1/2; 1/2)$ outside of a bounded region (Figure [1](#page-0-0) top left). For $\varepsilon > 0$, we consider the unit cell

$$
\omega^{\varepsilon} := \{ z = (x, y) \in \mathbb{R}^2 \, | \, z/\varepsilon \in \Omega \text{ and } |x| < 1/2 \}
$$

and set $\partial \omega_{\pm}^{\varepsilon} := {\pm 1/2} \times (-\varepsilon/2; \varepsilon/2)$. Finally we define the periodic waveguide

$$
\Pi^{\varepsilon} := \{ z \in \mathbb{R}^2 \, | \, (x - m, y) \in \omega^{\varepsilon} \cup \partial \omega^{\varepsilon}_+, \, m \in \mathbb{Z} \}.
$$

We assume that Ω , ω^{ε} and Π^{ε} are connected with Lipschitz boundaries. In Π^{ε} , we consider the spectral problem for the Dirichlet Laplacian

$$
-\Delta u^{\varepsilon} = \lambda^{\varepsilon} u^{\varepsilon} \quad \text{in } \Pi^{\varepsilon}
$$

$$
u^{\varepsilon} = 0 \qquad \text{on } \partial \Pi^{\varepsilon}.
$$
 (1)

We denote by A^{ε} the unbounded selfadjoint operator of $L^2(\Pi^{\varepsilon})$, with domain $\mathcal{D}(A^{\varepsilon}) \subset H_0^1(\Pi^{\varepsilon}) :=$ $\{\varphi \in H^1(\Pi^{\varepsilon}) \, | \, \varphi = 0 \text{ on } \partial \Pi^{\varepsilon} \},\$ associated with [\(1\)](#page-0-1). Since the geometry is periodic, the Floquet-Bloch theory ensures that the spectrum of A^{ε} has a band/gap structure:

$$
\sigma(A^{\varepsilon}) = \bigcup_{p \in \mathbb{N}^* : i = \{1, 2, \dots\}} \Upsilon_p^{\varepsilon} \tag{2}
$$

where the Υ_p^{ε} are compact segments. Our goal is to study the behaviour of $\sigma(A^{\varepsilon})$ as $\varepsilon \to 0^+$.

2 Near field problem and first result

The analysis developed in particular in [\[2\]](#page-1-0) shows that the asymptotic behaviour of the Υ_p^{ε} with respect to ε depends on the features of the Dirichlet Laplacian A^{Ω} in Ω . Its continuous spectrum occupies the ray $[\pi^2; +\infty)$. To set ideas, we assume that A^{Ω} has exactly $N_{\bullet} \in \mathbb{N} :=$ $\{0, 1, 2, \ldots\}$ eigenvalues (counted with multiplicity) in its discrete spectrum, that we denote by

$$
0 < \mu_1 < \mu_2 \le \mu_3 \le \dots \le \mu_{N_{\bullet}} < \pi^2. \tag{3}
$$

Of particular importance in the study are the features of the inner field problem with a spectral parameter coinciding with the bottom of the continuous spectrum of A^{Ω} :

$$
\Delta W + \pi^2 W = 0 \quad \text{in } \Omega
$$

$$
W = 0 \quad \text{on } \partial\Omega.
$$
 (4)

To simplify the exposition, assume that the only solution of [\(4\)](#page-0-2) in $L^2(\Omega)$, i.e. which decays at infinity, is the null function. Denote by X_t the space of bounded solutions of [\(4\)](#page-0-2), the so-called space of almost standing waves in Ω . Using techniques of dimension reduction on the spectral problem depending on the Floquet parameter obtained when applying the Floquet-Bloch transform to (1) , we show the statement:

Theorem 1 *For* $p \in \mathbb{N}^*$ *, let* $\Upsilon_p^{\varepsilon} = [a_p^{\varepsilon}; a_{p+}^{\varepsilon}],$ $with \ \ a_{p-}^{\varepsilon} \leq a_{p+}^{\varepsilon}, \ \ be \ \ the \ \ spectral \ \ band \ \ in \ \ (2).$ $with \ \ a_{p-}^{\varepsilon} \leq a_{p+}^{\varepsilon}, \ \ be \ \ the \ \ spectral \ \ band \ \ in \ \ (2).$ $with \ \ a_{p-}^{\varepsilon} \leq a_{p+}^{\varepsilon}, \ \ be \ \ the \ \ spectral \ \ band \ \ in \ \ (2).$ *There are some constants* $c_{p-} < c_{p+}$, C_p , β_p , ε_p 0 *and* $\delta_p > 1$ *such that we have*

For $p = 1, \ldots, N_{\bullet}$: $|a_{p\pm}^{\varepsilon} - (\varepsilon^{-2}\mu_p + \varepsilon^{-2}e^{-\beta_p/\varepsilon}c_{p\pm})| \leq C_p e^{-\delta_p\beta_p/\varepsilon};$ *For* $p = N_{\bullet} + m$, $m \in \mathbb{N}^*$: *i*) *if* $X_{\dagger} = \{0\}$, $|a_{p\pm}^{\varepsilon} - (\varepsilon^{-2} \pi^2 + m^2 \pi^2 + \varepsilon c_{p\pm})| \leq C_p \, \varepsilon^{\delta_p};$ *ii*) *if* dim $X_{\dagger} = 1$, $|a_{p\pm}^{\varepsilon} - (\varepsilon^{-2}\pi^2 + c_{p\pm})| \leq C_p \, \varepsilon^{\delta_p};$ *iii*) *if* dim $X_{\dagger} = 2$, $|a_{p\pm}^{\varepsilon} - (\varepsilon^{-2} \pi^2 + (m-1)^2 \pi^2 + \varepsilon c_{p\pm})| \leq C_p \, \varepsilon^{\delta_p}.$

Each estimate above is valid for all $\varepsilon \in (0; \varepsilon_p]$ *and the* μ_p *are the ones introduced in [\(3\)](#page-0-4).*

Let us comment these results. First, as already mentioned, when $\varepsilon \to 0^+$, the whole spectrum of A^{ε} goes to $+\infty$ as ε^{-2} . Besides, the first N_{\bullet} spectral bands of A^{ε} become extremely short, in $O(e^{-c/\varepsilon})$ for some $c > 0$ which depends on the band. Concerning the next spectral bands Υ_p^{ε} , $p = N_{\bullet} + m$ with $m \in \mathbb{N}^*$, the behaviour depends on the dimension of X_{\dagger} . When the latter is zero (the generic situation) or two (cases *i*) and *iii*)), the spectral bands are of length *O*(*ε*). Moreover, between Υ_p^{ε} and $\Upsilon_{p+1}^{\varepsilon}$, there is a gap, that is, a segment of spectral parameters λ^{ε} such that waves cannot propagate, whose length tends to $(2m + 1)\pi^2$ (resp. $(2m - 1)\pi^2$) in case *i*) (resp. *iii*)). In other words, for these two cases, the propagation of waves in the thin lattice Π^{ε} is hampered and occurs only for very narrow (closed) intervals of frequencies. When the dimension of X_{\dagger} is one (case *ii*)), the situation is very different. Indeed, asymptotically the spectral band Υ_p^{ε} is of length $c_{p+} - c_{p-}$, with in general $c_{p+} > c_{p-}$. As a consequence, waves can propagate in Π*^ε* for much larger intervals of frequencies than in cases *i*) and *iii*).

3 Breathing of the spectral bands

Now assume that the inner field geometry $\Omega =$ $\Omega(H)$ depends smoothly on a parameter *H*. We denote by $X_{\dagger}(H)$ the corresponding space of almost standing waves. Consider some H_{\star} such that dim $X_{\dagger}(H_{\star}) = 1$ (see [\[1,](#page-1-1) Prop. 7.1] for the proof of existence of such geometries) and work with $H = H_{\star} + \varepsilon \rho, \rho \in \mathbb{R}$. Let $\Upsilon_p^{\rho, \varepsilon}$ stand for the spectral bands of the operator \hat{A}^{ε} defined in the Π*ε* constructed from Ω(*H[⋆]* + *ερ*). Computing an asymptotic expansion of the $\Upsilon_p^{\rho,\varepsilon}$ as $\varepsilon \to 0^+,$ we get results depending on the parameter ρ . By varying $\rho \in \mathbb{R}$, this provides a model describing the transition of $\sigma(A^{\varepsilon})$ when inflating the inner field geometry around $\Omega(H_{\star})$. With this model, we proved that the spectral bands above the normalized threshold $\varepsilon^{-2} \pi^2$ first expand and then shrink (see [\[1,](#page-1-1) Thm. 6.1]). This is what we call the breathing phenomenon of the spectrum of A^{ε} . In the process, in $\sigma(A^{\varepsilon})$ a band dives below $\varepsilon^{-2} \pi^2$, stops breathing and becomes extremely short as the inner field geometry continues to inflate. The numerics of Figure [2,](#page-1-2) obtained by computing with a finite element method the spectrum of [\(1\)](#page-0-1), illustrates this phenomenon (here $\varepsilon = 0.05$).

Figure 2: Spectrum of A^{ε} with respect to $H \in$ [1*.*5; 3*.*5]. The horizontal red dashed line corresponds to $\varepsilon^{-2} \pi^2$. The vertical dashed lines mark the values of H_{\star} such that dim $X_{\dagger}(H_{\star}) = 1$.

References

- [1] L. Chesnel, S.A. Nazarov, On the breathing of spectral bands in periodic quantum waveguides with inflating resonators, *arXiv:2401.00439*, (2023).
- [2] D. Grieser, Spectra of graph neighborhoods and scattering, *Proc. Lond. Math. Soc*, 97(3):718-752, (2008).