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Abstract
We are interested in the lower part of the spec-
trum σ(Aε) of the Dirichlet Laplacian in a thin
waveguide Πε obtained by repeating periodi-
cally a pattern, itself constructed by scaling an
inner field geometry Ω by a small factor ε > 0.
The Floquet-Bloch theory ensures that σ(Aε)
has a band-gap structure. Due to the Dirich-
let boundary conditions, the bands all move to
+∞ as O(ε−2) when ε → 0+. Concerning their
widths, the results depend on the dimension of
the so-called space of almost standing waves in
Ω that we denote by X†. Generically, i.e. for
most Ω, there holds X† = {0} and the lower
part of σ(Aε) is very sparse, made of bands of
length at most O(ε) as ε → 0+. For certain Ω
however, we have dim X† = 1 and then there
are bands of length O(1) which allow for wave
propagation in Πε. We study the behaviour of
the spectral bands when perturbing Ω around
a particular Ω⋆ where dim X† = 1. We show a
breathing phenomenon of σ(Aε): when inflating
Ω around Ω⋆, the spectral bands rapidly expand
before shrinking. In the process, a band dives
below the normalized threshold, stops breathing
and becomes extremely short as Ω continues to
inflate.
Keywords: Quantum waveguide, thin periodic
lattice, threshold resonance, spectral bands.

1 Setting of the problem

1Ω
1

εωε

Πε

Figure 1: Geometries of Ω (top left), ωε (top
right) and Πε (bottom).

Let Ω ⊂ R2 be a waveguide which coin-
cides with the strip R× (−1/2; 1/2) outside of a

bounded region (Figure 1 top left). For ε > 0,
we consider the unit cell

ωε := {z = (x, y) ∈ R2 | z/ε ∈ Ω and |x| < 1/2}

and set ∂ωε
± := {±1/2} × (−ε/2; ε/2). Finally

we define the periodic waveguide

Πε := {z ∈ R2 | (x − m, y) ∈ ωε ∪ ∂ωε
+, m ∈ Z}.

We assume that Ω, ωε and Πε are connected
with Lipschitz boundaries. In Πε, we consider
the spectral problem for the Dirichlet Laplacian

−∆uε = λε uε in Πε

uε = 0 on ∂Πε.
(1)

We denote by Aε the unbounded selfadjoint op-
erator of L2(Πε), with domain D(Aε) ⊂ H1

0(Πε) :=
{φ ∈ H1(Πε) | φ = 0 on ∂Πε}, associated with
(1). Since the geometry is periodic, the Floquet-
Bloch theory ensures that the spectrum of Aε

has a band/gap structure:

σ(Aε) =
⋃

p∈N∗:={1,2,... }
Υε

p (2)

where the Υε
p are compact segments. Our goal

is to study the behaviour of σ(Aε) as ε → 0+.

2 Near field problem and first result
The analysis developed in particular in [2] shows
that the asymptotic behaviour of the Υε

p with
respect to ε depends on the features of the Dirich-
let Laplacian AΩ in Ω. Its continuous spec-
trum occupies the ray [π2; +∞). To set ideas,
we assume that AΩ has exactly N• ∈ N :=
{0, 1, 2, . . . } eigenvalues (counted with multiplic-
ity) in its discrete spectrum, that we denote by

0 < µ1 < µ2 ≤ µ3 ≤ · · · ≤ µN• < π2. (3)

Of particular importance in the study are the
features of the inner field problem with a spec-
tral parameter coinciding with the bottom of
the continuous spectrum of AΩ:

∆W + π2W = 0 in Ω
W = 0 on ∂Ω.

(4)
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To simplify the exposition, assume that the only
solution of (4) in L2(Ω), i.e. which decays at in-
finity, is the null function. Denote by X† the
space of bounded solutions of (4), the so-called
space of almost standing waves in Ω. Using
techniques of dimension reduction on the spec-
tral problem depending on the Floquet param-
eter obtained when applying the Floquet-Bloch
transform to (1), we show the statement:

Theorem 1 For p ∈ N∗, let Υε
p = [aε

p−; aε
p+],

with aε
p− ≤ aε

p+, be the spectral band in (2).
There are some constants cp− < cp+, Cp, βp, εp >
0 and δp > 1 such that we have

For p = 1, . . . , N• :
|aε

p± − (ε−2µp + ε−2e−βp/εcp±)| ≤ Cp e−δpβp/ε;

For p = N• + m, m ∈ N∗ :
i) if X† = {0},

|aε
p± − (ε−2π2 + m2π2 + εcp±)| ≤ Cp εδp ;

ii) if dim X† = 1,

|aε
p± − (ε−2π2 + cp±)| ≤ Cp εδp ;

iii) if dim X† = 2,

|aε
p± − (ε−2π2 + (m − 1)2π2 + εcp±)| ≤ Cp εδp .

Each estimate above is valid for all ε ∈ (0; εp]
and the µp are the ones introduced in (3).

Let us comment these results. First, as already
mentioned, when ε → 0+, the whole spectrum
of Aε goes to +∞ as ε−2. Besides, the first N•
spectral bands of Aε become extremely short,
in O(e−c/ε) for some c > 0 which depends on
the band. Concerning the next spectral bands
Υε

p, p = N• + m with m ∈ N∗, the behaviour
depends on the dimension of X†. When the lat-
ter is zero (the generic situation) or two (cases
i) and iii)), the spectral bands are of length
O(ε). Moreover, between Υε

p and Υε
p+1, there is

a gap, that is, a segment of spectral parameters
λε such that waves cannot propagate, whose
length tends to (2m + 1)π2 (resp. (2m − 1)π2)
in case i) (resp. iii)). In other words, for these
two cases, the propagation of waves in the thin
lattice Πε is hampered and occurs only for very
narrow (closed) intervals of frequencies. When
the dimension of X† is one (case ii)), the situ-
ation is very different. Indeed, asymptotically
the spectral band Υε

p is of length cp+ −cp−, with
in general cp+ > cp−. As a consequence, waves
can propagate in Πε for much larger intervals of
frequencies than in cases i) and iii).

3 Breathing of the spectral bands
Now assume that the inner field geometry Ω =
Ω(H) depends smoothly on a parameter H. We
denote by X†(H) the corresponding space of al-
most standing waves. Consider some H⋆ such
that dim X†(H⋆) = 1 (see [1, Prop. 7.1] for the
proof of existence of such geometries) and work
with H = H⋆+ερ, ρ ∈ R. Let Υρ,ε

p stand for the
spectral bands of the operator Aε defined in the
Πε constructed from Ω(H⋆ + ερ). Computing
an asymptotic expansion of the Υρ,ε

p as ε → 0+,
we get results depending on the parameter ρ.
By varying ρ ∈ R, this provides a model de-
scribing the transition of σ(Aε) when inflating
the inner field geometry around Ω(H⋆). With
this model, we proved that the spectral bands
above the normalized threshold ε−2π2 first ex-
pand and then shrink (see [1, Thm. 6.1]). This
is what we call the breathing phenomenon of
the spectrum of Aε. In the process, in σ(Aε)
a band dives below ε−2π2, stops breathing and
becomes extremely short as the inner field ge-
ometry continues to inflate. The numerics of
Figure 2, obtained by computing with a finite
element method the spectrum of (1), illustrates
this phenomenon (here ε = 0.05).

Figure 2: Spectrum of Aε with respect to H ∈
[1.5; 3.5]. The horizontal red dashed line corre-
sponds to ε−2π2. The vertical dashed lines mark
the values of H⋆ such that dim X†(H⋆) = 1.
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