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Abstract

We are interested in the lower part of the spec-
trum o (A®) of the Dirichlet Laplacian in a thin
waveguide II* obtained by repeating periodi-
cally a pattern, itself constructed by scaling an
inner field geometry 2 by a small factor € > 0.
The Floquet-Bloch theory ensures that o(Af)
has a band-gap structure. Due to the Dirich-
let boundary conditions, the bands all move to
+00 as O(e7?) when ¢ — 0*. Concerning their
widths, the results depend on the dimension of
the so-called space of almost standing waves in
(1 that we denote by X;. Generically, i.e. for
most €, there holds X; = {0} and the lower
part of o(A®) is very sparse, made of bands of
length at most O(g) as e — 0T. For certain
however, we have dim X; = 1 and then there
are bands of length O(1) which allow for wave
propagation in II°. We study the behaviour of
the spectral bands when perturbing ) around
a particular €2, where dim X; = 1. We show a
breathing phenomenon of o(A®): when inflating
Q) around {2, the spectral bands rapidly expand
before shrinking. In the process, a band dives
below the normalized threshold, stops breathing
and becomes extremely short as ) continues to
inflate.
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1 Setting of the problem
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Figure 1: Geometries of Q (top left), w® (top
right) and II¢ (bottom).

Let Q C R? be a waveguide which coin-
cides with the strip R x (—1/2;1/2) outside of a

bounded region (Figure 1 top left). For ¢ > 0,
we consider the unit cell

W i={z=(z,y) € R?|z/e € Qand |z]| < 1/2}

and set Owg := {£1/2} x (—¢/2;¢/2). Finally
we define the periodic waveguide

II¢ := {zeRQ\(J:—m,y)Ewsuawi,meZ}.

We assume that €2, w® and II° are connected
with Lipschitz boundaries. In II¢, we consider
the spectral problem for the Dirichlet Laplacian

—Au® = Mu® inllI°
. . (1)
on OII°¢.

ut = 0
We denote by A¢ the unbounded selfadjoint op-
erator of L2(II¥), with domain D(A®) C H}(II?) :=
{p € HYII?) | ¢ = 0 on OII¢}, associated with
(1). Since the geometry is periodic, the Floquet-
Bloch theory ensures that the spectrum of A€
has a band/gap structure:

o(A%) = U 1 (2)
peEN*:={12,..}
where the T} are compact segments. Our goal
is to study the behaviour of o(A%) as e — 0F.

2 Near field problem and first result

The analysis developed in particular in [2] shows
that the asymptotic behaviour of the T} with
respect to € depends on the features of the Dirich-
let Laplacian A in Q. Its continuous spec-
trum occupies the ray [72; +00). To set ideas,
we assume that A has exactly No € N :=
{0,1,2,...} eigenvalues (counted with multiplic-
ity) in its discrete spectrum, that we denote by

O<pr<pe<ps<---<pn, <7 (3)

Of particular importance in the study are the
features of the inner field problem with a spec-
tral parameter coinciding with the bottom of
the continuous spectrum of A%:

AW +m2W = 0 inQ (4)
W = 0 on 0f.
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To simplify the exposition, assume that the only
solution of (4) in L2(£2), i.e. which decays at in-
finity, is the null function. Denote by X; the
space of bounded solutions of (4), the so-called
space of almost standing waves in 2. Using
techniques of dimension reduction on the spec-
tral problem depending on the Floquet param-
eter obtained when applying the Floquet-Bloch
transform to (1), we show the statement:

Theorem 1 For p € N*, let Y, = [a;_;a5,],

with a;,_ < ap., be the spectml band in (2).

There are some constants c,— < cpy, Cp, Bp, €p >

0 and 6, > 1 such that we have
Forp=1,...,N,:
e — (672pp + €727 2epn)| < Cp e/
Forp= Ng+m, m & N*:

i) if Xy = {0},

a5y — (67272 + m2n? + ecps)| < Cped

ii) if dim X; = 1,

lags — (€722 + cpa )| < Cpe®™

iii) if dim Xy = 2,

lasy — (e727% + (m — 1)27?
FEach estimate above is valid for all ¢ € (0;¢p)
and the p, are the ones introduced in (3).

+ecpr)| < Cper

Let us comment these results. First, as already
mentioned, when € — 07, the whole spectrum
of A® goes to +o0 as £72. Besides, the first N,
spectral bands of A° become extremely short,
in O(e¢/¥) for some ¢ > 0 which depends on
the band. Concerning the next spectral bands
Y5, p = Ne +m with m € N*, the behaviour
depends on the dimension of X;. When the lat-
ter is zero (the generic situation) or two (cases
i) and iii)), the spectral bands are of length
O(e). Moreover, between Y, and T, there is
a gap, that is, a segment of spectral parameters
A% such that waves cannot propagate, whose
length tends to (2m + 1)72 (resp. (2m — 1)7?)
in case i) (resp. i7i)). In other words, for these
two cases, the propagation of waves in the thin
lattice II¢ is hampered and occurs only for very
narrow (closed) intervals of frequencies. When
the dimension of X; is one (case 4i)), the situ-
ation is very different. Indeed, asymptotically
the spectral band T, is of length ¢, —¢,—, with
in general ¢, > cp,—. As a consequence, waves
can propagate in I for much larger intervals of
frequencies than in cases ¢) and 7).

3 Breathing of the spectral bands

Now assume that the inner field geometry ) =
Q(H) depends smoothly on a parameter H. We
denote by X;(H) the corresponding space of al-
most standing waves. Consider some H, such
that dim X;(H,) =1 (see [1, Prop. 7.1] for the
proof of existence of such geometries) and work
with H = H,+ep, p € R. Let TP stand for the
spectral bands of the operator A¢ defined in the
IT* constructed from Q(H, + €p). Computing
an asymptotic expansion of the T/ as € — 0r,
we get results depending on the parameter p.
By varying p € R, this provides a model de-
scribing the transition of o(A®) when inflating
the inner field geometry around Q(H,). With
this model, we proved that the spectral bands
above the normalized threshold e =272 first ex-
pand and then shrink (see [1, Thm. 6.1]). This
is what we call the breathing phenomenon of
the spectrum of A®. In the process, in o(A%)
a band dives below ¢ 272, stops breathing and
becomes extremely short as the inner field ge-
ometry continues to inflate. The numerics of
Figure 2, obtained by computing with a finite
element method the spectrum of (1), illustrates
this phenomenon (here € = 0.05).
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Figure 2: Spectrum of A® with respect to H €
[1.5;3.5]. The horizontal red dashed line corre-
sponds to e 272, The vertical dashed lines mark
the values of H, such that dim X;(H,) = 1.
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