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Goal and motivation

We study 3D time harmonic Maxwell’s equations in presence of an inclusion

of negative material:

curl E —iwpH =0 in
curl H + iweE = J in Q)

Positive material Negative material
+ PEC boundary cond.: e>0 <0
E xv =0 on 0N and >0 and/or <0

uwH - v =0 on 00

» For metals at optical frequencies, ¢ < 0 and p > 0.
» Artificial metamaterials have been realized which can be modelled for
certain frequencies by € < 0 and p < 0.
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Goal and motivation

We study 3D time harmonic Maxwell’s equations in presence of an inclusion
of negative material:

curl E —iwpH =0 in Q
curl H + iweE = J in Q)

Positive material Negative material
+ PEC boundary cond.: e>0 <0
E xv=0o0noN and p>0 and/or <0

uwH - v =0 on 00

» For metals at optical frequencies, ¢ < 0 and p > 0.
» Artificial metamaterials have been realized which can be modelled for
certain frequencies by € < 0 and p < 0.

Particular motivation: non
smooth gold nanoparticles.

Difficulty: usual results do not apply, singularities at the tip are amplified.
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Outline of the talk

@ Positive coefficients

@ Sign-changing coefficients - non critical €, i

@ Scalar problems

e Sign-changing coefficients - critical €, non critical p

e Sign-changing coefficients - critical e, p
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@ Positive coefficients
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Classical case 1/3

» Let us first consider the classical case where e, u > ¢ >0 in .
» We focus our attention on the electric problem

curlpy~lcurl E —w?:E = iwJ in{

() B .
Exyv = 0 in 0Q

where J € L2(Q) := L?(Q)? is such that divJ = 0 in .
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Classical case

» Let us first consider the classical case where e, u > ¢ >0 in .

» We focus our attention on the electric problem

curlpy~lcurl E —w?:E = iwJ in{

(2) Exv = 0 in 0Q

where J € L2(Q) := L?(Q)? is such that divJ = 0 in .

1/3

Q

Find E € Hy(curl) such that for all E' € Hy(curl)

D) & | (¥

(Z) (Zn) /;flcurlE-curlE'—wQEE-E’dx:iw/ J - FE dx,
Q

where Hy (curl ) := {u € L*(Q) | curlu € L*(Q) and u x v = 0 on 90Q}.
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Classical case

» Let us first consider the classical case where e, u > ¢ >0 in .

» We focus our attention on the electric problem

curlpy~lcurl E —w?:E = iwJ in{

P
(2) Exv = 0 in 0Q

where J € L2(Q) := L?(Q)? is such that divJ = 0 in .

1/3

Q

Find E € Hy(curl) such that for all E' € Hy(curl)

P) | (2

(#) =] (Pn) /;flcurlE-curlE’ — W%E - Edx :iw/ J-E dz,
Q

where Hy (curl ) := {u € L*(Q) | curlu € L*(Q) and u x v = 0 on 90Q}.

A

Difficulty: V(H}) C kercurl- and the embedding Hy(curl) C
Lz(Q) is not compact which prevents using Fredholm alternative.
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Classical case 2/3

\ v
\Q\_ Use the divergence free condition and work in the space

Xn(g) :={u € Hy(curl)|div(cu) = 0 in Q}
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Classical case 2/3

\
N

\9\_ Use the divergence free condition and work in the space
Xn(e) :={u € Hy(curl) |div(eu) =0 in Q}
(H € Xr(p) :={u € H(curl) |div(pu) =0, pu-n =0 on 092} ).

» This leads to the problem

Find E € Xy (e) such that for all E' € Xy(e)
(Zx)

/ plcurl E-curl E' — w*cE - E' dx = iw/ J - E'dz.
Q Q
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Classical case

Y,
\Q\: Use the divergence free condition and work in the space
Xn(g) :={u € Hy(curl)|div(cu) = 0 in Q}
(H € Xr(p) :={u € H(curl) |div(pu) =0, pu-n =0 on 092} ).
» This leads to the problem

Find E € Xy (e) such that for all E' € Xy(e)

&
(#x) / plcurl E-curl E' — w*cE - E' dx = iw/ J - E'dz.
Q Q

2/3

PropPOSITION: When €, u > ¢ > 0:
- the embedding Xy (e) € L?(Q) is compact (Weber 80);

- (u,v) — / pteurlu - curl @ dr is coercive in Xy (e);
Q

so that (Px) satisfies the Fredholm alternative (uniqueness = existence).

(6]
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Classical case 3/3

» Well-posedness of the initial problem comes from the following result:

PRrROP.: Assume that ¢ > ¢ > 0. Then E solves (Zn) iff E solves (Zx).

Proof. (Yu)= (Hx) is direct.
< Assume that E solves (#x). For E' € Hy(curl), let ¢ € H}(Q2) be s.t.

div (eVp) = div (eE").
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Classical case
» Well-posedness of the initial problem comes from the following result:

PRrROP.: Assume that ¢ > ¢ > 0. Then E solves (Zn) iff E solves (Zx).

Proof. (Yu)= (Hx) is direct.
< Assume that E solves (#x). For E' € Hy(curl), let ¢ € H}(Q2) be s.t.

div (eVp) = div (¢E")

Then we have E' — Vi € X y(¢) so that we can write
/ pteurl E-curl (B —Vy)—w?cE-(E'— V) dr = iw /J (E'-Vy)dz
Q Q
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3/3

Classical case
» Well-posedness of the initial problem comes from the following result:

PRrROP.: Assume that ¢ > ¢ > 0. Then E solves (Zn) iff E solves (Zx).

Proof. (Yu)= (Hx) is direct.
< Assume that E solves (#x). For E' € Hy(curl), let ¢ € H}(Q2) be s.t

div (eVp) = div (¢E")

Then we have E' — Vi € X y(¢) so that we can write

/ ptcurlE - curl E' — w*cE - E' dx = iw/ J - E'd.
Q Q
O

This implies that E solves (Py).
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9 Sign-changing coefficients - non critical ¢, p
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Sign-changing coefficients

» Now we allow for a possible change of sign of € and/or p in .

Introduce the scalar operator A. : H{(Q2) — HS () such that

(Aeps ¥ )1 (0) =/S26V¢-V?dx, Vo,¢' € Hy(Q).

Working as above, one shows:

PROPOSITION: Assume that A. is an isomorphism. Then E solves (%)
iff E solves (¥x).
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Sign-changing coefficients

» Now we allow for a possible change of sign of ¢ and/or u in Q.

Introduce the scalar operator A. : H{(Q2) — HS () such that

(Aeps @ )mi () = /Q eV -V dz, Voo € Hj(Q).

Working as above, one shows:

PROPOSITION: Assume that A, is an isomorphism. Then E solves (%)
iff E solves (¥x).

PROPOSITION: Assume that A. is an isomorphism. Then we have

lulle < C|curl ulq, Vu € Xy (e).

Thus Xy (¢) endowed with (curl-, curl-)q is a Hilbert space.

Proof. Write u = Vi + curley with ¢ € H{(Q) and ¢ € X7(1).
Then use that curlcurly = At = curlu and A.¢ = div (ecurly).

O
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Sign-changing coefficients

How to study (#x) now?

Find E € Xy (e) such that for all E' € Xy(e) :

pteurl E - curlE' —w? | eE-E' = | F- E,
(%)
Q Q Q

a(E,E") c(E,E’) o(E)

Difficulties:

When p changes sign, a(-,-) is not coercive.

When e changes sign, is the embedding Xy (¢) € L?(Q) compact?

9 /33



T-coercivity in the vector case 1/2

If T is an isomorphism of Xy (¢), we have
a(E,E") —w?(E,E') = (E), VE' € Xy(e)
& a(E,TE') —w?c¢(E,TE') = ((TE'), VE' € Xy(e).

v, | The key idea is to construct T € Xy (g) — Xn(e) such that
Q\ a(E,TE') = / pteurl E - curl (TE') is coercive in Xy (¢).
Q
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T-coercivity in the vector case 1/2

If T is an isomorphism of Xy (¢), we have
a(E,E") —w?(E,E') = (E), VE' € Xy(e)
& a(E,TE') —w?c¢(E,TE') = ((TE'), VE' € Xy(e).

v, | The key idea is to construct T € Xy (g) — Xn(e) such that
Q\ a(E,TE') = / pteurl E - curl (TE') is coercive in Xy (¢).
Q

To present the construction, set Hy () := {¢ € H'(Q)| [, ¢ dx = 0}.

Introduce the scalar operator A, : H;é Q) — qu# (©2) such that

(Aue, ), () =/QMW)-Vde, Vo, € Hy ().
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T-coercivity in the vector case 2/2

Consider E € Xy(e). We would like to have

curl (TE) = pcurl E
to get

a(E,TE) = /

pteurl E - curl (TE)) dx = / |curl E|* dx.
Q Q

But this is impossible in general (take the divergence)!
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T-coercivity in the vector case 2/2

Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

/qu VY do = /Qucurlﬂvw’ dz, VY’ € Hy(Q).
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T-coercivity in the vector case 2/2

Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

/QMVl‘-Vl/)' dr = /QucurlE~V1/z' dz, V' € Hy(Q). [‘t Ok when 4, J

is an isom.
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T-coercivity in the vector case 2/2

Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/qu VY do = /Qucurlﬂvw’ dz, VY’ € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that

curlu = p(curl E — V)  in Q.
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Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/sv -w’df/f -V dz, V' e Hy(9).
Q Q
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T-coercivity in the vector case 2/2
Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/EV -Vgp’dx:/g V¢ dr, V¢ € H5(Q). @ Ok when A,
Q

Q is an isom.

O Finally, define TE := v — Vi € Xy(e).
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Q is an isom.

@ Finally, define TE := v — V» € Xy(e). There holds:

a(E,TE) = / p tcurl E - curl (TE) dx
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T-coercivity in the vector case 2/2
Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/EV -Vgp’dx:/g V¢ dr, V¢ € H5(Q). @ Ok when A,
Q

Q is an isom.

@ Finally, define TE := v — V» € Xy(e). There holds:

a(E,TE) = /

p tcurl E - curl wde = / curl E - (curl E — Vi) dx
Q
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T-coercivity in the vector case 2/2
Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/EV -Vgp’dx:/g V¢ dr, V¢ € H5(Q). @ Ok when A,
Q

Q is an isom.

@ Finally, define TE := v — V» € Xy(e). There holds:

a(E,TE) = /

p tcurl E - curl wde = / |curl E|? dz.
Q Q
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T-coercivity in the vector case 2/2

LEMMA. Suppose that
A, : H}(Q) — H{(Q) is an isomorphism
A, Hy () — H(Q) is an isomorphism.
Then, there exists T : X (¢) — Xy (¢) such that, for all E, E’

a(E,TE') = o(TE, E') = / curl E - curl E' du
Q

(this implies in particular that T is an isomorphism of Xy (e)).
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Compact embedding and final result

THEOREM. Assume that A. : H{(Q2) — H§(£) is an isomorphism. Then the
embedding of Xy (&) in L*(Q) is compact.

Proof. 1)div(eu)=0 = ecu=curly withy e Xp(l).
2) Then we get curl (¢~ lcurl) = curlu.
3) When A, : H}(Q) — H}(Q) is an isom, there is T : X7 (1) — Xz (1) s.t.

chrl’zb”?):/5_1curl'¢~curl(T'¢/))dx:/cur1u~(']I‘1/))dx. O
Q

Q
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Compact embedding and final result

THEOREM. Assume that A. : H{(Q2) — H§(£) is an isomorphism. Then the
embedding of Xy (&) in L*(Q) is compact.

Proof. 1)div(eu)=0 = ecu=curly withy e Xp(l).
2) Then we get curl (¢~ lcurl) = curlu.
3) When A, : H}(Q) — H}(Q) is an isom, there is T : X7 (1) — Xz (1) s.t.

chrl’zb”?):/5_1curl'¢~curl(TQ/J)dx:/cur1u~(']I‘1/))dx. O
Q

Q

» This yields the final result (Bonnet-BenDhia, Chesnel, Ciarlet 147):

THEOREM. Suppose that
A. : H{(Q) — H§(Q) is an isomorphism
A, Hy () — H(Q) is an isomorphism.

Then, the problem for the electric field is well-posed for all w € C\.# where
& is a discrete (or empty) set of C.

33



Comments and example

» We have a similar result for the magnetic problem.

» These results extend to:
- situations where A., A, are Fredholm of index zero with a non zero kernel;

- situations where  is not simply connected /9§ is not connected.

EXAMPLE OF THE FICHERA’S CUBE:

PROPOSITION. Assume that
E_ 1 _ 1 ,
;%[*73,*;] and *¢[*7§*§]- *®
Then, the problems for the electric and magnetic fields are well-posed for all
w € C\. where . is a discrete (or empty) set of C.

)
:5 Note that 7 is the ratio of the blue volume over the red volume. This interval may not be optimal. 13 / 33



@ Scalar problems

The properties of the Maxwell’s problem depend on the
features of the scalar operators A., A,. Let us study them.

14 / 33



2D scalar problem - general picture

> Recall that (Aep, ©')m1 (o) = / eV -V dz, Yo, o' € HY(Q).
Q

Features of A, depend on the angle o and on the contrast x :=e_ /e

D elf k¢ I :=[— 2= 21 A is Fredholm of index zero.

a ) 2m—a

o If k € I, A, is not Fredholm (its range is not close in H}((2)).

» We call I, the critical interval.
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2D scalar problem - general picture

> Recall that (Acp, ¢')ui(a) = / eV -V dz, Yo, ' € Hy ().
Q

For o = /2,
I.=[-3;-1/3].

E olf k¢ I, := [— e ], A, is Fredholm of index zero.

el 2m—a

Features of A, depend on the angle o and on the contrast x :=e_ /e :

o If k € I, A. is not Fredholm (its range is not close in H}(12)).

» We call I. the critical interval.
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2D scalar problem - inside the critical interval

» For k€ 1.\ {—1}, Fredholmness in H}(Q2) is lost due to the existence of
propagating singularities:

sT(x) =rTm®(9), n € R\ {0}
div (eVsT) = 0. 0 "

We have s* € L2(Q) but s* ¢ H(Q).

+

Energy accumulates at the corner, s are called black-hole singularities.
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2D scalar problem - inside the critical interval

» For k€ 1.\ {—1}, Fredholmness in H}(Q2) is lost due to the existence of
propagating singularities:

sT(x) =rTm®(9), n € R\ {0}
div (eVsT) = 0. 0 "

We have s* € L2(Q) but s* ¢ H(Q).

+

Energy accumulates at the corner, s are called black-hole singularities.

» To recover Fredholmness, we have to modify the functional framework
and take into account these singularities:

@ The corner is like infinity for scattering problems: a radiation condi-
tion must be imposed to select the outgoing behaviour s°ut.
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2D scalar problem - inside the critical interval

» We incorporate the radiation condition in the space by setting
Vout o Spdll( out) o) vl (Q)

5out = xs Out (
V! ,(Q) is a weighted Sobolev space of functions which decay at O

localization);
where

» Define the operator A2"* : Vo' — VE(Q)* such that

(A2 o) = 7[ eV - Vi dr
Ja
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2D scalar problem - inside the critical interval

» We incorporate the radiation condition in the space by setting
Vout o Spdll( out) o) vl (Q)

out . Out (

5O = ys
Vl_B(Q) is a weighted Sobolev space of functions which decay at O

localization);
where

» Define the operator A2"* : Vo' — VE(Q)* such that
(A2 o) = 7L eV - Vipdr
Ja
where, for all p = ¢, " + @, ¢ € VE(Q),

7[ eV - Vipdr = —/ cpdiv (eVs®™) ¢ dx —|—/ eVp - Vi dr.
Jo Q Q
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2D scalar problem - inside the critical interval

» We incorporate the radiation condition in the space by setting

Vout o Spdll( out) o) vl (Q)

out . Out (

5O = s
V! ,(Q) is a weighted Sobolev space of functions which decay at O

localization);
where

» Define the operator A2"* : Vo' — VE(Q)* such that
(A2 o) = 7[ eV - Vi dr
Ja
where, for all p = ¢, " + @, ¢ € VE(Q),

7[ eV - Vipdr = —/ cpdiv (eVs®™) ¢ dx —I—/ eVp - Vi dr.
Jo Q Q

THEOREM: Assume that x € I.\ {—1}. Then the operator A%"" is
Fredholm of index zero . (Bonnet—BenDhia, Chesnel, Claeys 13’)

Tools of the proof. Kondratiev approach (Mellin transform) (Kondratiev

67) + spaces with detached asymptotics (Nazarov, Plamenevski 94). ]
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3D scalar problem

» Consider the conical tip, the simplest singular geometry in 3D. Now
propagating singularities are of the form

sT(x) == 129(0,4),  neR\{0}

18 / 33
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» Consider the conical tip, the simplest singular geometry in 3D. Now
propagating singularities are of the form

st (x) == 20(0,9),  neR\{0}

L

For the circular conical tip, they exist iff &K € (—1; —aq) (but not for
k < —1!) for a certain explicit a,, (Li, Shipman 19, Li, Perfekt, Shipman 22).

18 / 33



3D scalar problem

» Consider the conical tip, the simplest singular geometry in 3D. Now
propagating singularities are of the form

st (x) == 20(0,9),  neR\{0}

L

For the circular conical tip, they exist iff &K € (—1; —aq) (but not for
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3D scalar problem

» Consider the conical tip, the simplest singular geometry in 3D. Now
propagating singularities are of the form

st (x) == 20(0,9),  neR\{0}

L

[v7e¢nn

Foe
E
05
008100

For the circular conical tip, they exist iff &K € (—1; —aq) (but not for
k < —1!) for a certain explicit a,, (Li, Shipman 19, Li, Perfekt, Shipman 22).

» Contrary to 2D, in 3D we can have N > 1 singularities sli7 ce sﬁ.

Moreover N — 400 when k — —1% or @ — 0.

The solution to div (eV¢) = f must be searched in

DS H{(Q) when k € [—1; —a.];

Veut = span(s™, ..., s3%) @ V1 4(Q)  when k € (=1; —aq).

18
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Remark

» Propagating singularities are exactly the ones responsible for the
existence of essential spectrum for the Neumann-Poincaré operator in non
smooth domains:

— Li, Shipman 19, Li, Perfekt, Shipman 22, De Le6én-Contreras, Perfekt 22,...
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e Sign-changing coefficients - critical €, non critical p

How to address the Maxwell’s problem when one of the two

scalars problems is well-posed only in the new framework?
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A new framework for electric fields

» Assume that the negative material has a conical tip and that there are
N propagating singularities ", ..., s3" for the operator div (eV").

> Assume that p is such that A, : H () — HL(Q) is an isomorphism.

» Instead of working in Xy (e), we look for a solution in
N
X3(e) = {u=Y e, Vs + @1, cn €C, € V2 5(Q)|
n=1

curlu € L*(Q),div(su) = 0 in Q and u x v = 0 on 90N}
Here V? 5(Q) := {u|rPu € L*(Q)}, 8 > 0.

21 / 33



A new framework for electric fields

» Assume that the negative material has a conical tip and that there are

N propagating singularities ", ..., s3" for the operator div (eV").

> Assume that p is such that A, : H () — HL(Q) is an isomorphism.

» Instead of working in Xy (e), we look for a solution in
N
X3(e) = {u=Y e, Vs + @1, cn €C, € V2 5(Q)|

n=1

curlu € L*(Q),div(su) = 0 in Q and u x v = 0 on 90N}
Here V? 5(Q) := {u|rPu € L*(Q)}, 8 > 0.

> Note that X3 (e) ¢ L*(Q) (infinite energy!). More precisely, the ficlds
are singular but the curls are not.

PROPOSITION: When A°" : Vout 5 V©1(Q)* is an isomorphism, we have
& B p s

e + [|@llve ) < Clleurlulle,  Vu € XF(e).

Thus X% (¢) endowed with (curl-, curl-)q is a Hilbert space.
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A new functional framework

» Then we consider the problem

Find u € X% (£) such that for all v € X3 (¢)

,@ out
(o) /,u_lcurIUocurlEda:—wQ][5u-6d:c:z‘w/ J -vdx
Q Q Q

with ][ eu-vdr = cuﬁ/ div (eVs+)sT d:z:—l—/ ew - vdz.
Q Q Q
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c@ out
(o) /,uflcurlu~cur16d:c7w2][5Uo6d:c:iw/ J -vdx
Q Q Q

with ][ eu-vdr = cua/ div (eVst)s™ d;z:+/ ew - vdx.
Q Q Q

PROPOSITION: When A2"* : Vo' — V1 (Q)* is an isomorphism, E solves
(Pxou) iff E solves the initial problem.

» To study (Pxeu), next we construct a T-coercivity operator in X' (¢).
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T-coercivity in X% (¢)

Consider E € X% (¢).
@ Introduce ' € H, () such that curl E — V> € X7 (u). To proceed, solve

@ Ok when A,

is an isom.

/qu VY da = /Qucurlﬂvw’ dr, VY’ € Hy(Q).

@ Since div (u(curl E — Vb)) = 0, there is u € X (1) such that
curlu = p(curl E— V) in Q.
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Consider E € X% (¢).
@ Introduce ' € H, () such that curl E — V> € X7 (u). To proceed, solve

@ Ok when A,
is an isom.

/qu Ve dx = /QucurlE-vw’ dr, VY’ € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E— V) in Q.
Additionally, we can prove that © € V% 5(€2) for some 3 > 0.

@ Introduce » € VOU such that u — Vo € X3*(¢). To proceed, solve

Aout — —div (8 ) - Ok when A(S)Ut

is an isom.
O Finally, define TE := « — V». There holds:
a(E,TE) = / p teurl E - curl dr = / curl E - (curl E — Vi) dx
Q Q
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Aout — —div (8 ) - Ok when A(S)Ut

is an isom.
O Finally, define TE := « — V». There holds:
a(E,TE) = / p tcurl E - curl wde = / |curl E|? dz.
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T-coercivity in X% (¢)

LEMMA. When

Aout ;. yout Vg(Q)* is an isomorphism
A, Hy () — HL(Q) is an isomorphism,
there exists T : X3(e) — X3*(¢) such that, for all E, E’
a(E,TE') = o(TE, E') = / curl E - curl E' dz

Q

(this implies in particular that T is an isomorphism of X3'*(¢)).
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Compact embedding and final result

THEOREM. Assume that A%"" : Vout — Vé(Q)* is an isomorphism. If
(Uk = Zivzl VSOt + ﬁk) is bounded in X?\}‘t(s), up to a subsequence,
(cx), (@g) converge in CN, VY ;(Q) respectively.
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Compact embedding and final result

THEOREM. Assume that A2 : Vo' — V}(Q)* is an isomorphism. If

(Uk = Zivzl VSOt + ﬁk) is bounded in X?\}‘t(s), up to a subsequence,
(cx), (@g) converge in CN, VY ;(Q) respectively.

Proof. 1) Helmholtz decompo. = uy = ZnN=1 RV + Vg, +curl .
2) —Av,, = curlcurly, = curluy = (curlwuy) converges in VEB(Q).
3) Use that div (eVuy) = 0 and that A" is an isomorphism. O

» This yields the final result (Bonnet-BenDhia, Chesnel, Rihani 227):

THEOREM. Suppose that
AUt VOut — VE(Q)* is an isomorphism
A, H# () — HL(Q) is an isomorphism.

Then, the problem (Pxour) and the initial problem are well-posed for all
w € C\.¥ where . is a discrete (or empty) set of C.
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e Sign-changing coefficients - critical €, p

How to address the Maxwell’s problem when the two scalars
problems are well-posed only in the new framework?
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A new framework for electric fields

» Assume that the negative material has a conical tip and that there are
N propagating singularities 57", ..., s3°" for the operator div (¢V-);

M propagating singularities st*°", ” " for the operator div (uV-).
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» Instead of Working in Xy (e), X°“t( ), we look for an electric field in
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A new framework for electric fields

» Assume that the negative material has a conical tip and that there are
N propagating singularities 57", ..., s3°" for the operator div (¢V-);

M propagating singularities s}" Om, . ” " for the operator div (uV-).

» Instead of working in Xy (e), X?\}lt(s), we look for an electric field in

N M
Zi(e) i={u= ZCZV5Z’OM +a|curlu = Z o VSOt | g
n=1 m=1

div(eu) =0in Q, u x v =0o0n 909, ¢, c* € C, u, ¢, € VQB(Q)}
A Note that both the fields and the curl of fields are singular.

» Then we consider the problem

Find u € 2 Q" (¢) such that for all v € X3 (¢)
P g out
(Pggom) / /qflz,bu~cur16dx—w2][ 5u~§dx:iw/ J -vdx
Q Q Q

with X3P (e) := {u = 32N £ VeSO + @ | curlu € V5(9),

n=1"n

div(eu) =0in Q, u x v =0 on 99, ¢, € C, u€V(15(Q)} 2/ 33




T-coercivity

Consider E € X?\}lt’ﬂ (€). First, we would like to solve
/qu -V dr = /QucurlE VY dz, VY€ V().

But this is impossible because the rhs is not in the good space.
— We have to regularise.
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T-coercivity

Consider E € X?\}lt’ﬁ ().
@ Introduce ' € V°U such that

out
][ pV VY de = / pr*eurl E-Vi' da, V' € V(Q). t" Ok when A7 }
2 Q

is an isom.
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T-coercivity

LEMMA. When

Acut ; vout — V61(Q)* is an isomorphism

out . yyout 1 £ 87 5 T iq
AUt YRt — Va(Q)* is an isomorphism,

there is T : X309 (e) — &' (e) such that, for all E, E' € X3 (¢)

a(TE,E') = / r*Peurl E - curl E' dx.
Q
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Analysis of the principal part
> With Riesz, define At : 2 (e) — (X3P (e))* s.t. for all u, v

(A u, v) = / ptap,, - curl B d.
Q
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Analysis of the principal part
> With Riesz, define At : 2 (e) — (X3P (e))* s.t. for all u, v

(A u, v) = / ptap,, - curl B d.
Q

PROPOSITION: When A2", A7 are isomorphisms, X3P (¢) endowed with
(r?fcurl -, curl -)q is a Hilbert space.

» Therefore, from the previous lemma, we get A3 T = Id. This shows
that A" is onto .

» Now if E € ker A", energy considerations ensure that curl E € L%(Q).

Then we obtain

0= (AE,TE) :/r2“8\curlE\2da:
Q

and so E = 0. This shows that A" is injective .

THEOREM: When A" AZ“T’ are isomorphisms, A" is an isomorphism.

9
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Final result

» Additional work is needed to prove the compactness of the operator
associated to

(u,v) — ][ eu-vdr
Q

and to show the equivalence with the initial problem.

» Finally, we get (Bonnet-BenDhia, Chesnel, Rihani 23):

THEOREM. Suppose that
AU VU — VE(Q)* is an isomorphism
Aout - yout — PE(Q)* is an isomorphism.

Then, the problem (@z‘g]ut) and the initial problem are well-posed for all
w € C\. where . is a discrete (or empty) set of C.
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o Positive coefficients

@ Sign-changing coefficients - non critical ¢, p

@ Scalar problems

e Sign-changing coefficients - critical €, non critical p

e Sign-changing coefficients - critical e, p
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Conclusion

What we obtained

1) When A : H§(Q) — Hj(Q), A, - HL(Q) — HL(Q) are isomorphisms,
the electric problem is well-posed in the usual space.

— For the circular conical tip, this corresponds to ke, kK, ¢ [—1; —aa].

2) When A2"*: VU — VE(Q)*, A, : Hy(Q) — HL(Q) are isomorphisms,
the electric problem is well- posed in a space of emguldr fields whose
curls are in L?(Q).

— For the circular conical tip, case ke € (—1; —aq), kK & [—1; —aq].

3) When A" : VOU' — V1 (Q)*, A‘mt Vot — Vl( )* are isomorphisms,
the electric problem is Well posed in a space where the fields and their
curls are singular.

— For the circular conical tip, case ke, Ky € (—1; —aq).
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Conclusion

‘ Comments and open questions

We have similar results for the magnetic problem.

In cases 2), 3), the problems in the usual spaces are either ill-posed
or not equivalent to the initial Maxwell’s equations.

Outgoing behaviours can be justified in certain situations with the
limiting absorption principle.

It is not clear how to solve numerically the problems 2), 3).
How to study other 3D singular geometries, in particular with edges?

Can this be useful to study other problems (elasticity)?
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Thank you!
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