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In electromagnetism, recent years have seen a growing interest in the use of negative materials in
technologies. Negative materials are materials that can be modeled for certain ranges of frequencies,
neglecting the dissipation, by real negative physical parameters (permittivity ε and/or permeability
µ). To summarize, there are two major families of negative materials. The negative metamaterials
are complex structures made of small resonators, chosen so that the macroscopic medium behave
as if its physical parameters were negative. For a mathematical justification of the homogenization
process, we refer the reader for example to [6]. Among these materials, we distinguish the double
negative metamaterials, also called the left-handed materials for which we have both ε < 0 and µ < 0.
Metals in visible range constitute the second family of negative materials. They are used especially
in plasmonic technologies [1, 7, 10, 14] which would allow important advances in miniaturization.
In this context, a key issue is to be able to manipulate light and in particular, to focus energy in
specific areas of space. To do this, physicists use metallic devices with corners and edges [2, 12,13].
This process raises challenging questions in the theoretical and numerical study of time harmonic
Maxwell’s equations. In this note, we investigate the behaviour of the electromagnetic field for a
slightly rounded corner. We work on a rather simple setting but it foreshadows the general case.
We highlight an unusual instability phenomenon for this problem in some configurations: when
the interface between the two materials presents a rounded corner, it can happen that the solution
depends critically on the value of the rounding parameter.

1. Numerical observations
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Figure 1. Domain Ωδ.

Let us denote (r, θ) the polar coordinates centered at the origin O. Consider δ ∈ (0; 1) and define
(see Figure 1) the domains:

Ωδ
+ :={(r cos θ, r sin θ) | δ < r < 1, π/4 < θ < π};

Ωδ
− :={(r cos θ, r sin θ) | δ < r < 1, 0 < θ < π/4};

Ωδ :={(r cos θ, r sin θ) | δ < r < 1, 0 < θ < π}.

We define the function σδ : Ωδ → R by σδ = σ± in Ωδ
±, where σ+ > 0 and σ− < 0 are constants.

We shall focus on the problem:

(1)
Find uδ ∈ H1

0(Ω
δ) such that

−div(σδ∇uδ) = f,

where H1
0(Ω

δ) := {v ∈ H1(Ωδ) s.t. v|∂Ωδ = 0}. Notice that problem (1) is not standard because the
sign of σδ changes on Ωδ. We choose a source term f ∈ L2(Ωδ) whose support does not meet O and
we try to approximate the solution of problem (1), assuming it is uniquely defined, by a classical
finite element method. Concerning the discretization of problem (1), we refer the reader to [5,8,11].
We call uδ

h the numerical solution and we make δ tends to zero. The results are displayed on Figure
2. For a contrast κσ := σ−/σ+ = −1.0001, the sequence (‖uδ

h‖H1
0(Ω

δ))δ is relatively stable with

respect to δ, for δ small enough. For κσ := σ−/σ+ = −0.9999, it looks that there exists of sequence
of values of δ, which accumulates in zero, such that problem (1) is not well-posed. In other words,
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it seems that the solution of problem (1) is not stable with respect to δ when δ tends to zero. The
goal of the present note is to understand these two observations.
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Figure 2. Evolution of ‖uδ
h‖H1

0(Ω
δ) w.r.t. 1− δ. On the left, we take σ+ = 1 and

σ− = −1.0001. On the right, we take σ+ = 1 and σ− = −0.9999.

2. Properties of the problem for δ = 0

We associate with problem (1) the continuous linear operator Aδ : H1
0(Ω

δ) → H−1(Ωδ) defined
by 〈Aδu, v〉Ωδ = (σδ∇u,∇v)Ωδ , ∀u, v ∈ H1

0(Ω
δ). As it is known from [3], Aδ is a Fredholm operator

of index 0 if and only if κσ := σ−/σ+ 6= −1, as the interface Σδ := Ω
δ

+ ∩ Ω
δ

− is smooth and meets

∂Ωδ orthogonally.

For δ = 0 though, the interface no longer meets ∂Ωδ perpendicularly. In the sequel, we write A, Ω
and σ instead of A0, Ω0 and σ0. As shown in [3], there exist values of the contrasts κσ = σ−/σ+

for which the operator A fails to be of Fredholm type. More precisely, for the chosen configuration,
A is a Fredholm operator (and actually, an isomorphism) if and only if, κσ < 0 does not belong to
the critical interval [−1;−1/3].

? When κσ = −1.0001 /∈ [−1;−1/3], A is an isomorphism (c.f. [3]). In this case, we can prove that
Aδ is an isomorphism for δ small enough. Moreover, defining uδ = (Aδ)−1f and u = A−1f , we can
show that the sequence (uδ) converges to u for the H1 norm. This explains the left curve of Figure
2.

? When κσ = −0.9999 ∈ [−1;−1/3], A is not of Fredholm type (c.f. [3]). In this configura-
tion, there is a qualitative difference between problem (1) for δ > 0, and problem (1) for δ = 0.
In [4], we define a new functional framework to restore Fredholmness for the limit problem. More
precisely, we prove that, for κσ ∈ (−1;−1/3) the operator A+ : V+

β → V1
β(Ω)

∗ defined by

〈A+u, v〉Ω = (σ∇u,∇v)Ω, ∀u ∈ V+
β , v ∈ C∞

0 (Ω), is an isomorphism for all β ∈ (0; 2). In this nota-

tion, V+
β := span{s+}⊕V1

−β(Ω), where s
+ ∈ L2(Ω) \H1(Ω) is a singular function at O and V1

−β(Ω)

is the completion of C∞
0 (Ω) for the weighted norm ‖·‖V1

−β(Ω) = (‖r−β∇·‖2L2(Ω)+‖r−β−1 ·‖2L2(Ω))
1/2.

3. Asymptotic expansion of the solution inside the critical interval

For a contrast inside the critical interval, the exotic functional framework introduced for the limit
problem leads to two surprising phenomena in the asymptotic expansion of the solution of problem
(1). First, when we proceed to a usual matched asymptotic expansion method, we observe that we
can define an asymptotic expansion of the solution uδ only for

δ ∈ Sadm := (0; 1) \ Sforb with Sforb :=
⋃
k∈N

δk?δ0,

δ?, δ0 being two numbers of (0; 1). Notice that 0 is an accumulation point for Sforb. For α ∈ (0; 1/2),
we define I(α) :=

⋃
k∈N[δ

k+1−α
? δ0; δ

k+α
? δ0] ⊂ Sadm. In [9], we prove the following result:

Proposition 1. Let β ∈ (0; 2) and f ∈ V1
β(Ω)

∗. There exists δ0 such that problem (1) is uniquely

2



solvable for all δ ∈ (0; δ0) ∩ I(α), with α ∈ (0; 1/2). Moreover, we can build an approximation
ûδ ∈ H1

0(Ω
δ) of uδ such that, for all ε in (0;β), ∀δ ∈ (0; δ0) ∩ I(α), there holds

‖uδ − ûδ‖H1
0(Ω

δ) ≤ c δβ−ε‖f‖V1
β(Ω)∗ ,

where c > 0 is a constant independent of δ and f .

The second original phenomenon in this asymptotic expansion concerns the approximation ûδ in-
troduced in Proposition 1. The function ûδ depends on δ and its far field does not converge to the
far field of (A+)−1f when δ → 0, even for the L2 norm . This proves that the solution of problem
(1), when it is well-defined, is unstable with respect to δ.

4. Discussion

In this note, we have considered a special geometry for Ωδ because it simplifies the numerical
calculations of the first paragraph. However, we observe exactly the same curiosities for a rounded
corner: when the contrast lies inside the critical interval, the solution of problem (1), which is
defined except for a sequence of values of δ which tends to 0, depends critically on the rounding
parameter. From a physical point of view, one may wonder what happens in a neighbourhood of
the corner...
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