AIP CONFERENCE

Construction of indistinguishable conductivity perturbations for the point electrode model in EIT

Lucas Chesnel¹

Coll. with N. Hyvönen² and S. Staboulis³.

¹Defi team, CMAP, École Polytechnique, France ²Aalto University, Finland ³University of Helsinki, Finland

Helsinki, 29/05/2015

Electrical Impedance Tomography (EIT)

Goal of the EIT: to reconstruct the conductivity inside a body from boundary measurements of current and potential.

 $D \subset \mathbb{R}^d, d \geq 2$, is a bounded domain with smooth boundary. $\sigma: D \to \mathbb{R}$ a uniformly positive conductivity.

• Define the current-to-voltage (Neumann-to-Dirichlet) map

where u is the solution to

div
$$(\sigma \nabla u) = 0$$
 in D ; $\sigma \nabla u \cdot \nu = f$ on ∂D .

Electrical Impedance Tomography (EIT)

Goal of the EIT: to reconstruct the conductivity inside a body from boundary measurements of current and potential.

 $\begin{array}{|c|c|c|c|} & \bullet \\ & & D \subset \mathbb{R}^d, \ d \geq 2, \ \text{is a bounded domain with smooth boundary.} \\ & \sigma : D \to \mathbb{R} \ \text{a uniformly positive conductivity.} \end{array}$

• Define the current-to-voltage (Neumann-to-Dirichlet) map $\Lambda^{\sigma}: \ \operatorname{H}^{-1/2}_{\diamond}(\partial D) \to \ \operatorname{H}^{1/2}(\partial D)/\mathbb{R}$ $f \mapsto u$

where u is the solution to

div
$$(\sigma \nabla u) = 0$$
 in D ; $\sigma \nabla u \cdot \nu = f$ on ∂D .

Here, $\operatorname{H}_{\diamond}^{-1/2}(\partial D) := \{ f \in \operatorname{H}^{-1/2}(\partial D) \mid \langle f, 1 \rangle_{\partial D} = 0 \}.$

Electrical Impedance Tomography (EIT)

Goal of the EIT: to reconstruct the conductivity inside a body from boundary measurements of current and potential.

 $\left| \begin{array}{l} D \subset \mathbb{R}^d, \ d \geq 2, \mbox{ is a bounded domain with smooth boundary.} \\ \sigma: D \to \mathbb{R} \mbox{ a uniformly positive conductivity.} \end{array} \right|$

Define the current-to-voltage (Neumann-to-Dirichlet) map

$$\Lambda^{\sigma} : \begin{array}{ccc} \mathrm{H}^{-1/2}_{\diamond}(\partial D) & \to & \mathrm{H}^{1/2}(\partial D)/\mathbb{R} \\ f & \mapsto & u \end{array}$$

where u is the solution to

div
$$(\sigma \nabla u) = 0$$
 in D ; $\sigma \nabla u \cdot \nu = f$ on ∂D .

→ The knowledge of Λ^{σ} uniquely determines $\sigma \in L^{\infty}_{+}(D)$ (d=2, Astala, Päivärinta 06) or $\sigma \in W^{1,\infty}_{+}(D)$ ($d \geq 3$, Haberman, Tataru 13). → Uniqueness results when the Cauchy data are known on a continuous subset of $\partial D \times \partial D$ also exist (Imanuvilov, Uhlmann, Yamamoto 10).

▶ This continuum model is mathematically favorable in its simplicity. In practice EIT measurements are performed with a finite number of electrodes.

▶ If the electrodes are small, the Point Electrode Model is a good model (Hanke, Harrach, Hyvönen 11).

▶ This continuum model is mathematically favorable in its simplicity. In practice EIT measurements are performed with a finite number of electrodes.

▶ If the electrodes are small, the Point Electrode Model is a good model (Hanke, Harrach, Hyvönen 11).

• Assume that the electrodes are located at $x_0, \ldots, x_N \in \partial D$. Denote δ_n the Dirac distribution at x_n and $u_n^0, u_n \in \mathrm{H}^{-(d-4)/2-1}(D)$ the solutions to

▶ This continuum model is mathematically favorable in its simplicity. In practice EIT measurements are performed with a finite number of electrodes.

▶ If the electrodes are small, the Point Electrode Model is a good model (Hanke, Harrach, Hyvönen 11).

• Assume that the electrodes are located at $x_0, \ldots, x_N \in \partial D$. Denote δ_n the Dirac distribution at x_n and $u_n^0, u_n \in \mathrm{H}^{-(d-4)/2-1}(D)$ the solutions to

• In the PEM, the observer measures the quantities

 $(\boldsymbol{u_n} - \boldsymbol{u_n^0})(\boldsymbol{x_m}), \qquad \forall m, n = 0, \dots, N.$

▶ This continuum model is mathematically favorable in its simplicity. In practice EIT measurements are performed with a finite number of electrodes.

▶ If the electrodes are small, the Point Electrode Model is a good model (Hanke, Harrach, Hyvönen 11).

• Assume that the electrodes are located at $x_0, \ldots, x_N \in \partial D$. Denote δ_n the Dirac distribution at x_n and $u_n^0, u_n \in \mathrm{H}^{-(d-4)/2-1}(D)$ the solutions to

• In the PEM, the observer measures the quantities

$$(u_n - u_n^0)(x_m) - (u_n - u_n^0)(x_0), \quad \forall m, n = 1, \dots, N.$$

▶ This continuum model is mathematically favorable in its simplicity. In practice EIT measurements are performed with a finite number of electrodes.

▶ If the electrodes are small, the Point Electrode Model is a good model (Hanke, Harrach, Hyvönen 11).

• Assume that the electrodes are located at $x_0, \ldots, x_N \in \partial D$. Denote δ_n the Dirac distribution at x_n and $u_n^0, u_n \in \mathrm{H}^{-(d-4)/2-1}(D)$ the solutions to

• In the PEM, the observer measures the quantities

$$\langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D}, \quad \forall m, n = 1, \dots, N.$$

▶ This continuum model is mathematically favorable in its simplicity. In practice EIT measurements are performed with a finite number of electrodes.

▶ If the electrodes are small, the Point Electrode Model is a good model (Hanke, Harrach, Hyvönen 11).

• Assume that the electrodes are located at $x_0, \ldots, x_N \in \partial D$. Denote δ_n the Dirac distribution at x_n and $u_n^0, u_n \in \mathrm{H}^{-(d-4)/2-1}(D)$ the solutions to

• In the PEM, the observer measures the quantities

$$\langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D}, \quad \forall m, n = 1, \dots, N.$$

• Note that $\Lambda^{\sigma} - \Lambda^{1} : \mathscr{D}_{\diamond}'(\partial D) \to \mathscr{D}(\partial D)/\mathbb{R}$ when $\operatorname{supp}(\sigma - 1) \subseteq D$ so that the latter quantities are well-defined.

• Define the matrix of relative measurements $\mathcal{M}(\sigma) \in \mathbb{R}^{N \times N}$ such that

$$\mathscr{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D}.$$

• Define the matrix of relative measurements $\mathcal{M}(\sigma) \in \mathbb{R}^{N \times N}$ such that

$$\mathscr{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D}.$$

• Note that $\mathscr{M}(\sigma) = 0$ when there is no perturbation $(\sigma \equiv 1) \Rightarrow$ "relative".

• Define the matrix of relative measurements $\mathcal{M}(\sigma) \in \mathbb{R}^{N \times N}$ such that

$$\mathscr{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D}.$$

Note that $\mathscr{M}(\sigma) = 0$ when there is no perturbation $(\sigma \equiv 1) \Rightarrow$ "relative".

► We have

$$\langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D} = \langle \delta_n - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_m - \delta_0) \rangle_{\partial D}$$

so $\mathcal{M}(\sigma)$ is symmetric

• Define the matrix of relative measurements $\mathcal{M}(\sigma) \in \mathbb{R}^{N \times N}$ such that

$$\mathscr{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D}.$$

Note that $\mathcal{M}(\sigma) = 0$ when there is no perturbation $(\sigma \equiv 1) \Rightarrow$ "relative".

► We have

$$\langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D} = \langle \delta_n - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_m - \delta_0) \rangle_{\partial D}$$

so $\mathcal{M}(\sigma)$ is symmetric $\Rightarrow K := \frac{N(N+1)}{2}$ degrees of freedom.

• Define the matrix of relative measurements $\mathcal{M}(\sigma) \in \mathbb{R}^{N \times N}$ such that

$$\mathscr{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D}.$$

• Note that $\mathcal{M}(\sigma) = 0$ when there is no perturbation $(\sigma \equiv 1) \Rightarrow$ "relative".

► We have

$$\langle \delta_m - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D} = \langle \delta_n - \delta_0, (\Lambda^{\sigma} - \Lambda^1)(\delta_m - \delta_0) \rangle_{\partial D}$$

so
$$\mathcal{M}(\sigma)$$
 is symmetric $\Rightarrow K := \frac{N(N+1)}{2}$ degrees of freedom.

In this talk, we build some $\sigma \neq 1$, with $\operatorname{supp}(\sigma - 1) \in D$, s. t. $\mathcal{M}(\sigma) = 0$. These perturbations of the reference conductivity cannot be detected with our measurements.

2 Application to our problem

3 Numerical experiments

Origin of the method

• We will work as in the proof of the implicit functions theorem.

• This idea was used in Nazarov 11 to construct waveguides for which there are embedded eigenvalues in the continuous spectrum.

• It has been adapted in Bonnet-Ben Dhia & Nazarov 13 to build invisible perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov & Taskinen 14 for an application to a water-wave problem).

• In Bonnet-Ben Dhia, Chesnel & Nazarov 15 it has been used to construct invisible inclusions for an observer sending plane waves and measuring the resulting scattered field at infinity in a finite number of directions.

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K$.

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

• No perturbation leads to null measurements $\Rightarrow F(0) = 0$.

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

• Let $\Omega \neq \emptyset$ be some Lipschitz domain such that $\Omega \Subset D$ ($\overline{\Omega}$ will correspond to the support of the perturbation which can be chosen arbitrarily).

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• We look for small perturbations of the reference medium: $\rho = \varepsilon \kappa$ where $\varepsilon > 0$ is a small parameter and where κ has be to determined.

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor: $F(\varepsilon \kappa) = F(0) + \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa)$$
.

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$$

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor: $F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t.} \quad \left| \begin{array}{c} dF(0)(\kappa_0) = 0\\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{array} \right.$$

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor: $F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t. } \begin{vmatrix} dF(0)(\kappa_0) = 0 \\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{vmatrix}$$

$$\bullet \quad \text{Take } \kappa = \kappa_0 + \sum_{k=1}^K \tau_k \kappa_k \text{ where the } \tau_k \text{ are real parameters to set}$$

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$$

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t.} \begin{vmatrix} dF(0)(\kappa_0) = 0 \\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{vmatrix}$$

Take $\kappa = \kappa_0 + \sum_{k=1}^K \tau_k \kappa_k$ where the τ_k are real parameters to set
 $0 = F(\varepsilon \kappa) \Leftrightarrow$

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$$

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t.} \begin{vmatrix} dF(0)(\kappa_0) = 0\\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{vmatrix}$$

$$\bullet \quad \text{Take } \kappa = \kappa_0 + \sum_{k=1}^K \tau_k \kappa_k \text{ where the } \tau_k \text{ are real parameters to set:} \\ 0 = F(\varepsilon \kappa) \qquad \Leftrightarrow \qquad 0 = \varepsilon \sum_{k=1}^K \tau_k dF(0)(\kappa_k) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa)$$

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$$

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t.} \begin{vmatrix} dF(0)(\kappa_0) = 0\\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{vmatrix}$$

$$\bullet \quad \text{Take } \kappa = \kappa_0 + \sum_{k=1}^K \tau_k \kappa_k \text{ where the } \tau_k \text{ are real parameters to set}$$

$$0 = F(\varepsilon \kappa) \qquad \Leftrightarrow \qquad 0 = \varepsilon \vec{\tau} + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa)$$

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$$

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t.} \begin{vmatrix} dF(0)(\kappa_0) = 0 \\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{vmatrix}$$

$$\bullet \quad \text{Take } \kappa = \kappa_0 + \sum_{k=1}^K \tau_k \kappa_k \text{ where the } \tau_k \text{ are real parameters to set:} \\ 0 = F(\varepsilon \kappa) \qquad \Leftrightarrow \qquad 0 = \varepsilon \vec{\tau} + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa) \\ \text{where } \vec{\tau} = (\tau_1, \dots, \tau_K)^{\top}$$

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$$

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t.} \begin{vmatrix} dF(0)(\kappa_0) = 0 \\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{vmatrix}$$

$$\bullet \quad \text{Take } \kappa = \kappa_0 + \sum_{k=1}^K \tau_k \kappa_k \text{ where the } \tau_k \text{ are real parameters to set:} \\ 0 = F(\varepsilon \kappa) \qquad \Leftrightarrow \qquad \vec{\tau} = G^{\varepsilon}(\vec{\tau}) \\ \text{where } \vec{\tau} = (\tau_1, \dots, \tau_K)^{\top}$$

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$$

Assume that $dF(0) : L^{\infty}(\Omega) \to \mathbb{R}^{K}$ is onto.

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t.} \begin{vmatrix} dF(0)(\kappa_0) = 0 \\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{vmatrix}$$

$$\bullet \quad \text{Take } \kappa = \kappa_0 + \sum_{k=1}^K \tau_k \kappa_k \text{ where the } \tau_k \text{ are real parameters to set:} \\ 0 = F(\varepsilon \kappa) \qquad \Leftrightarrow \qquad \vec{\tau} = G^{\varepsilon}(\vec{\tau}) \end{vmatrix}$$

where $\vec{\tau} = (\tau_1, \dots, \tau_K)^{\top}$ and $G^{\varepsilon}(\vec{\tau}) = -\varepsilon \tilde{F}^{\varepsilon}(\kappa)$.

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$$

Assume that $dF(0) : L^{\infty}(\Omega) \to \mathbb{R}^{K}$ is onto.

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t.} \begin{vmatrix} dF(0)(\kappa_0) = 0 \\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{vmatrix}$$

$$\bullet \quad \text{Take } \kappa = \kappa_0 + \sum_{k=1}^K \tau_k \kappa_k \text{ where the } \tau_k \text{ are real parameters to set:} \\ 0 = F(\varepsilon \kappa) \qquad \Leftrightarrow \qquad \vec{\tau} = G^{\varepsilon}(\vec{\tau}) \\ \text{where } \vec{\tau} = (\tau_1, \dots, \tau_K)^{\top} \text{ and } G^{\varepsilon}(\vec{\tau}) = -\varepsilon \tilde{F}^{\varepsilon}(\kappa). \end{cases}$$

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text{ sol}}$.

• Define $\rho = \sigma - 1$ and gather the measurements in the vector $F(\rho) = (F_1(\rho), \dots, F_K(\rho))^\top \in \mathbb{R}^K.$

Our goal: to find $\rho \in L^{\infty}(\Omega)$ such that $F(\rho) = 0$ (with $\rho \neq 0$).

• Taylor:
$$F(\varepsilon \kappa) = \varepsilon dF(0)(\kappa) + \varepsilon^2 \tilde{F}^{\varepsilon}(\kappa).$$

Assume that $dF(0) : L^{\infty}(\Omega) \to \mathbb{R}^{K}$ is onto.

$$\exists \kappa_0, \kappa_1, \dots, \kappa_K \in \mathcal{L}^{\infty}(\Omega) \text{ s.t.} \begin{vmatrix} dF(0)(\kappa_0) = 0 \\ [dF(0)(\kappa_1), \dots, dF(0)(\kappa_K)] = Id_K. \end{vmatrix}$$

Take $\kappa = \kappa_0 + \sum_{k=1}^K \tau_k \kappa_k$ where the τ_k are real parameters to set:

$$0 = F(\varepsilon \kappa) \qquad \Leftrightarrow \qquad \vec{\tau} = G^{\varepsilon}(\vec{\tau})$$

where $\vec{\tau} = (\tau_1, \dots, \tau_K)^{\top}$ and $G^{\varepsilon}(\vec{\tau}) = -\varepsilon \tilde{F}^{\varepsilon}(\kappa)$.

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text{sol}}$. Set $\rho^{\text{sol}} := \varepsilon \kappa^{\text{sol}}$. We have $F(\rho^{\text{sol}}) = 0$ (invisible perturbation).

2 Application to our problem

3 Numerical experiments

• For our problem, we have $(\rho = \sigma - 1)$

 $F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

• We denote u_n^{ε} the functions satisfying

$$div \left(\sigma^{\varepsilon} \nabla u_n^{\varepsilon}\right) = 0$$
$$\nu \cdot \sigma^{\varepsilon} \nabla u_n^{\varepsilon} = \delta_n - \delta_0$$

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \leq m \leq n \leq N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

• We denote u_n^{ε} the functions satisfying

$$\operatorname{div}\left(\sigma^{\varepsilon}\nabla u_{n}^{\varepsilon}\right) = 0$$
$$\nu \cdot \sigma^{\varepsilon}\nabla u_{n}^{\varepsilon} = \delta_{n} - \delta_{0}$$

• $\mathcal{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma^{\varepsilon}} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D}$

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

• We denote u_n^{ε} the functions satisfying

$$\operatorname{div}\left(\sigma^{\varepsilon}\nabla u_{n}^{\varepsilon}\right) = 0$$
$$\nu \cdot \sigma^{\varepsilon}\nabla u_{n}^{\varepsilon} = \delta_{n} - \delta_{0}$$

•
$$\mathscr{M}(\sigma)_{mn} = \int_{\Omega} (1 - \sigma^{\varepsilon}) \nabla u_m^{\varepsilon} \cdot \nabla u_n^0 \, d\boldsymbol{x}.$$

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

• We denote u_n^{ε} the functions satisfying

$$\operatorname{div}\left(\sigma^{\varepsilon}\nabla u_{n}^{\varepsilon}\right) = 0$$
$$\nu \cdot \sigma^{\varepsilon}\nabla u_{n}^{\varepsilon} = \delta_{n} - \delta_{0}$$

•
$$\mathscr{M}(\sigma)_{mn} = -\varepsilon \int_{\Omega} \kappa \nabla u_m^{\varepsilon} \cdot \nabla u_n^0 \, d\boldsymbol{x}.$$

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

• We denote u_n^{ε} the functions satisfying

$$\operatorname{div}\left(\sigma^{\varepsilon}\nabla u_{n}^{\varepsilon}\right) = 0$$
$$\nu \cdot \sigma^{\varepsilon}\nabla u_{n}^{\varepsilon} = \delta_{n} - \delta_{0}$$

•
$$\mathscr{M}(\sigma)_{mn} = -\varepsilon \int_{\Omega} \kappa \nabla u_m^{\varepsilon} \cdot \nabla u_n^0 \, d\boldsymbol{x}.$$

• We can prove that $u_m^{\varepsilon} = u_m^0 + O(\varepsilon)$.

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

We denote u_n^{ε} the functions satisfying

$$\operatorname{div}\left(\sigma^{\varepsilon}\nabla u_{n}^{\varepsilon}\right) = 0$$
$$\nu \cdot \sigma^{\varepsilon}\nabla u_{n}^{\varepsilon} = \delta_{n} - \delta_{0}$$

•
$$\mathscr{M}(\sigma)_{mn} = -\varepsilon \int_{\Omega} \kappa \nabla u_m^0 \cdot \nabla u_n^0 \, d\boldsymbol{x} + O(\varepsilon^2).$$

• We can prove that $u_m^{\varepsilon} = u_m^0 + O(\varepsilon)$.

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

We denote u_n^{ε} the functions satisfying

$$\operatorname{div}\left(\sigma^{\varepsilon}\nabla u_{n}^{\varepsilon}\right) = 0$$
$$\nu \cdot \sigma^{\varepsilon}\nabla u_{n}^{\varepsilon} = \delta_{n} - \delta_{0}$$

•
$$\mathscr{M}(\sigma)_{mn} = -\varepsilon \int_{\Omega} \kappa \nabla u_m^0 \cdot \nabla u_n^0 \, d\mathbf{x} + O(\varepsilon^2).$$

• We can prove that $u_m^{\varepsilon} = u_m^0 + O(\varepsilon)$.

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

• We denote u_n^{ε} the functions satisfying

$$\operatorname{div}\left(\sigma^{\varepsilon}\nabla u_{n}^{\varepsilon}\right) = 0$$
$$\nu \cdot \sigma^{\varepsilon}\nabla u_{n}^{\varepsilon} = \delta_{n} - \delta_{0}$$

► Thus, we find

$$dF(0)(\kappa) = \left(-\int_{\Omega} \kappa \nabla u_m^0 \cdot \nabla u_n^0 \, d\boldsymbol{x}\right)_{1 \le m \le n \le N}$$

• For our problem, we have $(\rho = \sigma - 1)$

$$F(\rho) = (\mathscr{M}(\sigma)_{mn})_{1 \le m \le n \le N}.$$

To compute $dF(0)(\kappa)$, we take $\sigma^{\varepsilon} = 1 + \varepsilon \kappa$ with κ supported in $\overline{\Omega}$.

• We denote u_n^{ε} the functions satisfying

$$\operatorname{div}\left(\sigma^{\varepsilon}\nabla u_{n}^{\varepsilon}\right) = 0$$
$$\nu \cdot \sigma^{\varepsilon}\nabla u_{n}^{\varepsilon} = \delta_{n} - \delta_{0}$$

• Thus, we find

$$dF(0)(\kappa) = \Big(-\int_{\Omega} \kappa \nabla u_m^0 \cdot \nabla u_n^0 \, d\textbf{\textit{x}} \Big)_{1 \leq m \leq n \leq N}$$

Is $dF(0): \mathcal{L}^{\infty}(\Omega) \to \mathbb{R}^{K}$ onto \red{alpha}

$$dF(0)(\kappa) = \Big(-\int_{\Omega} \kappa \nabla u_m^0 \cdot \nabla u_n^0 \, d\pmb{x} \Big)_{1 \leq m \leq n \leq N}$$

1 Using classical results concerning Gram matrices, we can prove that

$$\mathscr{S} := \{ \nabla u_m^0 \cdot \nabla u_n^0 \}_{1 \le m \le n \le N} \in \mathscr{C}^\infty(\overline{\Omega})^K$$

is a family of linearly independent functions

$$\Leftrightarrow \text{ there are } \kappa_{mn} \in \text{span}(\mathscr{S}) \text{ s.t. } -\int_{\Omega} \kappa_{mn} \nabla u_{m'}^0 \cdot \nabla u_{n'}^0 \, d\boldsymbol{x} = \left| \begin{array}{c} 1 \text{ if } (\mathbf{m},\mathbf{n}) = (\mathbf{m}',\mathbf{n}') \\ 0 \text{ else} \end{array} \right|_{0 \text{ else}}$$

$$dF(0)(\kappa) = \Big(-\int_{\Omega} \kappa \nabla u_m^0 \cdot \nabla u_n^0 \, d\pmb{x}\Big)_{1 \leq m \leq n \leq N}$$

1 Using classical results concerning Gram matrices, we can prove that

$$\mathscr{S} := \{ \nabla u_m^0 \cdot \nabla u_n^0 \}_{1 \le m \le n \le N} \in \mathscr{C}^\infty(\overline{\Omega})^K$$

is a family of linearly independent functions

$$\Leftrightarrow \text{ there are } \kappa_{mn} \in \text{span}(\mathscr{S}) \text{ s.t. } -\int_{\Omega} \kappa_{mn} \nabla u_{m'}^0 \cdot \nabla u_{n'}^0 \, d\boldsymbol{x} = \left| \begin{array}{c} 1 \text{ if } (\mathbf{m},\mathbf{n}) = (\mathbf{m}',\mathbf{n}') \\ 0 \text{ else} \end{array} \right|_{0 \text{ else}}$$

 $\Leftrightarrow dF(0): \mathcal{L}^{\infty}(\Omega) \to \mathbb{R}^{K} \text{ is onto.}$

$$dF(0)(\kappa) = \Big(-\int_{\Omega} \kappa \nabla u_m^0 \cdot \nabla u_n^0 \, d\textbf{\textit{x}} \Big)_{1 \leq m \leq n \leq N}$$

1 Using classical results concerning Gram matrices, we can prove that

$$\mathscr{S} := \{ \nabla u_m^0 \cdot \nabla u_n^0 \}_{1 \le m \le n \le N} \in \mathscr{C}^\infty(\overline{\Omega})^K$$

is a family of linearly independent functions

$$\Leftrightarrow \text{ there are } \kappa_{mn} \in \text{span}(\mathscr{S}) \text{ s.t. } -\int_{\Omega} \kappa_{mn} \nabla u_{m'}^0 \cdot \nabla u_{n'}^0 \, d\boldsymbol{x} = \begin{vmatrix} 1 & \text{if } (m,n) = (m',n') \\ 0 & \text{else} \end{vmatrix}$$
$$\Leftrightarrow dF(0): \mathcal{L}^{\infty}(\Omega) \to \mathbb{R}^K \text{ is onto.}$$

2 We need to construct some $\kappa_0 \in \ker dF(0)$, *i.e.* some κ_0 satisfying

$$\int_{\Omega} \kappa_0 \nabla u_m^0 \cdot \nabla u_n^0 \, d\boldsymbol{x} = 0, \qquad \forall m, n = 1, \dots, N.$$

$$dF(0)(\kappa) = \Big(-\int_{\Omega} \kappa \nabla u_m^0 \cdot \nabla u_n^0 \, d\textbf{\textit{x}} \Big)_{1 \leq m \leq n \leq N}$$

1 Using classical results concerning Gram matrices, we can prove that

$$\mathscr{S} := \{ \nabla u_m^0 \cdot \nabla u_n^0 \}_{1 \le m \le n \le N} \in \mathscr{C}^\infty(\overline{\Omega})^K$$

is a family of linearly independent functions

$$\Leftrightarrow \text{ there are } \kappa_{mn} \in \text{span}(\mathscr{S}) \text{ s.t. } -\int_{\Omega} \kappa_{mn} \nabla u_{m'}^0 \cdot \nabla u_{n'}^0 \, d\boldsymbol{x} = \left| \begin{array}{c} 1 \text{ if } (\mathbf{m},\mathbf{n}) = (\mathbf{m'},\mathbf{n'}) \\ 0 \text{ else} \end{array} \right|$$

$$\iff dF(0) : \mathcal{L}^{\infty}(\Omega) \to \mathbb{R}^K \text{ is onto}$$

We take

$$\kappa_0 = \kappa_0^{\#} - \sum_{1 \le m \le n \le N} \left(\int_{\Omega} \kappa_{mn} \, \kappa_0^{\#} \, d\boldsymbol{x} \right) \, \kappa_{mn}$$

where $\kappa_0^{\#} \notin \operatorname{span}\{\kappa_{mn}\}_{1 \le m \le n \le N}$.

PROP. Assume that $\{\nabla u_m^0 \cdot \nabla u_n^0\}_{1 \leq m \leq n \leq N} \in \mathscr{C}^{\infty}(\overline{\Omega})^K$ is a family of linearly independent functions. For ε small enough, define $\sigma^{\text{sol}} = 1 + \varepsilon \kappa^{\text{sol}} \mathbb{1}_{\Omega}$ with

$$\kappa^{\rm sol} = \kappa_0 + \sum_{1 \le m \le n \le N} \tau_{mn}^{\rm sol} \kappa_{mn}.$$

Then, we have

$$\mathscr{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma^{\text{sol}}} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D} = 0, \qquad \forall m, n = 1, \dots, N,$$

so that the conductivity perturbation is invisible.

Comments:

 \rightarrow We need ε to be small enough to prove that G^{ε} is a contraction.

→ We have $\kappa^{\text{sol}} \neq 0$ (non trivial perturbation). To see it, compute $dF(0)(\kappa^{\text{sol}})$.

It remains to prove that $\{\nabla u_m^0 \cdot \nabla u_n^0\}_{1 \le m \le n \le N} \in \mathscr{C}^{\infty}(\overline{\Omega})^K$ is a family of linearly independent functions.

It remains to prove that $\{\nabla u_m^0 \cdot \nabla u_n^0\}_{1 \le m \le n \le N} \in \mathscr{C}^{\infty}(\overline{\Omega})^K$ is a family of linearly independent functions.

By definition, we have

$$\Delta u_n^0 = 0$$

$$\nu \cdot \nabla u_n^0 = \delta_n - \delta_0.$$

It remains to prove that $\{\nabla u_m^0 \cdot \nabla u_n^0\}_{1 \le m \le n \le N} \in \mathscr{C}^{\infty}(\overline{\Omega})^K$ is a family of linearly independent functions.

By definition, we have

$$\Delta u_n^0 = 0$$

$$\nu \cdot \nabla u_n^0 = \delta_n - \delta_0.$$

1 When D is a **2D** disk, there holds

$$u_n^0(x) = \frac{1}{\pi} \ln |x - x_0| - \frac{1}{\pi} \ln |x - x_n|$$

and the result can be proved doing explicit computations.

It remains to prove that $\{\nabla u_m^0 \cdot \nabla u_n^0\}_{1 \le m \le n \le N} \in \mathscr{C}^{\infty}(\overline{\Omega})^K$ is a family of linearly independent functions.

By definition, we have

$$\Delta u_n^0 = 0$$

$$\nu \cdot \nabla u_n^0 = \delta_n - \delta_0.$$

1 When D is a **2D** disk, there holds

$$u_n^0(x) = \frac{1}{\pi} \ln |x - x_0| - \frac{1}{\pi} \ln |x - x_n|$$

and the result can be proved doing explicit computations.

Then, we deduce that the result is also true for general 2D smooth domains using conformal mapping techniques.

THM. Let $D \subset \mathbb{R}^2$ be a smooth domain and Ω a nonempty Lipschitz domain such that $\Omega \in D$. For ε small enough, define $\sigma^{\text{sol}} = 1 + \varepsilon \kappa^{\text{sol}} \mathbb{1}_{\Omega}$ with

$$\kappa^{\text{sol}} = \kappa_0 + \sum_{1 \le m \le n \le N} \tau_{mn}^{\text{sol}} \kappa_{mn}.$$

Then, we have

$$\mathscr{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma^{\text{sol}}} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D} = 0, \qquad \forall m, n = 1, \dots, N,$$

so that the conductivity perturbation is invisible.

THM. Let $D \subset \mathbb{R}^2$ be a smooth domain and Ω a nonempty Lipschitz domain such that $\Omega \in D$. For ε small enough, define $\sigma^{\text{sol}} = 1 + \varepsilon \kappa^{\text{sol}} \mathbb{1}_{\Omega}$ with

$$\kappa^{\text{sol}} = \kappa_0 + \sum_{1 \le m \le n \le N} \tau_{mn}^{\text{sol}} \kappa_{mn}.$$

Then, we have

$$\mathscr{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma^{\mathrm{sol}}} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D} = 0, \qquad \forall m, n = 1, \dots, N,$$

so that the conductivity perturbation is invisible.

Comments:

- \rightarrow The 3D case is open.
- → The existence of invisible inclusions may appear not so surprising since $\mathscr{M}(\sigma) \in \mathbb{R}^{N \times N}, \ \sigma \in L^{\infty}(\Omega).$

THM. Let $D \subset \mathbb{R}^2$ be a smooth domain and Ω a nonempty Lipschitz domain such that $\Omega \in D$. For ε small enough, define $\sigma^{\text{sol}} = 1 + \varepsilon \kappa^{\text{sol}} \mathbb{1}_{\Omega}$ with

$$\kappa^{\text{sol}} = \kappa_0 + \sum_{1 \le m \le n \le N} \tau_{mn}^{\text{sol}} \kappa_{mn}.$$

Then, we have

$$\mathscr{M}(\sigma)_{mn} = \langle \delta_m - \delta_0, (\Lambda^{\sigma^{\mathrm{sol}}} - \Lambda^1)(\delta_n - \delta_0) \rangle_{\partial D} = 0, \qquad \forall m, n = 1, \dots, N,$$

so that the conductivity perturbation is invisible.

Comments:

- \rightarrow The 3D case is open.
- → The existence of invisible inclusions may appear not so surprising since $\mathscr{M}(\sigma) \in \mathbb{R}^{N \times N}, \sigma \in L^{\infty}(\Omega)$. However, for an analogous problem in scattering theory, this result does not hold ...

2 Application to our problem

Influence of the choice of ε

• Examples of conductivities (at the end of the fixed point iteration) which provide the same measurements as the reference conductivity $\sigma \equiv 1$.

(The dots correspond to the positions of the electrodes.)

Influence of the choice of ε

• Examples of conductivities (at the end of the fixed point iteration) which provide the same measurements as the reference conductivity $\sigma \equiv 1$.

(The dots correspond to the positions of the electrodes.)

• Convergence of the fixed point iteration with respect to the choice of ε .

Influence of the number of electrodes

The dots correspond to the position of the N + 1 electrodes.

When the number of electrodes increases, the obtained perturbation of the reference conductivity $\sigma \equiv 1$ becomes smaller and smaller.

Influence of the choice of $\kappa_0^{\#}$ and of the shape

	ε	$\kappa_0^{\#}(x,y)$
(a)	4.0	x + y + 1
(b)	2.0	$\exp(-(x+0.5)^2 - y^2)$
(c)	0.25	1
(d)	6.0	1
(e)	0.5	-y
(f)	2.0	x

• 3D view of σ for case (a)

2 Application to our problem

3 Numerical experiments

What we did

- We explained how to construct invisible conductivity perturbations for the Point Electrode Model.
- The proof is rigorous for the 2D setting with $\sigma^0 \equiv 1$.

Open questions

- 1) Can we prove that $\{\nabla u_m^0 \cdot \nabla u_n^0\}_{1 \le m \le n \le N}$ is a family of linearly independent functions in 3D?
- 2) Can we justify the construction of invisible conductivity perturbations when $\sigma^0 \not\equiv 1$?
- 3) Can we reiterate the process to construct larger invisible perturbations of the reference conductivity?
- 4) Can we construct invisible conductivity perturbations for other models (Complete Electrode Model)?

Kiitos!