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Electrical Impedance Tomography (EIT)

Goal of the EIT: to reconstruct the conductivity inside a body from bound-
ary measurements of current and potential.

D v

D c R% d > 2, is a bounded domain with smooth boundary.
o : D — R a uniformly positive conductivity.

» Define the current-to-voltage (Neumann-to-Dirichlet) map

A°: H,Y*(0D) — HY2(0D)/R
f — u

where u is the solution to

div (ocVu) =0 in D; oVu-v=f ondD.
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Goal of the EIT: to reconstruct the conductivity inside a body from bound-
ary measurements of current and potential.
D 14

D cC R‘ﬂ d > 2, is a bounded domain with smooth boundary.
o : D — R a uniformly positive conductivity.

» Define the current-to-voltage (Neumann-to-Dirichlet) map

A°: HY?(0D) — HY2(OD)/R
f — U

where u is the solution to

div(cVu) =0 in D; oVu-v=f ondD.

Here, 1, '/*(9D) := {f € H-/2(8D) | {f,1)opp = 0}.
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Electrical Impedance Tomography (EIT)
Goal of the EIT: to reconstruct the conductivity inside a body from bound-
ary measurements of current and potential.
D 14

D cC R‘ﬂ d > 2, is a bounded domain with smooth boundary.
o : D — R a uniformly positive conductivity.

» Define the current-to-voltage (Neumann-to-Dirichlet) map

A°: HY?(0D) — HY2(OD)/R
f — U

where u is the solution to

div(cVu) =0 in D; oVu-v=f ondD.

— The knowledge of A? uniquely determines o € LP(D) (d=2, Astala,
Paivirinta 06) or o € Wioo(D) (d > 3, Haberman, Tataru 13).

— Uniqueness results when the Cauchy data are known on a continuous
subset of 9D x 9D also exist (Imanuvilov, Uhlmann, Yamamoto 10).
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Point Electrode Model

» This continuum model is mathematically favorable in its simplicity. In
practice EIT measurements are performed with a finite number of electrodes.

» If the electrodes are small, the Point Electrode Model is a good model
(Hanke, Harrach, Hyvénen 11).
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practice EIT measurements are performed with a finite number of electrodes.

» If the electrodes are small, the Point Electrode Model is a good model

(Hanke, Harrach, Hyvénen 11).

e Assume that the electrodes are located at g, ..., zy € 0D. Denote §,, the
u, € H=(@=9/2=1(D) the solutions to

Dirac distribution at z,, and

0

)

Aul =0
V-Vugzén—éo

REFERENCE CONDUCTIVITY o =1

L1

zo

div(cVu,) =0
v-oVu, =8, — do

PERTURBED CONDUCTIVITY

L1

o
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» If the electrodes are small, the Point Electrode Model is a good model
(Hanke, Harrach, Hyvénen 11).

e Assume that the electrodes are located at g, ..., zy € 0D. Denote §,, the
Dirac distribution at z, and u?, u, € H~(¢=4)/2=1(D) the solutions to

L1 L1
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e In the PEM, the observer measures the quantities
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Point Electrode Model

» This continuum model is mathematically favorable in its simplicity. In
practice EIT measurements are performed with a finite number of electrodes.

» If the electrodes are small, the Point Electrode Model is a good model
(Hanke, Harrach, Hyvénen 11).

e Assume that the electrodes are located at g, ..., zy € 0D. Denote §,, the

Dirac distribution at z, and u?, u, € H~(¢=4)/2=1(D) the solutions to

L1 L1

Aul =0
V-Vugzén—éo

div(cVu,) =0
v-oVu, =8, — do

zo zo

REFERENCE CONDUCTIVITY o = 1 PERTURBED CONDUCTIVITY

e In the PEM, the observer measures the quantities
(6 — 60, (A7 — AN (8, — 80)) oD, VYm,n=1,...,N.

e Note that A — Al : 2/(0D) — 2(9D)/R when supp(c — 1) € D so that
the latter quantities are well-defined. 3 /20



Matrix of relative measurements

» Define the matrix of relative measurements .# (o) € RV such that

M () mn = (6 — S0, (A7 = A1) (80 — 80)) oD
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degrees of freedom.
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Matrix of relative measurements

» Define the matrix of relative measurements .# (o) € RV such that
M () imn = (O — b0, (A7 — A1) (8, — 80))ap-
» Note that .# (o) = 0 when there is no perturbation (¢ = 1) = “relative”.

» We have

(Om = 60, (A7 = A1) (0, = 60))ap = (50 — 00, (A7 = AV) (S — 60))a

N(N +1)

so A (o) is symmetric = |K = 5

degrees of freedom.

In this talk, we build some o # 1, with supp(c — 1) € D, s. t. .# (o) = 0.

Izl These perturbations of the reference conductivity cannot be detected
with our measurements.
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Outline of the talk

@ Ceneral scheme

@ Application to our problem

@ Numerical experiments
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@ General scheme

6 /20



Origin of the method

» We will work as in the proof of the implicit functions theorem.

e This idea was used in Nazarov 11 to construct waveguides for which there
are embedded eigenvalues in the continuous spectrum.

e It has been adapted in Bonnet-Ben Dhia & Nazarov 13 to build invisible
perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov & Taskinen
14 for an application to a water-wave problem).

e In Bonnet-Ben Dhia, Chesnel & Nazarov 15 it has been used to construct
invisible inclusions for an observer sending plane waves and measuring the
resulting scattered field at infinity in a finite number of directions.
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Sketch of the method

» Define p = 0 — 1 and gather the measurements in the vector
F(p) = (Fi(p),...,Fx(p))" € R¥.
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Sketch of the method

» Define p = 0 — 1 and gather the measurements in the vector
F(p) = (Fi(p),...,Fx(p))" € R¥.

» No perturbation leads to null measurements = F'(0) = 0.
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Sketch of the method

» Define p = 0 — 1 and gather the measurements in the vector
F(p) = (Fi(p),...,Fx(p))" € R¥.

> Let © # () be some Lipschitz domain such that 2 € D (Q will correspond
to the support of the perturbation which can be chosen arbitrarily).
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Sketch of the method

» Define p = 0 — 1 and gather the measurements in the vector
F(p) = (F1(p),-.., Fx(p)) " € R
Our goal: to find p € L*>°(Q) such that F(p) = 0 (with p # 0).
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Sketch of the method

» Define p = 0 — 1 and gather the measurements in the vector
F(p) = (Fi(p),...,Fx(p))" € R¥.

Our goal: to find p € L*>°(Q) such that F(p) = 0 (with p # 0).

» We look for small perturbations of the reference medium: p = ex where
€ > 0 is a small parameter and where x has be to determined.
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Sketch of the method

» Define p = 0 — 1 and gather the measurements in the vector
F(p) = (F1(p),-.., Fx(p)) " € R
Our goal: to find p € L*>°(Q) such that F(p) = 0 (with p # 0).
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Sketch of the method

» Define p = 0 — 1 and gather the measurements in the vector
F(p) = (F1(p),-.., Fx(p)) " € R
Our goal: to find p € L*>°(Q) such that F(p) = 0 (with p # 0).

> Taylor: F(ek) = edF(0)(k) + e2F¢(k).

Assume that dF(0) : L=°(Q) — R is onto. ‘

N dF(0) (o) = 0
o, w1y ke €LX(Q) st | apon i T ap(0) k)] = T

K
» Take k = kg + Z TrKki where the 7, are real parameters to set:
k=1
0= F(ek) & 7= G(T)
where 7 = (71,...,7x) " and G*(7) = —F*(k).

If G¢ is a contraction, the fixed-point equation has a unique solution 75°L.

Set p*°! := ex*°!. We have F(p*°!) = 0 (invisible perturbation).
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© Application to our problem
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Calculus of dF(0)

» For our problem, we have (p =0 — 1)

F(p) = (///(G)mn)lgmgngzv-
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Calculus of dF(0)
» For our problem, we have (p =0 — 1)
F(p) = (%(a)mn)lgmgngN-

To compute dF(0)(x), we take o = 1 + ex with x supported in Q.

» We denote u;, the functions satisfying

div (6°Vug) =0
v-o*Vu; =6, — d

» Thus, we find

dF(0)(k) = (— / KV, - Vug dm)
Q 1<m<n<N

Is dF(0) : L>=°(Q) — RX onto ?
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Construction of the shape functions

dF(0)(k) = (— / kVu, - Vuy dm)
Q 1<m<n<N

@ Using classical results concerning Gram matrices, we can prove that
= {Vu?n . Vug}lgmgngjv S %oo<ﬁ)K

is a family of linearly independent functions

1irf (m,n)=(m’,n’)

<> there are K, € span(¥) s.t. —/ Fmn VUl - Vub, de = 0

Q
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<> there are K, € span(¥) s.t. —/ Fmn VUl - Vub, de = 0

Q
& dF(0) : L®(Q) — R¥ is onto.

@® We need to construct some rg € ker dF(0), i.e. some g satisfying
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Construction of the shape functions

dF(0)(k) = (— / kVu, - Vuy dm)
Q 1<m<n<N

@ Using classical results concerning Gram matrices, we can prove that
= {Vu?n . Vug}lgmgngjv S %oo<ﬁ)K

is a family of linearly independent functions

1irf (m,n)=(m’,n’)
0 else

<> there are Ky, € span(.¥) s.t. —/

0 0
EmnV Upy + Vg de = ‘
Q

& dF(0) : L®(Q) — R¥ is onto.

@ We take

Ko = n# — Z (/ Kmn /@0# da:) Kmn
Q

1<m<n<N

H A . .
where k[ ¢ span{fmn f1<m<n<n-
11 / 20



Main result 1/2

PROP. Assume that {Vul,-Vul}i<m<ncny € €°(Q)X is a family of linearly
independent functions. For € small enough, define o %! = 1+¢ex5°!1 with

k% = ko + g 75 Ko
1<m<n<N
Then, we have

M) = (6 — 60, (A7 — AVY(6n — Go))op =0,  V¥m,n=1,...,N,

so that the conductivity perturbation is invisible.

COMMENTS:
— We need e to be small enough to prove that G¢ is a contraction.

— We have x°°! # 0 (non trivial perturbation). To see it, compute
dF(0)(k5°Y).
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Main result 2/2

It remains to prove that {Vul, - Vud}i<m<n<n € €°(Q)X is a family of
linearly independent functions.
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It remains to prove that {Vul, - Vulli<mancn € €°(Q)E is a family of

linearly independent functions.

By definition, we have

@ When D is a 2D disk, there holds

0

Up,

1 1
() = —In|z — 29| — —In|z — 2]
™ 7r

and the result can be proved doing explicit computations.
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Main result

2/2

It remains to prove that {Vul, - Vulli<mancn € €°(Q)E is a family of

linearly independent functions.

By definition, we have

Aud =0
v-Vu

30

= 0, — dp.

@ When D is a 2D disk, there holds

1 1
ug(m):;ln\m—mo|—;1n\x—mn|

and the result can be proved doing explicit computations.

@® Then, we deduce that the result is also true for general 2D smooth

domains using conformal mapping techniques.
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Main result 2/2

TuaM. Let D C R? be a smooth domain and € a nonempty Lipschitz domain
such that Q € D. For € small enough, define 0! = 1 + ex*°'1q with

K5 = ko + g 7.5 K-
1<m<n<N

Then, we have

M) = (G — 80, (A7 = AY) (6, — G0))op =0,  V¥m,n=1,...,N,

so that the conductivity perturbation is invisible.
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TuaM. Let D C R? be a smooth domain and € a nonempty Lipschitz domain
such that Q € D. For € small enough, define 0! = 1 + ex*°'1q with

K5 = ko + g 7.5 K-
1<m<n<N

Then, we have
%(O’)mn = <6m - 50a (AUSOI - Al)(én - 60)>8D = 07 Vm, n= la coog N7

so that the conductivity perturbation is invisible.

COMMENTS:
— The 3D case is open.

— The existence of invisible inclusions may appear not so surprising since

M (o) € RVN 5 e L(Q).
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Main result 2/2

TuaM. Let D C R? be a smooth domain and € a nonempty Lipschitz domain
such that Q € D. For € small enough, define 0! = 1 + ex*°'1q with

K5 = ko + g 7.5 K-
1<m<n<N

Then, we have

sol

M) g = (6 — 00, (A7 — AY)(6, — 60))op = 0, Vm,n=1,...,N,

so that the conductivity perturbation is invisible.

COMMENTS:

— The 3D case is open.

— The existence of invisible inclusions may appear not so surprising since
M (o) € RVN 5 € 1,°9(Q). However, for an analogous problem in
scattering theory, this result does not hold ...
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© Numerical experiments
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Influence of the choice of ¢

» Examples of conductivities (at the end of the fixed point iteration)
which provide the same measurements as the reference conductivity o = 1.

=05 =10 £=20 £=40 =60
18
15
1.2
09
06
03

(The dots correspond to the positions of the electrodes.)
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Influence of the choice of ¢

» Examples of conductivities (at the end of the fixed point iteration)
which provide the same measurements as the reference conductivity o = 1.

=05 =10 £=20 £=40 =60
18
15
1.2
09
06
03

(The dots correspond to the positions of the electrodes.)

» Convergence of the fixed point iteration with respect to the choice of €.

Error

» 3D view of o for e = 0.6

Iteration

15 / 20



Influence of the number of electrodes

» The dots correspond to the position of the N + 1 electrodes.

1.35 1.07 1.015

1.20 1.04 1.009

1.05 1.01 1.003

0.90 0.98 0.997

0.75 0.95 0.991

0.60 0.92 0.985
N =5 N=7 N=9

= N =11

1.0030
1.0018
1.0006
0.9994
0.9982
0.9970

When the number of electrodes increases, the obtained perturbation of the
reference conductivity 0 = 1 becomes smaller and smaller.
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Influence of the choice of /{# and of the shape

(a)
(d)

e Kg (2,9)
@) | 4.0 Tyt 1
() | 2.0 | exp(—(z+0.5)% — 4?)
(©) | 0.25 1
@ | 60 1
(e) | 0.5 —y
(f) 2.0 z

1.2
1.13
1.06
0.99
0.92
0.85
(c)
1.25
1.13
1.01
0.89
0.77
0.65
()

» 3D view of o for case (a)

17 / 20



@ General scheme

© Application to our problem

© Numerical experiments
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Conclusion

What we did

We explained how to construct invisible conductivity perturbations for
the Point Electrode Model.

The proof is rigorous for the 2D setting with ¥ = 1.

Open questions

Can we prove that {Vul, - Vul}i<m<n<n is a family of linearly inde-
pendent functions in 3D?

Can we justify the construction of invisible conductivity perturbations
when o0 # 1?

Can we reiterate the process to construct larger invisible perturbations
of the reference conductivity?

Can we construct invisible conductivity perturbations for other models
(Complete Electrode Model)?
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