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Electrical Impedance Tomography (EIT)
Goal of the EIT: to reconstruct the conductivity inside a body from bound-
ary measurements of current and potential.

D ν

D ⊂ Rd , d ≥ 2, is a bounded domain with smooth boundary.
σ : D → R a uniformly positive conductivity.

I Define the current-to-voltage (Neumann-to-Dirichlet) map

Λσ : H−1/2
� (∂D) → H1/2(∂D)/R

f 7→ u

where u is the solution to
div (σ∇u) = 0 in D; σ∇u · ν = f on ∂D.

→ The knowledge of Λσ uniquely determines σ ∈ L∞+ (D) (d=2, Astala,

Päivärinta 06) or σ ∈W1,∞
+ (D) (d ≥ 3, Haberman, Tataru 13).

→ Uniqueness results when the Cauchy data are known on a continuous
subset of ∂D × ∂D also exist (Imanuvilov, Uhlmann, Yamamoto 10).
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Point Electrode Model
I This continuum model is mathematically favorable in its simplicity. In
practice EIT measurements are performed with a finite number of electrodes.

I If the electrodes are small, the Point Electrode Model is a good model
(Hanke, Harrach, Hyvönen 11).

• Assume that the electrodes are located at x0, . . . , xN ∈ ∂D . Denote δn the
Dirac distribution at xn and u0

n, un ∈ H−(d−4)/2−1(D) the solutions to

∆u0
n = 0

ν · ∇u0
n = δn − δ0

x0

x1

xN

Reference conductivity σ ≡ 1

div (σ∇un) = 0
ν · σ∇un = δn − δ0

x0

x1

xN

Perturbed conductivity

• In the PEM, the observer measures the quantities

• Note that Λσ − Λ1 : D ′�(∂D)→ D(∂D)/R when supp(σ − 1) b D so that
the latter quantities are well-defined.
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Matrix of relative measurements
I Define the matrix of relative measurements M (σ) ∈ RN×N such that

M (σ)mn = 〈δm − δ0, (Λσ − Λ1)(δn − δ0)〉∂D.

I Note that M (σ) = 0 when there is no perturbation (σ ≡ 1) ⇒ “relative”.

I We have

〈δm − δ0, (Λσ − Λ1)(δn − δ0)〉∂D = 〈δn − δ0, (Λσ − Λ1)(δm − δ0)〉∂D

so M (σ) is symmetric ⇒ K := N (N + 1)
2 degrees of freedom.

In this talk, we build some σ 6≡ 1, with supp(σ − 1) b D, s. t. M (σ) = 0.
These perturbations of the reference conductivity cannot be detected
with our measurements.
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Outline of the talk

1 General scheme

2 Application to our problem

3 Numerical experiments
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Origin of the method

I We will work as in the proof of the implicit functions theorem.

• This idea was used in Nazarov 11 to construct waveguides for which there
are embedded eigenvalues in the continuous spectrum.

• It has been adapted in Bonnet-Ben Dhia & Nazarov 13 to build invisible
perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov & Taskinen
14 for an application to a water-wave problem).

• In Bonnet-Ben Dhia, Chesnel & Nazarov 15 it has been used to construct
invisible inclusions for an observer sending plane waves and measuring the
resulting scattered field at infinity in a finite number of directions.

7 / 20



Sketch of the method
I Define ρ = σ − 1 and gather the measurements in the vector

F(ρ) = (F1(ρ), . . . ,FK (ρ))> ∈ RK .

I No perturbation leads to null measurements ⇒ F(0) = 0.

I We look for small perturbations of the reference medium: ρ = εκ where
ε > 0 is a small parameter and where κ has be to determined.
Assume that dF(0) : L∞(Ω)→ RK is onto.

∃κ0, κ1, . . . , κK ∈ L∞(Ω) s.t. dF(0)(κ0) = 0
[dF(0)(κ1), . . . , dF(0)(κK )] = IdK .

I Take κ = κ0 +
K∑

k=1
τkκk where the τk are real parameters to set:

0 = F(εκ) ⇔

0 = ε

K∑
k=1

τkdF(0)(κk) + ε2F̃ε(κ)

where ~τ = (τ1, . . . , τK )>

and Gε(~τ) = −εF̃ε(κ).

If Gε is a contraction, the fixed-point equation has a unique solution ~τ sol.

Set ρsol := εκsol. We have F(ρsol) = 0 (invisible perturbation).
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Calculus of dF(0)
I For our problem, we have (ρ = σ − 1)

F(ρ) = (M (σ)mn)1≤m≤n≤N .

To compute dF(0)(κ), we take σε = 1 + εκ with κ supported in Ω.

I We denote uεn the functions satisfying

div (σε∇uεn) = 0
ν · σε∇uεn = δn − δ0

•

M (σ)mn =

• We can prove that uεm = u0
m + O(ε).

I Thus, we find

dF(0)(κ) =
(
−
∫

Ω
κ∇u0

m · ∇u0
n dx

)
1≤m≤n≤N

Is dF(0) : L∞(Ω)→ RK onto
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Construction of the shape functions

dF(0)(κ) =
(
−
∫

Ω
κ∇u0

m · ∇u0
n dx

)
1≤m≤n≤N

1 Using classical results concerning Gram matrices, we can prove that

S := {∇u0
m · ∇u0

n}1≤m≤n≤N ∈ C∞(Ω)K

is a family of linearly independent functions

⇔ there are κmn ∈ span(S ) s.t. −
∫

Ω
κmn∇u0

m′ · ∇u0
n′ dx = 1 if (m,n)=(m’,n’)

0 else

⇔ dF(0) : L∞(Ω)→ RK is onto.

2 We need to construct some κ0 ∈ ker dF(0), i.e. some κ0 satisfying

∫
Ω
κ0∇u0

m · ∇u0
n dx = 0, ∀m,n = 1, . . . ,N .κ0 = κ#

0 −
∑

1≤m≤n≤N

(∫
Ω
κmn κ

#
0 dx

)
κmn

where κ#
0 /∈ span{κmn}1≤m≤n≤N .

11 / 20



Construction of the shape functions

dF(0)(κ) =
(
−
∫

Ω
κ∇u0

m · ∇u0
n dx

)
1≤m≤n≤N

1 Using classical results concerning Gram matrices, we can prove that

S := {∇u0
m · ∇u0

n}1≤m≤n≤N ∈ C∞(Ω)K

is a family of linearly independent functions

⇔ there are κmn ∈ span(S ) s.t. −
∫

Ω
κmn∇u0

m′ · ∇u0
n′ dx = 1 if (m,n)=(m’,n’)

0 else

⇔ dF(0) : L∞(Ω)→ RK is onto.

2 We need to construct some κ0 ∈ ker dF(0), i.e. some κ0 satisfying

∫
Ω
κ0∇u0

m · ∇u0
n dx = 0, ∀m,n = 1, . . . ,N .κ0 = κ#

0 −
∑

1≤m≤n≤N

(∫
Ω
κmn κ

#
0 dx

)
κmn

where κ#
0 /∈ span{κmn}1≤m≤n≤N .

11 / 20



Construction of the shape functions

dF(0)(κ) =
(
−
∫

Ω
κ∇u0

m · ∇u0
n dx

)
1≤m≤n≤N

1 Using classical results concerning Gram matrices, we can prove that

S := {∇u0
m · ∇u0

n}1≤m≤n≤N ∈ C∞(Ω)K

is a family of linearly independent functions

⇔ there are κmn ∈ span(S ) s.t. −
∫

Ω
κmn∇u0

m′ · ∇u0
n′ dx = 1 if (m,n)=(m’,n’)

0 else

⇔ dF(0) : L∞(Ω)→ RK is onto.

2 We need to construct some κ0 ∈ ker dF(0), i.e. some κ0 satisfying∫
Ω
κ0∇u0

m · ∇u0
n dx = 0, ∀m,n = 1, . . . ,N .

κ0 = κ#
0 −

∑
1≤m≤n≤N

(∫
Ω
κmn κ

#
0 dx

)
κmn

where κ#
0 /∈ span{κmn}1≤m≤n≤N .

11 / 20



Construction of the shape functions

dF(0)(κ) =
(
−
∫

Ω
κ∇u0

m · ∇u0
n dx

)
1≤m≤n≤N

1 Using classical results concerning Gram matrices, we can prove that

S := {∇u0
m · ∇u0

n}1≤m≤n≤N ∈ C∞(Ω)K

is a family of linearly independent functions

⇔ there are κmn ∈ span(S ) s.t. −
∫

Ω
κmn∇u0

m′ · ∇u0
n′ dx = 1 if (m,n)=(m’,n’)

0 else

⇔ dF(0) : L∞(Ω)→ RK is onto.

2 We take

∫
Ω
κ0∇u0

m · ∇u0
n dx = 0, ∀m,n = 1, . . . ,N .

κ0 = κ#
0 −

∑
1≤m≤n≤N

(∫
Ω
κmn κ

#
0 dx

)
κmn

where κ#
0 /∈ span{κmn}1≤m≤n≤N .

11 / 20



Main result 1/2

Prop. Assume that {∇u0
m ·∇u0

n}1≤m≤n≤N ∈ C∞(Ω)K is a family of linearly
independent functions. For ε small enough, define σ sol = 1+εκ sol

1Ω with

κ sol = κ0 +
∑

1≤m≤n≤N
τ sol

mn κmn.

Then, we have

M (σ)mn = 〈δm − δ0, (Λσ
sol
− Λ1)(δn − δ0)〉∂D = 0, ∀m,n = 1, . . . ,N ,

so that the conductivity perturbation is invisible.

Comments:
→ We need ε to be small enough to prove that Gε is a contraction.
→ We have κ sol 6≡ 0 (non trivial perturbation). To see it, compute

dF(0)(κ sol).
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Main result 2/2

It remains to prove that {∇u0
m · ∇u0

n}1≤m≤n≤N ∈ C∞(Ω)K is a family of
linearly independent functions.

By definition, we have
∆u0

n = 0
ν · ∇u0

n = δn − δ0.

1 When D is a 2D disk, there holds

u0
n(x) = 1

π
ln |x − x0| −

1
π
ln |x − xn|

and the result can be proved doing explicit computations.

2 Then, we deduce that the result is also true for general 2D smooth
domains using conformal mapping techniques.
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Main result 2/2

Thm. Let D ⊂ R2 be a smooth domain and Ω a nonempty Lipschitz domain
such that Ω b D. For ε small enough, define σ sol = 1 + εκ sol

1Ω with

κ sol = κ0 +
∑

1≤m≤n≤N
τ sol

mn κmn.

Then, we have

M (σ)mn = 〈δm − δ0, (Λσ
sol
− Λ1)(δn − δ0)〉∂D = 0, ∀m,n = 1, . . . ,N ,

so that the conductivity perturbation is invisible.

Comments:
→ The 3D case is open.
→ The existence of invisible inclusions may appear not so surprising since

M (σ) ∈ RN×N , σ ∈ L∞(Ω). However, for an analogous problem in
scattering theory, this result does not hold ...
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Influence of the choice of ε
I Examples of conductivities (at the end of the fixed point iteration)
which provide the same measurements as the reference conductivity σ ≡ 1.
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(The dots correspond to the positions of the electrodes.)

I Convergence of the fixed point iteration with respect to the choice of ε.0 5 10 15 20 25 3010 -1410 -1210 -1010 -810 -610 -410 -2 IterationError
I 3D view of σ for ε = 0.6
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Influence of the number of electrodes

I The dots correspond to the position of the N + 1 electrodes.
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0.90
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0.95

0.98
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1.003
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0.9994
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1.0018

1.0030

N = 5 N = 7 N = 9 N = 11

When the number of electrodes increases, the obtained perturbation of the
reference conductivity σ ≡ 1 becomes smaller and smaller.
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Influence of the choice of κ#
0 and of the shape
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ε κ#
0 (x, y)

(a) 4.0 x + y + 1
(b) 2.0 exp(−(x + 0.5)2 − y2)
(c) 0.25 1
(d) 6.0 1
(e) 0.5 −y
(f) 2.0 x I 3D view of σ for case (a)
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Conclusion

What we did

♠ We explained how to construct invisible conductivity perturbations for
the Point Electrode Model.

♠ The proof is rigorous for the 2D setting with σ0 ≡ 1.

Open questions

1) Can we prove that {∇u0
m · ∇u0

n}1≤m≤n≤N is a family of linearly inde-
pendent functions in 3D?

2) Can we justify the construction of invisible conductivity perturbations
when σ0 6≡ 1?

3) Can we reiterate the process to construct larger invisible perturbations
of the reference conductivity?

4) Can we construct invisible conductivity perturbations for other models
(Complete Electrode Model)?
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Kiitos!
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