
Path planning using RRT

David FILLIAT - ENSTA Paris

27 janvier 2021

1 Introduction
In this practical work, we will work on the Rapidly Exploring Random Trees (RRT) algorithm [1].

For this, we will use the python code available on the course Moodle that implements RRT and one of
its variant RRT* [2], on different environments. This code is modified from the code of the repository of
Huiming Zhou 1 that implements and illustrates many path planing algorithms.

Upload your report as a pdf file that includes your answers to the questions and the code you wrote on
the Moodle.

2 RRT vs RRT*
In this part, use the default starting and goal position provided in the code and the default environment

(environment = env.Env() in the main function).
Question 1 : Test the two algorithms RRT and RRT* on this problem by varying the maximum number of
iterations. What can you see on the average lengths of the paths? On the computation times? Remember
to make several experiments to have significant results as these algorithms are stochastic.
Question 2 : Change the step_len parameter (default value is 2 in the provided code). What are the
consequences of small values and large values on the two algorithms?

3 Planification in narrow corridors
In this part, use the default starting and goal position provided in the code, the Env2 environment

(environment = env.Env2()) and the RRT algorithm with the initial parameters (rrt = Rrt(environment,
x_start, x_goal, 2, 0.10, 1500)) . You will see that the narrow corridor in the middle of the map
makes it difficult to find a path.
Question 3 : Explain why it is difficult to grow the tree rapidly in this environment (in particular think
about what happens when the tree tries to grow towards a random point from the nearest node).
Question 4 : To improve this, modify the rrt.py file to implement a simple variant of the OBRRT [3]
algorithm. In this algorithm, the idea is to sample points taking into account the obstacles in order to
increase the chances that the tree passes through difficult areas.

Implement a very simple version in which you will sample a part of the points randomly in the obstacle
free area around the corners of the obstacles. To do this, you must modify the function generate_random_node(self,
goal_sample_rate). You will need to use the following variables and functions :

— self.env.obs_rectangle : a list of tuples (x,y,w,h) describing the obstacles : x,y are the coordi-
nates of the bottom left corners of the obstacles, w,h are the width and height of the obstacle

— self.utils.is_inside_obs(node) : a function that checks if a node is in the obstacle free area
— np.random.randint(n), np.random.random() and np.random.randn() : functions giving a

random integer, random value between 0 and 1 with uniform probability and a random value follo-
wing a unit gaussian.

Show the performance variation as a function of the percentage of points sampled using this strategy
(from 0% to 100%).

1. https://github.com/zhm-real/PathPlanning

1

https://github.com/zhm-real/PathPlanning


Références
[1] Steven M. Lavalle, James J. Kuffner, and Jr. Rapidly-Exploring Random Trees : Progress and Pros-

pects. In Algorithmic and Computational Robotics : New Directions, pages 293–308, 2000.

[2] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. Int. J.
Rob. Res., 30(7) :846–894, June 2011.

[3] S. Rodriguez, Xinyu Tang, Jyh-Ming Lien, and N. M. Amato. An obstacle-based rapidly-exploring
random tree. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, pages 895–900, May 2006.

2


	Introduction
	RRT vs RRT*
	Planification in narrow corridors

