Path planning using RRT

David FILLIAT - ENSTA Paris
27 janvier 2021

1 Introduction

In this practical work, we will work on the Rapidly Exploring Random Trees (RRT) algorithm [1].
For this, we will use the python code available on the course Moodle that implements RRT and one of
its variant RRT* [2], on different environments. This code is modified from the code of the repository of
Huiming Zhou ! that implements and illustrates many path planing algorithms.

Upload your report as a pdf file that includes your answers to the questions and the code you wrote on
the Moodle.

2 RRT vs RRT*

In this part, use the default starting and goal position provided in the code and the default environment
(environment = env.Env () in the main function).

Question 1 : Test the two algorithms RRT and RRT* on this problem by varying the maximum number of
iterations. What can you see on the average lengths of the paths ? On the computation times ? Remember
to make several experiments to have significant results as these algorithms are stochastic.

Question 2 : Change the step_len parameter (default value is 2 in the provided code). What are the
consequences of small values and large values on the two algorithms ?

3 Planification in narrow corridors

In this part, use the default starting and goal position provided in the code, the Env2 environment
(environment = env.Env2 ())and the RRT algorithm with the initial parameters (rrt = Rrt (environment,
x_start, x_goal, 2, 0.10, 1500)). You will see that the narrow corridor in the middle of the map
makes it difficult to find a path.

Question 3 : Explain why it is difficult to grow the tree rapidly in this environment (in particular think
about what happens when the tree tries to grow towards a random point from the nearest node).

Question 4 : To improve this, modify the rrt.py file to implement a simple variant of the OBRRT [3]
algorithm. In this algorithm, the idea is to sample points taking into account the obstacles in order to
increase the chances that the tree passes through difficult areas.

Implement a very simple version in which you will sample a part of the points randomly in the obstacle
free area around the corners of the obstacles. To do this, you must modify the function generate_random_node (self,
goal_sample_rate). You will need to use the following variables and functions :

— self.env.obs_rectangle : alist of tuples (x,y,w,h) describing the obstacles : x,y are the coordi-

nates of the bottom left corners of the obstacles, w, i are the width and height of the obstacle

— self.utils.is_inside_obs (node) : a function that checks if a node is in the obstacle free area

— np.random.randint (n), np.random.random() and np.random.randn () : functions giving a

random integer, random value between 0 and 1 with uniform probability and a random value follo-
wing a unit gaussian.

Show the performance variation as a function of the percentage of points sampled using this strategy
(from 0% to 100%).

1. https://github.com/zhm-real/PathPlanning


https://github.com/zhm-real/PathPlanning

Références

[1] Steven M. Lavalle, James J. Kuffner, and Jr. Rapidly-Exploring Random Trees : Progress and Pros-
pects. In Algorithmic and Computational Robotics : New Directions, pages 293-308, 2000.

[2] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. Int. J.
Rob. Res., 30(7) :846-894, June 2011.

[3] S. Rodriguez, Xinyu Tang, Jyh-Ming Lien, and N. M. Amato. An obstacle-based rapidly-exploring
random tree. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, pages 895-900, May 2006.



	Introduction
	RRT vs RRT*
	Planification in narrow corridors

