
Simultaneous Localization and Mapping using Extended
Kalman Filter

David FILLIAT - Goran FREHSE
ENSTA Paris

January 2, 2023

1 Introduction
In this practical work, we will study a Simultaneous Localization and Mapping (SLAM) method that builds
a map of an unknown environment using an Extended Kalman Filter (EKF). For this, we will use the python
code available on the course Moodle. The provided code is modified from the Python Robotics library1

and makes it possible to simulate a robot moving on a given trajectory in an environment made up of
punctual landmarks. It also implements a simple extended Kalman filtering method using the perception of
the direction and distance of these landmarks. It requires the installation of the numpy2 and matplotlib3

python packages.
Upload your report as a pdf file that includes your answers to the questions and the code you wrote on

the Moodle.

2 Code overview
The state vector of the Kalman filter (variable xEst in the code) contains the position of the robot and the
position of all the currently known landmarks:

xEst =



x
y
θ

xa1
ya1
...

xaN
yaN


The associated covariance matrix is in the variable PEst.

The motion model is using commands on the translational and rotational speed (u = (v,ω)):

f (xEst,u) =

 x+ v.dt.cos(θ)
y+ v.dt.sin(θ)

θ+ω.dt


The observation model gives the direction and distance of the landmarks from the robot position:

h(xEst) =

[√
(x− xai)2 +(y− yai)2

atan2(yai−y
xai−x)−θ

]

Most of the parameters that you need to change are at the beginning of the file :

• Q_Sim and Py_Sim are the noises used by the robot simulator, corresponding to the noise you would
find on a real robot

1https://github.com/AtsushiSakai/PythonRobotics
2https://numpy.org/
3https://matplotlib.org/

1

https://github.com/AtsushiSakai/PythonRobotics
https://numpy.org/
https://matplotlib.org/

• Q and Py are the noises used by the Extended Kalman Filter. In real scenarios they are based on an
estimation of the real system noise, but here they can be set according to the simulation noise.

• MAX_RANGE is the maximum sensing distance of the sensor. Landmarks farther than this distance are
ignored.

• KNOWN_DATA_ASSCIATION switch between known data association (using landmark id) or associa-
tion to nearest neighbor computed using mahalanobis distance.

• M_DIST_TH is the threshold on the Mahalanobis distance between a real observation and an estimated
observation from the map to recognize a landmark if the KNOWN_DATA_ASSOCIATION parameter is 0.

The environment (i.e. list of landmarks) is defined in the beginning the main() function, in the variable
Landmarks, and the trajectory is defined by setting fixed controls in the calc_input() function.

3 Influence of the environment
For this question, use the default parameters of the provided code. By default, the data association is
assumed to be known, ie for each perceived landmark, the corresponding landmark in the map is identified
without ambiguities. In particular, this makes it possible to properly manage loop closures, even when the
error in the map is very severe.

Question 1 : Modify the number and position of landmarks and the robot trajectory and explain what you
observe (on the map quality and the evolution of errors, in particular around the time when the loops are
closed) in the following situations :

• a short loop and a dense map with many landmarks inside the robot perception radius

• a long loop and a dense map with many landmarks all along the loop

• a long loop and a sparse map with only few landmarks near the start position

Question 2 : Answer the same question when the data association is performed using the Mahalanobis
distance (KNOWN_DATA_ASSOCIATION = 0). You may have to tune the M_DIST_TH parameter depending on
your environment.

4 Probabilistic models
For the this question, keep the configuration with unknown data association (KNOWN_DATA_ASSOCIATION
= 0) and an environment with a large loop and a sparse map.

Question 3 : Change the estimated noise values Q and Py so that they are (1) smaller, (2) equal or (3)
larger than the values used for simulation (Q_Sim and Py_Sim). What happens in each case for the filter
performance, the filter consistency and the map quality? What seems to be the best configuration ?

2

	Introduction
	Code overview
	Influence of the environment
	Probabilistic models

