Extended Kalman Filter localization

David FILLIAT - Goran FREHSE
ENSTA Paris

December 16, 2020

1 Introduction

In this practical work, we will work on robot localization using an Extended Kalman Filter (EKF). For
this, we will use the python code available on the course Moodle. The provided code makes it possible to
simulate a robot moving on a given trajectory in an environment made up of point landmarks. It implements
a simple extended Kalman filtering method using the perception of the direction and distance of these point
landmarks. The provided code requires the installation of the numpy' and matplot1lib” python packages.
The provided code is incomplete and will not work directly.

Upload your report as a pdf file that includes your answers to the questions and the code you wrote on
the Moodle.

2 Models

Figure 1: Notations for the motion and observation models used in the code.

The modeled robot (Fig. 1) moves on a plane and perceives the direction and the distance of point
landmarks located on this same plane. Its state is represented by a column vector containing its position
and its orientation in a global coordinate system:

T
X; = [xt,y1, 0]

The motion of the robot between ¢ et r + 1 is measured through odometry and given by its position at

time 7 + 1 in the robot frame at time ¢ (Fig. 1):

U = [xua)’ua eu]T

Thttps://numpy.org/
2https://matplotlib.org/

https://numpy.org/
https://matplotlib.org/

The evolution model is then :

Xt 4+ xyc08(0;) — yusin(6;)
X1 = f(X,Up) = |y +xyu5in(0;) + yucos(6;)
0 +6,
with a gaussian noise given by the covariance matrix Q.
The perceptions are the distance and direction of a landmark k supposed to be perfectly identifiable

(Fig. 1):
T
Yt = |:r f P ¢){(:|
The observation model is therefore:

V= (X)) = [%(kau (yky,)Z]

atanZ(-xy—’;:ij)— 6,

where x; et yy are the known coordinates of the landmark in the global coordinate system. This model
is corrupted by a Gaussian noise of covariance matrix Py.

3 Questions

x 10
60 5
x 0 @&
40 4 -5
*
* -10+- : ! : : ; :
0 1000 2000 3000 4000 5000 6000
20 4 10 1
1
0 > 04 k =
54
—20- -10 1+ : v : . : .
* * 0 1000 2000 3000 4000 5000 6000
"
_404* 0.14
* * *
> 0.0
— True *
—60{ — odom * * * -0.14
— EKF l
A
-60 —40 -20 0 20 40 60 0 1000 2000 3000 4000 5000 6000

Figure 2: Example of script result

Question 1 : Jacobians Calculate the Jacobians A,B and H and write the corresponding functions in
the python code (functions get_obs_jac (xPred, iFeature, Map), A(x, u) and B(x, u) starting line
136). Then run the EKFLocalization.py script and observe the results, which should be similar to Fig. 2
if your Jacobians are correct. What do the three curves displayed on the right represent?

Question 2 : Sensor failure Implement a sensor failure with the function get_observation (k) returning
the value z = None for a given duration (for example k>2500 and k<3500). What happens for the kalman
filter during this time ?

Question 3 : Model errors The covariance matrices used in the filter (QEst, PYEst) faithfully reflect the
noise of the robot’s sensors (QTrue and PYTrue which are used for the simulator). Investigate the behavior
of the filter when the noise used by the filter is grossly over or underestimated. What happens in particular

when the noise used on the perceptions is very low and the noise on odometry very high? What happens
when the estimated noise on the distance of the landmarks is large and the noise on the direction of the
landmarks is correct?

Question 4 : Partial observability One of the interesting aspects of the Kalman filter is the possibility of
having only partial observations. This is already the case with the implemented version of the filter (the
state is of dimension 3 while the observations are of dimension 2). It is however possible to use even less
information, for example to use only the distance or the direction of the landmarks. Modify the model and
the code (calculation of Innov, S, W and xEst around line 225) to use only the distance or the direction of
the landmarks (advice: you must modify the dimensions of H, Py and Innov). What can we observe about
the performance of the filter when you use the distance ? and when you use the direction ?

	Introduction
	Models
	Questions

