
Unicycle and bicycle robot control

David FILLIAT - Alexandre CHAPOUTOT
ENSTA Paris

2 décembre 2020

1 Introduction
In this practical work, we will implement very simple control methods, using PID controllers to guide

a unicycle or a bicycle robot towards a goal or along a path. For this, we will use the python code avai-
lable on the course Moodle. The provided code makes it possible to simulate the motion of unicycle and
bicycle robots using the controllers you will have to write. It requires the installation of the numpy 1 and
matplotlib 2 python packages.

Upload your report as a pdf file that includes your answers to the questions and the code you wrote on
the Moodle.

2 Unicycle control

x xG

y

yG
θG

θ

ρα

X

Y

FIGURE 1 – Control of a unicycle towards a position

In this first part, you have to write a proportional controller in order to guide a unicycle robot towards
a given pose (Figure 1). The unicycle has limited forward (‖v‖ < 1m.s−1) and rotation speed (‖ω‖ <
πrad.s−1). Acceleration is also limited (‖ dv

dt ‖< 10m.s−2 and ‖ dω

dt ‖< 10rad.s−2).

2.1 Question 1 - Unicycle control
You have to implement two Proportional controllers, a first one to bring the robot to the goal point and

a second one to adjust the orientation at the goal :
— Far from the goal (ρ > 0.05), the controller will use ρ et α shown in figure 1 in order to compute

translation and rotation speed :

1. https://numpy.org/
2. https://matplotlib.org/

1

https://numpy.org/
https://matplotlib.org/


ρ =
√

(xG− x)2 +(yG− y)2

α = arctan
(yG− y)
(xG− x)

−θ

v = Kρ×ρ

ω = Kα×α

In order to reach the goal faster without making large circular trajectory, you can rotate the robot
without moving forward when the direction is too far from the goal direction :

if |α| > αmax

v = 0

— When the robot is close to the goal (ρ < 0.05), the controller with use the angle β to compute
rotation speed :

β = θG−θ

ω = Kβ×β

You have to implement this method in the unicycle_to_pose_control function in the unicycle_to_pose.py
file. Remember to use the np.atan2(y,x) function to compute the arctangent in order to compute the right
angle when the two x and y values are negative. Also use the provided function vm.angle_wrap to reduce
angles consistently between −π and π.

The unicycle_to_pose.py script will test your method from several starting positions on a circle to
reach the circle center. Adjust the controller gains and the αmax parameter to quickly reach the goal by
limiting oscillations (you should have a score below 3500).

3 Control of a bicycle

x

y
θ

φ

L

FIGURE 2 – Bicycle model.

We are now going to work on the control of a bicycle model (Figure 2). This model has a limited trans-
lation speed (‖v‖< 1m.s−1) and a limited steering wheel angle (‖φ‖< 1.2rad). In addition, the acceleration
is also limited (‖ dv

dt ‖< 10m.s−2) as well as the rotation speed of the steering wheel (‖ dφ

dt ‖< 8rad.s−1).

2



x xG

y

yG

θ

ρα

φ

FIGURE 3 – Control of a bicycle towards a point.

x xG

y

yG
θG

θ

ρα

β

φ

FIGURE 4 – Control of a bicycle towards a pose.

3.1 Question 2 - Control of a bicycle towards a point
You should first write a Proportional controller to guide the robot towards a point (Figure 3). You should

use the following equations :

ρ =
√

(xG− x)2 +(yG− y)2

α = arctan
(yG− y)
(xG− x)

−θ

v = Kρ×ρ

ϕ = Kα×α

You have to implement this method in the bicycle_to_point_control function in the bicycle_to_point.py
file.

The bicycle_to_point.py script will test your method from several starting positions on a circle to
reach the circle center. Adjust the controller gains to quickly reach the goal by limiting oscillations (you
should have a score below 2800).

3.2 Question 3 - Control of a bicycle towards a pose
We now have to build a proportional controller that guides the robot to a position with a fixed final

orientation (Figure 4). For this, you will write a controller using the following equations :

ρ =
√

(xG− x)2 +(yG− y)2

α = arctan
(yG− y)
(xG− x)

−θ

β = θG− arctan
(yG− y)
(xG− x)

v = Kρ×ρ

ϕ = Kα×α+Kβ×β

avec Kβ < 0

You have to implement this method in the bicycle_to_pose_control function in the bicycle_to_pose.py
file.

The bicycle_to_pose.py script will test your method from several starting positions on a circle to
reach the circle center. Adjust the controller gains to quickly reach the goal by limiting oscillations (you
should have a score below 3500).

3



3.3 Question 4 - Control of a bicycle following a path

 

x xG

y

yG

θ

ρα

φ

pi

pi+1

δ

xGoal

FIGURE 5 – Control of a bicycle following a path.

You now have to write a controller that guides the robot to follow a path defined by a set of waypoints
(Figure 5) using the simple Pure Pursuit approach [Coulter, 1992].

At each timestep you need to determine a point on the trajectory at a given lookahead distance ρ (for
example ρ = 0.5) from the robot, and use the proportional controller from question 2 to compute the speed
that will guide the robot toward this point. A simple method is to take a point on the path and move it
towards the next waypoint with a small fixed step δ when the robot’s distance to that point is less than ρ.
When the point reaches the next waypoint of the path, the following waypoint should be used.

You have to implement this method in the bicycle_to_path_control function in the bicycle_to_path.py
file.

The bicycle_to_path.py script will test your method on a fixed path. Optimize the parameters (loo-
kahead and controller gains) to follow the path as closely as possible. Explain what happens when the
lookahead distance becomes too large.

Références
[Coulter, 1992] Coulter, R. C. (1992). Implementation of the pure pursuit path tracking algorithm. Tech-

nical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST.

4


	Introduction
	Unicycle control
	Question 1 - Unicycle control

	Control of a bicycle
	Question 2 - Control of a bicycle towards a point
	Question 3 - Control of a bicycle towards a pose
	Question 4 - Control of a bicycle following a path


