
Modèle et génération automatique de code

Alexandre Chapoutot

ENSTA Paris

2022-2023

Part I

Lecture 6

2 / 50

Reactive software
Embedded software are also known as reactive programs: they
continuously produce outputs in response to inputs coming from the
physical environment.

Embedded software

Physical environment

Input Output

The execution of embedded software is described by discrete-time
dynamics i.e. it is a sequence of reactions.

time
I1 I2 I3

O1 O2 O3

Ideally we should have that:
Output Oi should be emitted before input Ii+1 and no important
input Ii is missed.
The software is deterministic: same input produces same output.
A finite amount of memory is used.

3 / 50

Model-based: kind of software target

Hardware

Input/Output

RTOS Drivers

SCADE
Software

Hand-
written
Code

Hand-
written
Code

SCADE function is based on
data-flow equations
state machines

Note: it is the same for
Simulink/Stateflow

4 / 50

Simulink

1 Simulink

2 Stateflow

5 / 50

Anatomy of an embedded system

Embedded systems are made of different components which highly
interact together.

Plant Software Hardware

The jobs of the designer and the programmer are:
Design an algorithm to control a physical process
Implement this algorithm on a given hardware

Remark: we deal with two different worlds
continuous-time evolution for the plant.
discrete-time (periodic sampling) evolution for the software.

6 / 50

Main steps of modeling

Using a model-based design method to build a system, we usually follow
these steps:

Definition of the system (interface);
Break down the system into components;
Modeling the behaviors of the components with data-flow
equations or state-diagrams;
Write these models into a software tool like Simulink/Stateflow or
SCADE or etc.;
Simulate the model;
Validate the simulation results.

Goal of this part
Presentation of Simulink/Stateflow tool for the model-based design.

7 / 50

A short tutorial on Simulink

8 / 50

Overview of Simulink features
Simulink is a tool for modeling and simulating dynamical systems that
are systems evolving with time.

The main features of Simulink are:
a language to model continuous-time, discrete-time or a mix of
both kinds of systems
a complete set of numerical algorithms to simulate those kinds of
systems
a complete set of data-types: integer, floating-point, fixed-point
arithmetic
a good debugger

We can also add:
a complete set of extension libraries to handle various cases:
mechanical systems, hydraulic systems, electronics systems, DSP,
control design, etc.
code generators: for embedded software, for hardware synthesis.

9 / 50

An electronic throttle example
In order to introduce the different kind of Simulink model, we consider a
small example of an electronic throttle system made of:

an acceleration pedal;
an electronic throttle subsystem;
a control subsystem
a sensor: measuring the position of the throttle;
an actuator: an electric motor.

Papillon des gaz

L43:
 movl -16(%ebp), %eax
 movl 12(%eax), %eax
 movl %eax, -16(%ebp)
 movl -12(%ebp), %eax
 movl %eax, (%esp)
 call L_free$stub
L34:
 cmpl $0, -16(%ebp)
 jne L37
 movl $10, (%esp)
 call L_putchar$stub

Capteurs

Actionneurs

10 / 50

An electronic throttle example

Papillon des gaz

L43:
 movl -16(%ebp), %eax
 movl 12(%eax), %eax
 movl %eax, -16(%ebp)
 movl -12(%ebp), %eax
 movl %eax, (%esp)
 call L_free$stub
L34:
 cmpl $0, -16(%ebp)
 jne L37
 movl $10, (%esp)
 call L_putchar$stub

Capteurs

Actionneurs

Simulink model

S_2

S_4 S_3

S_1

l_1

l_3
In1

Out1

Out2

In1Out1

In1 Out1

In1

In2

Out1

Add

In1

1

l_4

l_2

l_5l_6

l_0

11 / 50

An electronic throttle example
Throttle model

Full Simulink model

S_2

S_4 S_3

S_1

l_1

l_3
In1

Out1

Out2

In1Out1

In1 Out1

In1

In2

Out1

Add

In1

1

l_4

l_2

l_5l_6

l_0

Mathematical model of the throttle

T (t) = Direction × Duty × Cs

ω̇(t) = 1
J (−Ks(θ(t) − θeq) − Kdω(t) + T (t)) 0 < θ < π/2

if (θ < 0 ∧ sgn(ω̇(t) = −1)) ∨ ((θ > π/2 ∧ sgn(ω̇(t) = 1)))
then ω̇(t) = 0

12 / 50

An electronic throttle example
Throttle model

Simulink model (continuous-time subsystem)

l_25

Out1

1

Sign

Relational

Operator

==

Product1

Product

Logical

Operator

NOT

Integrator1

1

s

Integrator

1

s

Gain3

1/J

Gain2

Kd Gain1

Ks

Gain

Cs

Constant

teq

Add2

Add

In2

2

In1

1

l_23

l_24

l_36l_35

l_28
l_27

l_39

l_39

l_39

l_26

l_32

l_30

l_33
l_34

l_29

l_37

l_31

l_38

12 / 50

An electronic throttle example
Controller model

Full Simulink model

S_2

S_4 S_3

S_1

l_1

l_3
In1

Out1

Out2

In1Out1

In1 Out1

In1

In2

Out1

Add

In1

1

l_4

l_2

l_5l_6

l_0

Papillon des gaz

L43:
 movl -16(%ebp), %eax
 movl 12(%eax), %eax
 movl %eax, -16(%ebp)
 movl -12(%ebp), %eax
 movl %eax, (%esp)
 call L_free$stub
L34:
 cmpl $0, -16(%ebp)
 jne L37
 movl $10, (%esp)
 call L_putchar$stub

Capteurs

Actionneurs

Mathematical model (input e, output y)
y(k) = yp(k) + yi(k)

yp(k) = Kpe(k)
yi(k + 1) = yi(k) + KiTse(k) 0 < yi(k) < 1

PI controller (Proportional-Integral)

13 / 50

An electronic throttle example
Controller model

Controller model (discrete-time subsystem)

Out1

1

Unit Delay

z

1

Saturation

Gain2

Ts

Gain1

Ki

Gain

Kp

Add1

Add

In1

1

l_8

l_7

l_9

l_15

l_11
l_12

l_14

l_13

13 / 50

An electronic throttle example
Actuator model

Full Simulink model

S_2

S_4 S_3

S_1

l_1

l_3
In1

Out1

Out2

In1Out1

In1 Out1

In1

In2

Out1

Add

In1

1

l_4

l_2

l_5l_6

l_0

Mathematical model

Duty =
{

|u| if 0 ≤ |u| ≤ 1
1 otherwise

Direction =
{

1 if u ≤ 0
−1 otherwise

Actuator model (logical subsystem)

!"#$%&"'(

)

!*&+

,

-."&%/
-"0(

-1&*#1&"'(

2'(3&1(&,

!,

2'(3&1(&

,

453

6*6

*

,
789,:; 789,<;

789,=;

789,>;

789)?;

789));789),;

14 / 50

An electronic throttle example
Sensor model

Full Simulink model

S_2

S_4 S_3

S_1

l_1

l_3
In1

Out1

Out2

In1Out1

In1 Out1

In1

In2

Out1

Add

In1

1

l_4

l_2

l_5l_6

l_0

Mathematical model

Angle = 180
π

× u

y =
{

0.5 if angle = 0◦

4.5 if angle = 90◦

y(t) is defined as a linear
interpolation between these
two points

Sensor model (a potentiometer and a converter from rad into degree)

Out1

1

Lookup Table
Gain

180/pi

In1

1
l_40 l_40 l_41

15 / 50

An electronic throttle example
Simulation result

The input is a step function and a look-up table ([0 1] 7→ [3.5 0]).
The solver is ode45.
The simulation stop time is 11.

Remark
The validation of the model is based on this kind of results.

16 / 50

Simulink as a language

Simulink is a graphical language representing block diagrams that is a
Simulink models is made of blocks and wires.

A piece of vocabulary:
Wires: represent the values (signals) exchange between blocks,

they evolve with time during the simulation.
Blocks: represent the operations applying on signals.
States: a piece of information needed by a block to compute its

output.
Parameters: values of the system which are constant during the

simulation.

17 / 50

Simulink block as dynamical systems

Overview of a dynamical system:

Input u(t) Dynamical system

Internal state x(t)

Output y(t)

A generalized mathematical description of dynamical systems:

ẋ(t) = fc(x , u, t) Continuous-time behaviors
xk+1(t) = fd(x , u, t) Discrete-time behaviors

y(t) = g(x , u, t) Output function

Remark
Each block of Simulink is associated to a dynamical system.

18 / 50

Simulink library
The standard library

19 / 50

Simulink library
The math library

For example, Add block is associated
with a degenerated (no state)
dynamical systems:

y(t) = u1(t) + u2(t)

Remark: this operator can be n-ary

19 / 50

Simulink library
The library for bit and logical operations

For example, Compare To Zero
block is associated with a
degenerated (no state) dynamical
systems:

y(t) = u1(t) <= 0

Remark: truth value follows the C
language convention i.e. 0 is false
and 1 is true (but we can enforce
the type to be Boolean).

19 / 50

Simulink library
The Signal Routing library

For example, Switch block is
associated with a degenerated (no
state) dynamical systems:

y(t) =
{

u1(t) if u2(t) ▷◁ 0
u3(t) otherwise

where ▷◁∈ {>, ≥, ̸=}.

19 / 50

Simulink library
The sources library

This library gathers blocks which
generates input values.

For example, the Clock block is
associated to the simulation time.

For example, Constant block is
associated with a degenerated (no
state) dynamical systems:

y(t) = cst

19 / 50

Simulink library
The sinks library

This library gathers blocks used to
visualize or save output values.

For example, Scope block display
the temporal evolution of signals.

19 / 50

Simulink library
The continuous library

For example, the Integrator block
is associated to the dynamical
systems:

ẋ(t) = u(t) with x(0) = x0

y(t) = x(t)

Remark: we need numerical
integration scheme to solve such
kind of equations.

19 / 50

Simulink library
The discrete library

For example, the Unit Delay block
is associated to the dynamical
systems:

xk+1(t) = u(t) with x(0) = x0

y(t) = xk(t)

Remark: we need numerical
integration scheme to solve such
kind of equations.

19 / 50

A step-by-step model writing
We consider as a simple example a continuous-time system associated to
a second order linear systems given by:

ÿ(t) + a1ẏ(t) + a2y(t) = bu(t) ⇔ ÿ(t) = bu(t) − a1ẏ(t) − a2y(t)

20 / 50

A step-by-step model writing
We consider as a simple example a continuous-time system associated to
a second order linear systems given by:

ÿ(t) + a1ẏ(t) + a2y(t) = bu(t) ⇔ ÿ(t) = bu(t) − a1ẏ(t) − a2y(t)

20 / 50

A step-by-step model writing
We consider as a simple example a continuous-time system associated to
a second order linear systems given by:

ÿ(t) + a1ẏ(t) + a2y(t) = bu(t) ⇔ ÿ(t) = bu(t) − a1ẏ(t) − a2y(t)

20 / 50

A step-by-step model writing
We consider as a simple example a continuous-time system associated to
a second order linear systems given by:

ÿ(t) + a1ẏ(t) + a2y(t) = bu(t) ⇔ ÿ(t) = bu(t) − a1ẏ(t) − a2y(t)

ddot_y
ScopeIntegrator1

1
s

Integrator

1
s

Gain3
1/m

Gain2

b

Gain1

a_2

Gain

a_1

Add

u
1

dot_y y

20 / 50

A step-by-step model writing

After building the Simulink model we have to set the values of the
parameters: a1, a2 and b.

We use a Matlab file to do it, as Simulink reads parameter values from
the Matlab workspace.

For example,
a 1 = 1 ;
a 2 = 2 ;
b = 3 ;

Next, we set the simulation parameters.

21 / 50

A step-by-step model writing
Choosing the numerical scheme

22 / 50

A step-by-step model writing
Defining the input

23 / 50

Automatizing the simulation

We can pilot the simulation process from a Matlab script.
For example,
% model paramete r
a 1 = 1 ;
a 2 = 2 ;
b = 3 ;
% s e t the i n p u t
t = (0 : 0 . 0 1 : 2 0) ’ ;
u = ones (l ength (t) , 1) ;
% name o f the S imu l i nk model
mdl name = ’ l i n e a r s y s t e m o r d e r 2 ’
% s e t the s i m u l a t i o n Stop Time and the S o l v e r
se t pa ram (mdl name , ’ S o l v e r ’ , ’ ode23 ’ , ’ StopTime ’ , ’ 20 ’) ;
% run the s i m u l a t i o n
se t pa ram (mdl name , ’ s imulat ioncommand ’ , ’ s t a r t ’)

24 / 50

A step-by-step model writing
Simulation result

25 / 50

Simulink model and vector values

We consider as a simple example a continuous-time system associated to
a second order linear systems given by:

ÿ(t) + a1ẏ(t) + a2y(t) = bu(t)

Note that we can rewrite this formula into state-space form:(
ẋ1
ẋ2

)
=

(
0 1

−a2 −a1

) (
x1
x2

)
+

(
0
b

)
u

y(t) =
(
1 0

) (
x1
x2

)
That is in the form:

ẋ = Ax + Bu
y = Cx + Du

where A, B, C , D are matrices and x is a vector.

26 / 50

Simulink model and vector values
We have a generic pattern in Simulink to represent system in the form:

ẋ = Ax + Bu
y = Cx + Du

Remark
Simulink can handle vector value signals.
Signal dimension: Format->Port/Signal Displays->Signal Dimension.

27 / 50

Multi-rate Simulink models
Each block of a Simulink model, except continuous ones, is associated to
a sampling rate, i.e. when updating the state or the output of the block.

Sampling rate (Transfer Fcn): 1s
Sampling rate (Transfer Fcn1): 0.7

28 / 50

Multi-rate Simulink models
Each block of a Simulink model, except continuous ones, is associated to
a sampling rate, i.e. when updating the state or the output of the block.

Legend:

Display color of sampling rate:
Format->Sample Time Display->Colors

Remark
We must use variable step-size solver in this case!

28 / 50

A comment on the Integrator block

Input, Output : same as the basic case.
Reset : an event to reset the state value to initial value.

Initial condition : external port to set the initial value.
Saturation : indicate if the output is saturated or not.

State : “The output of the state port is the same as the output
of the block’s standard output port except for the
following case. If the block is reset in the current time
step, the output of the state port is the value that would
have appeared at the block’s standard output if the block
had not been reset.”

29 / 50

An example of Integrator with reset – 1

The bouncing ball is defined by:

ẋ1 = x2;
ẋ2 = −g

with if x1 ≤ 0 then x2 := −0.8x2.

Simulink model:

30 / 50

An example of Integrator with reset – 2

The simulation output of the bouncing ball is:

Remark
The detection of the time of the bounces requires special algorithms:
zero-crossing detection.

31 / 50

Summary

Simulink is a complex language with a lot of features.
It is easy to model and simulate complex hybrid systems.

Question
Is Simulink suitable for embedded software as is?

32 / 50

Stateflow

1 Simulink

2 Stateflow

33 / 50

Anatomy of an embedded system

Embedded systems are made of different components which highly
interact together.

Plant Software Hardware

The jobs of the designer and the programmer are:
Design an algorithm to control a physical process
Implement this algorithm on a given hardware

Remark: we deal with two different worlds
continuous-time evolution for the plant.
discrete-time (periodic sampling) evolution for the software.

34 / 50

A short tutorial on Stateflow

35 / 50

Overview of Stateflow features
Stateflow is an extension of Simulink which is used to model and
simulate:

Finite state machines;
Flow charts;
Truth tables.

Stateflow receives input from Simulink models and emits output to
Simulink models.

Detecting Changes in Data Values

hasChangedTo (s [expr], v) !"#$!%& 1 '(#)" *+,$" +# ,-.+#'-% expr
-(+//!"/+#" 0+#+ s .)+%/"& #- #)" *+,$" &1".'('"0 23 v '% #)" .$!!"%# #'4"
&#"15 ! 4$&# 2" + ($,,3 6$+,'('"0 %+4"7 &$.) +& u.foo.bar7 8)'.) !"&-,*"& #-
+% +//!"/+#" 0+#+ #31" &$.) +& + &#!$.#$!" -! 2$& &'/%+,5 expr .+% 2" +%
+!2'#!+!3 "91!"&&'-% #)+# "*+,$+#"& #- + &.+,+! *+,$"5

Chart with Change Detection
:)" (-,,-8'%/ 4-0", &)-8&)-8 #- $&" #)" hasChanged7 hasChangedFrom7 +%0
hasChangedTo -1"!+#-!& #- 0"#".# &1".'('. .)+%/"& '% +% '%1$# &'/%+,5 ;% #)'&
"9+41,"7 + <+41 2,-.= &"%0& + 0'&.!"#"7 '%.!"+&'%/ #'4" &'/%+, #- + .)+!#>

:)" 4-0", $&"& + ('9"0?&#"1 &-,*"! 8'#) + &#"1 &'@" -(A5 :)" &'/%+, '%.!"4"%#&
23 A +# "+.) #'4" &#"15 :)" .)+!# +%+,3@"& #)" '%1$# &'/%+, (-! #)" (-,,-8'%/
.)+%/"& +# "+.) #'4" &#"1>

• B%3 .)+%/" (!-4 #)" 1!"*'-$& #'4" &#"1
• C)+%/" #- #)" *+,$" D
• C)+%/" (!-4 #)" *+,$" D

!"#$!

Note: Stateflow block are activated by on sampling period or on
occurence of events

36 / 50

Design methodology1

Tutorial 5: Systems Modelling with Stateflow/Simulink

Embedded Control Systems course, October 2008. (29/10/2008) Page 3 of 20
Course home page: Course home page:
http://www.kth.se/itm/inst/MMK/edu/inst_kurser/md/MF2008?l=sv_SE

Figure 2. Stateflow diagram modelling an automatic transmission system

2.1 How to build a Stateflow chart
To develop a state machine model using Stateflow you first have to create a Simulink
model. Using the Simulink browser you create a Stateflow chart by selecting Stateflow
and Chart, from the Simulink library browser.

According to the Mathworks, developing a Stateflow chart can be divided into seven
steps, as illustrated in Figure 3.

Figure 3: Stateflow workflow according to MathWorks.

From a systems point of view, it is clear that before you do this, you have to know

• what functions you want to describe

Event

State action

Condition

Transition

Parallel
(AND) state
Exclusive
(OR) state

1According to The Mathworks
37 / 50

A simple FSM in Stateflow

Fan1 Fan2
PowerOn

On

Off

[temp < 120]

[temp ≥ 120]

On

Off

[temp < 150]

[temp ≥ 150]

du: airflow=in(Fan1.On) + in(Fan2.On);
SpeedValue

en: airflow=0;
PowerOff

SWITCH SWITCH

38 / 50

FSM in Stateflow

Finite State Machines in Stateflow are a combination of Mealy and Moore
charts with variables. In consequence, their semantics is more complex.

Two kinds of states
OR states, i.e. states executed in exclusion
AND states, i.e. states executed in parallel (but the simulation has a
sequential execution)

Moreover states can contain other states, we have hence hierarchy.

39 / 50

State actions

Computations are associated to states (state action) at different time:
entry (en): action executed once when the state is activated.
during (du): action executed each time step of simulation when the
state is activated and no active transition is available.
exit (ex): action executed once when the state is. deactivated

Example

du : a i r f l o w = i n (Fan1 . On) + i n (Fan2 . On) ;

in is a predicate which returns 0 if false and 1 if true.

40 / 50

Action language
Binary operations

7 Notations

7-44

Binary Operations
Binary operators differ in interpretation depending on whether you check or
uncheck the Enable C-like bit operations field in the properties dialog for the
chart. See the section “Specifying Chart Properties” on page 3-46.

The following table summarizes the interpretation of all binary operators in
Stateflow action language. Table order gives relative operator precedence
(column Prec in table); highest precedence (10) is at the top of the table. Binary
operators are evaluated left to right (left associative).

Example Prec C-Like Bit Ops Enabled C-Like Bit Ops Disabled

a * b 10 Multiplication of two
operands

Same

a / b 10 Division of one operand by
the other

Same

a %% b 10 Modulus Same

a + b 9 Addition of two operands Same

a - b 9 Subtraction of one operand
from the other

Same

a >> b 8 Shift operand a right by b
bits.
(See * note below.)

Same

a << b 8 Shift operand a left by b
bits.
(See * note below.)

Same

a > b 7 Comparison of the first
operand greater than the
second operand

Same

a < b 7 Comparison of the first
operand less than the
second operand

Same

41 / 50

Action language
Binary operations

Action Language

7-45

a >= b 7 Comparison of the first
operand greater than or
equal to the second operand

Same

a <= b 7 Comparison of the first
operand less than or equal
to the second operand

Same

a == b 6 Comparison of equality of
two operands

Same

a ~= b 6 Comparison of inequality of
two operands

Same

a != b 6 Comparison of inequality of
two operands

Same

a <> b 6 Comparison of inequality of
two operands

Same

a & b 5 Bitwise AND of two
operands

Logical AND of two
operands

a ^ b 4 Bitwise XOR of two
operands

Operand a raised to
power b.
(See ** note below
table.)

a | b 3 Bitwise OR of two operands Logical OR of two
operands

a && b 2 Logical AND of two
operands

Same

a || b 1 Logical OR of two operands Same

Example Prec C-Like Bit Ops Enabled C-Like Bit Ops Disabled

41 / 50

Action language
Unary operations and math functions

7 Notations

7-46

Note * Noninteger operands for the >> and << bit shift operators are first
cast to integers before the bits are shifted.

Note ** Use parentheses around power expressions with the ^ operator
when used in conjunction with other arithmetic operators. This avoids
problems with operator precedence. For example, the action z=x^2+y^2 should
be rewritten as z=(x^2)+(y^2).

Unary Operations
The following unary operators are supported in Stateflow action language.
Unary operators have higher precedence than binary operators and are
evaluated right to left (right associative).

Unary Actions
The following unary actions are supported in Stateflow action language.

Example Description

~a Logical not of a

Complement of a (if bitops is enabled)

!a Logical not of a

-a Negative of a

Example Description

a++ Increment a

a-- Decrement a

7 Notations

7-46

Note * Noninteger operands for the >> and << bit shift operators are first
cast to integers before the bits are shifted.

Note ** Use parentheses around power expressions with the ^ operator
when used in conjunction with other arithmetic operators. This avoids
problems with operator precedence. For example, the action z=x^2+y^2 should
be rewritten as z=(x^2)+(y^2).

Unary Operations
The following unary operators are supported in Stateflow action language.
Unary operators have higher precedence than binary operators and are
evaluated right to left (right associative).

Unary Actions
The following unary actions are supported in Stateflow action language.

Example Description

~a Logical not of a

Complement of a (if bitops is enabled)

!a Logical not of a

-a Negative of a

Example Description

a++ Increment a

a-- Decrement a

Action Language

7-47

Assignment Operations
The following assignment operations are supported in Stateflow action
language.

The following assignment operations are supported in Stateflow action
language when the Enable C-like bit operations check box is checked in the
properties dialog for the chart. See section “Specifying Chart Properties” on
page 3-46.

Calling C Library Functions
You can call the following small subset of the C Math Library functions:

Example Description

a = expression Simple assignment

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

Example Description

a |= expression Equivalent to a = a | expression (bit operation)

a &= expression Equivalent to a = a & expression (bit operation)

a ^= expression Equivalent to a = a ^ expression (bit operation)

abs acos asin atan atan2 ceil

cos cosh exp fabs floor fmod

labs ldexp log log10 pow rand

sin sinh sqrt tan tanh

41 / 50

Action language
Assignments

Action Language

7-47

Assignment Operations
The following assignment operations are supported in Stateflow action
language.

The following assignment operations are supported in Stateflow action
language when the Enable C-like bit operations check box is checked in the
properties dialog for the chart. See section “Specifying Chart Properties” on
page 3-46.

Calling C Library Functions
You can call the following small subset of the C Math Library functions:

Example Description

a = expression Simple assignment

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

Example Description

a |= expression Equivalent to a = a | expression (bit operation)

a &= expression Equivalent to a = a & expression (bit operation)

a ^= expression Equivalent to a = a ^ expression (bit operation)

abs acos asin atan atan2 ceil

cos cosh exp fabs floor fmod

labs ldexp log log10 pow rand

sin sinh sqrt tan tanh

An more
call homemade C functions
manipulate arrays
use pointers
temporal operators: after(n,E), before(n,E), at(n,E) and
every(n, E).

41 / 50

Temporal logic

Temporal logic operator can be found in state actions or on transition
conditions.

10 Using Actions in C Charts

• !"# $ %&$#' ()'& *")*+,' -.-*'/0 1", %$* ,/- '&- tick "# wakeup -.-*' '"
2-*"'- '&-)3+4)%)' -.-*' "5 $ %&$#' ($6)*7 ,+8

• 9-3+"#$4 4"7)% "+-#$'"#/ %$* $++-$# "*41)*:

- ;'$'- $%')"*/

- 9#$*/)')"*/ '&$' "#)7)*$'- 5#"3 /'$'-/

- 9#$*/)')"* /-73-*'/ '&$' "#)7)*$'- 5#"3 <,*%')"*/ (&-* '&- 5,44
'#$*/)')"* +$'& %"**-%'/ '(" /'$'-/

Note 9&)/ #-/'#)%')"* 3-$*/ '&$' 1", %$**"' ,/- '-3+"#$4 4"7)% "+-#$'"#/
)* 2-5$,4' '#$*/)')"*/ "# 54"(7#$+& '#$*/)')"*/8

=.-#1 '-3+"#$4 4"7)% "+-#$'"# &$/ $* $//"%)$'-2 /'$'-: '&- /'$'-)* (&)%&
'&- $%')"* $++-$#/ "# 5#"3 (&)%& '&- '#$*/)')"* "#)7)*$'-/8

• >", 3,/' ,/- -.-*' *"'$')"* ?/-- @A"'$')"*/ 5"# =.-*'BC$/-2 9-3+"#$4
D"7)%E "* +$7- FGBHHI '" -J+#-// -.-*'BK$/-2 '-3+"#$4 4"7)%)* /'$'- $%')"*/8

Operators for Event-Based Temporal Logic
!"# -.-*'BK$/-2 '-3+"#$4 4"7)%0 ,/- '&- "+-#$'"#/ $/ 2-/%#)K-2 K-4"(8

Operator Syntax Description
after after(n, E)

(&-#- E)/ '&- K$/- -.-*' 5"# '&-
after "+-#$'"# $*2 n)/ "*- "5 '&-
5"44"()*7:

• L +"/)').-)*'-7-#

• L* -J+#-//)"* '&$' -.$4,$'-/ '"
$ +"/)').-)*'-7-# .$4,-

M-',#*/ '#,-)5 '&- K$/- -.-*' E
&$/ "%%,##-2 $' 4-$/' n ')3-/ /)*%-
$%').$')"* "5 '&- $//"%)$'-2 /'$'-8
N'&-#()/-0 '&- "+-#$'"# #-',#*/
5$4/-8

O* $ %&$#' ()'& *")*+,' -.-*'/0
after(n, tick) "# after(n,
wakeup) #-',#*/ '#,-)5 '&- %&$#'
&$/ ("6-* ,+ n ')3-/ "# 3"#- /)*%-
$%').$')"* "5 '&- $//"%)$'-2 /'$'-8

!"#$%

Events can be:
user defined events
existing events: sec, msec, tick

42 / 50

Temporal logic: example
With temporal logic

43 / 50

Temporal logic: example

Without temporal logic

We need to create a new variable and a new transition to count the time
elapsed.

43 / 50

Transition between states – 1

The more general form of a Stateflow transition is:

EVENT [condition] {condition action} / transition action

EVENT: the activation of the transition is enabled if the event is
present.
condition: a Boolean expression which enables the transition if
this expression is true.
condition action: piece of code executed as soon as the
condition is evaluated as true and before the transition destination
has been determined to be valid.
transition action: piece of code executed after the transition
destination has been determined.

44 / 50

Transition between states – 2

The validation/activation of the transition depends of its kind:
Event only: valid is that event occurs.
Event and condition: valid if that event occurs and the condition is
true.
Condition only: valid if any event occurs and the condition is true.
Action only: valid if any event occurs.
Not specified: valid if any event occurs.

Default transition is a special transition gives among several states
which one is the first executed.

45 / 50

History junction

History junction is used to set the activate sub-state as the most
recently visited.
It overrides the default transition.

46 / 50

A simple flow chart in Stateflow

A flow chart to compute the square root using Newton method.

{xn = 1; y = 0; }

[abs(y − xn) > 0.0001]

{y = xn; xn = 0.5 ∗ (xn + x/xn); }

{y = xn; }

Connective junctions are used to define decision point in a chart.
Simplification of the chart as a connective junction is not a state.

47 / 50

Simulation algorithm (old)

Mainly, the execution of Stateflow model follows four steps at each time
an input event occurs:

1 search for active states
hierarchically from top to bottom and sequentially for parallel states
clock rules;

2 search for valid transition (twelve o’clock rule);
3 execution of valid transition;

execute exit action, set source state inactive, execute transition
action, set destination state active, execute entry action.

4 during action executed.

Remark
Order of execution and priorities can be added on states and transitions.

48 / 50

Example: built step-by-step

Main steps
create inputs/outputs
create states
create transitions

49 / 50

Summary

Stateflow is a complex language with a lot of features.
It is easy to model discrete-time systems.

Question
Is Stateflow suitable for embedded software as is?

Choosing between Simulink and Stateflow
If the function mainly involves complicated logic operations,
Stateflow should be used.
If the function mainly involves numerical operations, Simulink should
be used.

50 / 50

	Lecture 6
	Simulink
	Stateflow

