
Modèle et génération automatique de code

Alexandre Chapoutot

ENSTA Paris

2022-2023

Part I

Lecture 5

2 / 62

Software architecture

1 Software architecture

2 Software testing

3 Model testing

3 / 62

Software Architecture

From IEEE 1471, architecture of a ”software-intensive system”:
The fundamental organization of a system embodied in its com-
ponents, their relationships to each other, and to the environ-
ment, and the principles guiding its design and evolution.

4 / 62

Architecture an important first step

Architecture is the set of earliest design decisions
hardest to change
most critical to get right

Architecture is the first artifact design on which a system’s quality
attributes are considered.

Quality attributes:
From the end user: performance, availability, usability, security
From the developer: Maintainability, portability, re-usability,
testability
From the business: time-to-market, cost-and-benefits, integration
with legacy systems, etc.

5 / 62

Design principles and properties

Divide-and-conquer: Abstraction, Hierarchical structure
Modularity: coupling and cohesion
Information hiding
Limited complexity

Focus on Coupling and cohesion i.e., structural criteria on individual
modules and their interactions.

Cohesion the glue that keeps a module together
Coupling the strength of the connection between modules

6 / 62

Cohesion type1

Coincidental (worst): is when parts of a module are grouped
arbitrarily; the only relationship between the parts is that they have
been grouped together (e.g. Utility module).
Logical: is when parts of a module are grouped because they are
logically categorized to do the same thing (e.g., mouse an keyboard
handlers).
Temporal; is when parts of a module are grouped by when they are
processed - the parts are processed at a particular time in program
execution (e.g., exception handler).
Procedural: is when parts of a module are grouped because they
always follow a certain sequence of execution (file permission
checks).
Communicational: is when parts of a module are grouped because
they operate on the same data.
Sequential: is when parts of a module are grouped because the
output from one part is the input to another part like an assembly
line.
Functional (best): is when parts of a module are grouped because
they all contribute to a single well-defined task of the module.

1http://en.wikipedia.org/wiki/Cohesion_(computer_science)
7 / 62

http://en.wikipedia.org/wiki/Cohesion_(computer_science)

Coupling type2

Content (high): one module relies on the internal workings of
another module.
Common: two modules share the same global data
External: modules share an externally imposed data format, or
communication protocol
Control: one module controls the flow of another, by passing it
information on what to do
Stamp: modules share a composite data structure and use only part
of it
Data: modules share data through, e.g., through parameters
Message (low): Component communicate via message passing
No coupling: Modules do not communicate at all with one another

2http://en.wikipedia.org/wiki/Coupling_(computer_programming)
8 / 62

http://en.wikipedia.org/wiki/Coupling_(computer_programming)

A good design

Goal
Strong cohesion and weak coupling

Consequences
Simpler interfaces
Simpler communication
Simpler correctness proof
Modification on a module less impact on other modules
Re-usability increased
Comprehensibility increased

9 / 62

Complexity3

Measure a certain feature of the software
Use these numbers as a criterion to assess or to guide the design
Higher value then higher complexity then more effort

For example:
number of lines of code (problem of verbosity of languages)
Halstead complexity measures: n1 number of unique operator, n2
number of unique operands, N1 total number of operators, N2 total
number of operands.

Size of vocabulary: n = n1 + n2
Program length: N = N1 + N2
Volume: V = N log2 n
Programming effort: E = V /L, etc.

Cyclomatic complexity (from the CFG) M = E − N + 2P
E : number of edges
N: number of nodes
P: number of connected components

3http://en.wikipedia.org/wiki/Halstead_complexity_measures
http://en.wikipedia.org/wiki/Cyclomatic_complexity

10 / 62

http://en.wikipedia.org/wiki/Halstead_complexity_measures
http://en.wikipedia.org/wiki/Cyclomatic_complexity

Conclusion

Recipe
Essence of the design process: decompose system into parts
Wanted properties of a decomposition:

coupling/cohesion,
information hiding,
(layers of) abstraction

Complexity of a decomposition: these properties are expressed
with numbers

Several design methods
Theses ideas are still valid for model-based design.
But some notions, e.g., complexity, have to be refine/clarify in the
context of models.

11 / 62

Software testing

1 Software architecture

2 Software testing

3 Model testing

12 / 62

Computer-aided design

Introduction to software testing

13 / 62

Software testing

Definition (tentative)
Detection of unwanted behaviors with program execution process in order
to validate the software.

Mainly two kinds of test activities:
Structural testing: To detect implementation errors.
Functional testing: Is the software fulfill its specification?

Best way: combine both

Other verification methods:
Code inspection: may detect static errors but not dynamic ones
and does not scale up well.
Formal methods: gives mathematical arguments to validate the
software. (Note: model and executable are not the same)

14 / 62

Testing activities in the cycle of development

Spécification des
exigences de

sécurité des E/E/EP

Spécification des
exigences de

sécurité du logiciel
d'application

Validation de la
sécurité

Conception de
l'architecture du

logiciel
d'application

Réalisation du
logiciel

d'application

Architecture en
sous-systèmes

Réalisation des
modules

d'application

Tests modulaires
du logiciel

d'application

Codage

Test du logiciel
d'application

Test d'intégration du
logiciel d'application

avec le SEP

Système
validé

VALIDATION

Vérification
Résultat

Unit testing .
Integration testing software/software: .
Integration testing software/hardware: .

15 / 62

Testing activities in the cycle of development

Spécification des
exigences de

sécurité des E/E/EP

Spécification des
exigences de

sécurité du logiciel
d'application

Validation de la
sécurité

Conception de
l'architecture du

logiciel
d'application

Réalisation du
logiciel

d'application

Architecture en
sous-systèmes

Réalisation des
modules

d'application

Tests modulaires
du logiciel

d'application

Codage

Test du logiciel
d'application

Test d'intégration du
logiciel d'application

avec le SEP

Système
validé

VALIDATION

Vérification
Résultat

Unit testing .
Integration testing software/software: .
Integration testing software/hardware: .

15 / 62

Testing activities in the cycle of development

Spécification des
exigences de

sécurité des E/E/EP

Spécification des
exigences de

sécurité du logiciel
d'application

Validation de la
sécurité

Conception de
l'architecture du

logiciel
d'application

Réalisation du
logiciel

d'application

Architecture en
sous-systèmes

Réalisation des
modules

d'application

Tests modulaires
du logiciel

d'application

Codage

Test du logiciel
d'application

Test d'intégration du
logiciel d'application

avec le SEP

Système
validé

VALIDATION

Vérification
Résultat

Unit testing .
Integration testing software/software: .
Integration testing software/hardware: .

15 / 62

Testing activities in the cycle of development

Spécification des
exigences de

sécurité des E/E/EP

Spécification des
exigences de

sécurité du logiciel
d'application

Validation de la
sécurité

Conception de
l'architecture du

logiciel
d'application

Réalisation du
logiciel

d'application

Architecture en
sous-systèmes

Réalisation des
modules

d'application

Tests modulaires
du logiciel

d'application

Codage

Test du logiciel
d'application

Test d'intégration du
logiciel d'application

avec le SEP

Système
validé

VALIDATION

Vérification
Résultat

Unit testing .
Integration testing software/software: .
Integration testing software/hardware: .

15 / 62

Test activity and the development levels

Unit testing: separately testing each software component.
Integration testing: testing the good behavior when components are

composed.
Conformance testing: validation of the adequacy between code and

specification.

But we can also find: regression testing: verify that software
corrections/updates do not introduce errors; target testing: verify that
the code on the target is correct (̸= host testing).

Mainly two approaches:
Black box: (i.e., functional testing) testing activity from the
specifications, a model, function prototypes or component interfaces.
White box: (i.e., structural testing) testing activity from the source
code.

16 / 62

Software testing challenges

The main difficulty in software testing come from the definition of:
a set of inputs in function of a test coverage criterion.
a set of outputs in function of a determined set of inputs (oracle
problem).

and the definition of stubs.

Importance of test cases:
the test cases is a representation of particular values of the input
defined in the component specification.
A complete software testing ⇒ full specification coverage.
but combinatorial explosion:
e.g. addition of two 32 bits integers requires 264 test cases!

17 / 62

Testing coverage

Goal of the coverage
For the client: defined the level of trust in the software.
For the verifier: defined the contract between the client and the
tester
For the tester: defined the measure criterion.

Problem: stop criterion: When should we stop testing?
Negative criterion: blocking bugs, we cannot test the remainder of
the software.
Positive criterion: rate of coverage
ideally 100% but may require “justifications”

Test cases and coverage
Each test case must increase the testing coverage.

18 / 62

Computer-aided design

Introduction to software testing

Structural testing

19 / 62

Test structural

Software testing activity based on the software structure.

Goals
Detect implementation errors;
Verify that the software does not do more than its specification;
Verify that there is no bugs like:
e.g. overflow, non initialization variable, etc.

Stopping criterion
in function of the code structure.

20 / 62

Structural testing coverage

Definition
Measure the rate of tested source code.

One sees these coverages
Control flow coverage: instructions, branches, paths, LCSAJ

Logical condition coverage

21 / 62

Example: instruction coverage

Source code
procedure P

(i n Boolean C1 ;
i n Boolean C2)

i s
begin

i f C1 then
s1 ;

end i f ;
i f C2 then

s2 ;
end i f ;

end P ;

Control flow
graph

c1

c2

end

s1

s2

Test1

c1 = true
s1

c2 = true
s2

Remark
Only one test is enough.

22 / 62

Example: branch coverage

Source code
procedure P

(i n Boolean C1 ;
i n Boolean C2)

i s
begin

i f C1 then
s1 ;

end i f ;
i f C2 then

s2 ;
end i f ;

end P ;

Control flow
graph

c1

c2

end

s1

s2

Test 1 Test 2

c1 = true false
s1

c2 = false true
s2

Remark
Two tests are required.

23 / 62

Example: path coverage

Source code
procedure P

(i n Boolean C1 ;
i n Boolean C2)

i s
begin

i f C1 then
s1 ;

end i f ;
i f C2 then

s2 ;
end i f ;

end P ;

Control flow
graph

c1

c2

end

s1

s2

Test 1 Test 2 Test 3 Test 4

c1 = true true false false
s1 s1

c2 = true false true false
s2 s2

Remark
Four tests are required.

Question what about loops, is this coverage feasible?

24 / 62

Linear Code Subpath And Jump (LCSAJ).

The idea is to split the source code into linear parts in order to have
paths coverage.

A piece of vocabulary
In a control flow graph, we can distinguish:

Special nodes: input, output or the target of a jump.
Special edges: jumps and by default the edge to the output.

Definition
We call LCSAJ a path going from a special node to an other special node
containing only one special edge between the last node and the node
before.

Pros: a better coverage than branches coverage without being to
expensive.

25 / 62

Example: LCASJ paths

L5 B := 2 ∗ A

L20A := A + 1

L30

L40 B := A

L80 A := −2

L60

L70 L90

print(A)

L100

A >= B

B <> 2 ∗ C

A < 0

B := 2 ∗ C

LCASJ:
L5, L20, L30,
L60
L5, L20, L30,
L40, L60, L80
L5, L20, L30,
L40, L60, L70,
L90
etc.

26 / 62

Limitation of control flow coverage
Two programs doing the same computation:

procedure P1
(i n Boolean C1 ;

i n Boolean C2)
i s
begin

S := F a l s e ;
i f C1 then

i f C2 then
S := True ;

end i f ;
end i f ;

end P1 ;

procedure P2
(i n Boolean C1 ;

i n Boolean C2)
i s
begin

S := C1 and C2 ;
end P2 ;

Paths coverage: 3 tests for P1 and 1 test for P2.
The previous coverage are too dependent on the control flow.

Partial conclusion one never uses the source code itself to test the
software but the specifications!!!

27 / 62

Logical conditions coverage

In control-flow coverage, we do not take into account the values of nodes.

Principle
In the logical condition coverage, instead of going once in the ”true”
branch and in the ”false” branch, we seek the different way to make
condition ”true” or ”false”.

Consequence
We increase the confidence in the software.

28 / 62

Logical condition coverage: truth table

procedure P
(i n Boolean C1 ; i n Boolean C2 ; i n Boolean C3)

i s
begin

i f C1 or C2 or C3
then

s1 ;
e l s e

s2 ;
end i f ;

end P ;

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
(v,v,v) (v,v,f) (v,f,v) (v,f,f) (f,v,v) (f,v,f) (f,f,v) (f,f,f)

s1 s1 s1 s1 s1 s1 s1
s2

Also called: multiple condition coverage 2n

29 / 62

Strategies to limit the combinatorial explosion

Strategy for OR operator, do
one test with all the sub-conditions set to ”false”.
one test for each sub-conditions set to ”true” one by one.
one test with all sub-conditions set to ”true”.

Consequence: n + 2 tests
Strategy for AND operator, do

one test with all sub-conditions set to ”true”.
one test for each sub-conditions set to ”false” one by one.

Consequence: n + 1 tests

Called also MC/DC (Modified Condition/ Decision Coverage)
Decision: same as branches coverage.
Condition: each condition must be true or false.
Condition/Decision: combination of the two previous criteria.
MC/DC: independence of each conditions.

30 / 62

Computer-aided design

Introduction to software testing

Functional testing

31 / 62

Functional testing

also called black box testing.

Goal
Check the software behaviors in regards to the specification.

Check that some constraints are fulfilled (e.g. performance, memory
consumption, etc.) or quality factors are met (e.g. portability,
maintainability, etc.)

Stopping criteria the functional coverage is qualitative
We cannot know a priori the number of tests to do.
We have to use the only one thing we know: the specification.

Remark usually we use structural coverage to help in this task!

32 / 62

Recall on specifications

A specification must describe at least:
the software functions;
the software interface;
the development constraints.

Kinds of coverage
1 Nominal testing;
2 Functional limit testing;
3 Robustness testing;
4 Conformance testing.

1 and 2 test the function of the software.
3 and 4 are quality factors.

33 / 62

Software function testing

To test the functional behaviors
Two cases:

Nominal testing check the conformance to the specification for a
normal behavior of the software.

Limit testing: check the behaviors at the functional limits of the
software.

Building test cases with partition analysis
Idea of the method
group together each input into equivalent classes, i.e. inputs which
produce the same functional behaviors.

34 / 62

Partition analysis

Recipe: for each function in the specification
Determine inputs and their domains of values.
From the control part of the specification split the input domain into
equivalent classes.
For each equivalence classes:

choose one element in it
from the process part of the specification determine the output value
associated to the chosen inputs.

Oracle problem
when algorithms are too complex, e.g., controller
all the inputs are not available for the tester (e.g., clocks)

35 / 62

Limit and outside limit tests

Example
Function: Produit valeurs absolues
Input: E1 and E2
Output: S
Processing: this function compute the absolute value of the product of
E1 and E2.

Equivalence classes:
E1 E2

[MinInt, −1] [MinInt, −1]
[0, MaxInt] [0, MaxInt]

Definition: Limit tests
Functional limit test: taking values at the limits of each functional
equivalence classes.

Definition: outside limit tests
Functional outside limit test: taking values outside the limits of
functional equivalence classes.

36 / 62

Example: limit and outside limit tests
If E1 and E2 has the same functional domain: [−100, 100]

Limit tests
E1 E2

[−100, −1] −100 [−100, −1] −57
[−100, −1] −1 [0, 100] 64

[0, 100] 0 [−100, −1] −5
[0, 100] 100 [0, 100] 98

[−100, −1] −59 [−100, −1] −1
[0, 100] 48 [−100, −1] −100

[−100, −1] −63 [0, 100] 0
[0, 100] 75 [0, 100] 100

Outside limit tests
E1 E2

[−100, −1] −234 [−100, −1] −42
[−100, −1] −84 [0, 100] 115

[0, 100] 32 [−100, −1] −567
[0, 100] 174 [0, 100] 39

37 / 62

Data coverage

Remark
In the previous coverages, we did not interest in manipulated data format
nor numerical values to make condition to true or false.

The data coverage tries to choose:
the right numerical values to make a condition true or false.
(remarkable value)
the limit values of the input.
the numerical values to get particular values or behaviors (overflow,
division by zero, etc.)

38 / 62

Example: data coverage

Domain of a data
0 32767−32768

0 359

procedure P
(i n I n t e g e r E)

i s
begin

i f E > 30
then

S1 ;
end i f ;

end P ;

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

359 31 30 0 −32768 32767

s1 s1 s1

39 / 62

Data coverage

It is possible to split the domain of each data in equivalence classes.
Each class defines a particular behaviors of the data.
In the previous example, two classes are possible [−32768, 29] and
[30, 32767]. Note: 30 is a remarkable value.

From the tester point of view, we need two kinds of tests:
Limit testing: taking values at the limits of each functional
equivalence classes.

Outside limit testing: taking values outside the limits of functional
equivalence classes.

40 / 62

A word on stubs

When a component uses an external function f and we have or not this
function, in a first step we wish to test the behavior of the component
independently of f.

The stubbing technique aims at:
add one artificial input in the test cases. This input is associated to
the output of f.
write a stub to replace the code of f: this code only returns the
value set by the test case.

Remark
With this technique the tester can fully control the tests to do.

41 / 62

Conclusion: software testing

Everyone knows that debugging is twice as hard as writing a program
in the first place. So if you’re as clever as you can be when you write
it, how will you ever debug it?

Brian Kernighan

Main industrial challenge:
The verification step is highly important: economic issues.
But testing activity a comlex task starting in the specification step
of the cycle of development.

Efficient way to do testing
Combine structural and functional testing:

define the test cases from the speficiation
compute the covergare from these test cases

42 / 62

Model testing

1 Software architecture

2 Software testing

3 Model testing

43 / 62

Computer-aided design

Introduction to model testing

44 / 62

Context

Model vs Software
Software: statements, loop, conditional
Model: State/Transition or equations

Coverage criteria on software do not applied on models!

Model-based design
Fact: source code automatically generated from models.

Need to apply testing coverage on models

SOMCA: safety implication in performing SOftware Model Coverage
Analysis

45 / 62

Example: Model Coverage

A small program: a pressure detector
Main operator

15 /

Ce document et les informations qu’il contient sont la propriété de Safran. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Safran.

EXERCISE 6 – SOLUTION (3/3)

! Pressure Controller operator

CES SAFRAN Embedded Software / Module 9

1

ThresholdDetectorpressure

1

Dev iceTrigger
60

alarm

10.0

46 / 62

Example: Model Coverage

A small program: a pressure detector
Comparator

13 /

Ce document et les informations qu’il contient sont la propriété de Safran. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Safran.

EXERCISE 6 – SOLUTION (1/3)

CES SAFRAN Embedded Software / Module 9

1
over

threshold

measure

! Threshold Detector operator

46 / 62

Example: Model Coverage

A small program: a pressure detector
Automaton

14 /

Ce document et les informations qu’il contient sont la propriété de Safran. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Safran.

EXERCISE 6 – SOLUTION (2/3)

CES SAFRAN Embedded Software / Module 9

! Device Trigger Operator

dev ice
true

ON

f alse

dev ice

OFF

<SM1>

1
order

1

duration times true

46 / 62

Example: Model Coverage

A small program: a pressure detector

Predefined coverage criteria: Decision coverage, MC/DC, Masking
MC/DC
Predefined integration criteria: control activation, control and data
activation

46 / 62

SOMCA: criteria

Code: SOMCA-GMV-FR-001

Date: 14/10/2011

Version: 1.E

Page: 68 of 180

SOMCA Final Study Report

The definition of a loop is “A loop of depth N in the model is a transition path of length N that starts and ends in
the same state”. In this case we have two level 2 loops:

 If the Button input variable is true, a loop activates between Off and On states, generating an UF that

makes that when you press the button some time, you never know in which state you will end.

 If Button is false and the state On is active, we can find a loop between Up and Down states, because the
transitions have no condition associated and are always executed. This is an example of a loop that is not
an Unintended Function, because that’s desired behaviour.

The main objective of this example is to show that a loop is not an undesired element in the model, only a
risky one, and this criterion needs that all model loops have been executed (not eliminated) to check if the
behaviour is the desired one.

9.4.4. CRITERION APPLICABILITY FOR EACH SOFTWARE ASSURANCE LEVEL

Now, once all the criteria have been defined, it is proposed to apply different set of criteria for each software
criticality level in the following way. This tries to balance the number of verification cases required with the
criticality of each software DAL.

Criterion Name Block Diagrams State Diagrams

DAL DAL

A B C D E A B C D E

SOMCA Criterion 1: Range coverage

SOMCA Criterion 2: Functionality coverage

SOMCA Criterion 3: Modified input coverage

SOMCA Criterion 4: Activation coverage

SOMCA Criterion 5: Local Decision Coverage NA NA NA NA NA

SOMCA Criterion 6: Logic Path coverage NA NA NA NA NA

SOMCA Criterion 7: Parent State coverage NA NA NA NA NA

SOMCA Criterion 8: State History coverage NA NA NA NA NA

SOMCA Criterion 9: Transition coverage NA NA NA NA NA

SOMCA Criterion 10: Transition Decision
Coverage NA NA NA NA NA

SOMCA Criterion 11: Transition MC/DC NA NA NA NA NA

SOMCA Criterion 12: Event coverage NA NA NA NA NA

SOMCA Criterion 13: Activating event coverage NA NA NA NA NA

SOMCA Criterion 14: Level-N Loop coverage NA NA NA NA NA (3)* (2)* (1)*

(* The number in brackets means the N level used in the coverage criterion)

Table 9-2: SOMCA MCA criteria

The SOMCA Criterion 14 is applicable for A, B and C DAL levels, but not in the same way. For each criticality
the depth level that should be used to apply the criteria is different, e.g. For DAL-B, the criteria should be
applied with level 2.

47 / 62

Range coverage

Definition
All the significant values of the inputs and outputs of each model
component must be exercised. That is

All singular points of functional components
All equivalence classes
Continuous and discontinuous input signals.

Code: SOMCA-GMV-FR-001

Date: 14/10/2011

Version: 1.E

Page: 55 of 180

SOMCA Final Study Report

4. Scalability: The verification cases required to accomplish the whole criteria must not be too time-
consuming. The MCA should not be a burden for the developer, even when applied to complex
Formalized Designs.

5. DAL specific: It was expected that each Design Assurance Level will require a different set of model
coverage criteria, to balance the effort required to verify a model with respect to the criticality of the
model and the consequences of an unidentified Unintended Function.

6. Easy to learn: When choosing between different criteria with a similar degree of UF identification, this
secondary goal should prefer the easier to understand to the developer. The next sections will analyse
different coverage criteria and testing strategies based on previous work, and finally the proposed
SOMCA MCA criteria will be defined considering the above goals and considerations.

9.4.3.1. Range Coverage

SOMCA Criterion 1: Range coverage

All the significant values of the inputs and outputs of each model component must be exercised.

This criterion includes the following:
 All singular points of the functional components and algorithms

 All equivalence classes (valid/in-range and invalid/out-of-range classes), including internal data types

 Continuous and discontinuous input signals, including transitions between the maximum and minimum
in-range values and periodic signals (e.g. angle between [0 .. 2 · pi)).

This criterion is intended to be applied at model-component level, i.e. the analysis of the different input vectors
should not be done for each basic block but for a the inputs and outputs of a state machine or complete block
component encapsulating a specific functionality. In the case of analysing general criteria over State Diagrams
some clarifications should be done:

 The singular points that must have taken into account are the ones associated to all operations over the
input parameters of the state diagrams. These operations include both the conditions associated to each
transition and the ones included in the actions associated to transitions and states.

 The case of equivalence classes is the same as for the singular points.

Figure 9-4: Range Coverage criterion example.

For example, consider the above model component: a 3-input Max block. To satisfy the Range coverage
criterion, it is needed to analyse the inputs and outputs of this component (called “subsystem” in Simulink):

 Singular points: there are no singular points; all input numbers behave as surrounding values.

 Discontinuous input signals: for example, sawtooth signal between the minimum and maximum values for
the each input.

 Equivalence classes: Different equivalence partitions have been taken into account as explained bellow.

48 / 62

Functionality coverage

Definition
All characteristics of the functionality in context must be exercised for
each component. That is

Activation of characteristic (e.g., watchdog function is triggered)
Reaching internal conditions (e.g., saturation block fed with an
input over the upper limit)
Stability of transfer functions (e.g., fed with step wave, sine wave,
etc.)

Code: SOMCA-GMV-FR-001

Date: 14/10/2011

Version: 1.E

Page: 57 of 180

SOMCA Final Study Report

For example, consider the functionality provided by a limiter block with dynamic upper and lower limits.
Besides the different input values (nominal, above the higher limit, below the lower limit), other situations
need to be considered, like the transition modifying the upper limit while.

LIM
Input LIM_Out

LO

HI

LIM
Input LIM_Out

LO

HI

LIM
Input LIM_Out

LO

HI
Figure 9-5: Functionality Coverage example.

9.4.3.3. Modified input coverage

SOMCA Criterion 3: Modified input coverage

All inputs of every block and state diagram have changed at least once.

This criterion tries to find problems in the integration of different components or blocks. It is required for all
inputs to change at least once during the verification cases, or to be justified.

Please, note that Modified input coverage is not equivalent to Range Coverage, because Range Coverage will
not force to exercise different values if there is just one equivalence class. In addition, this criterion applies to
every single basic block, while the Range Coverage criterion is intended for the inputs and outputs of each
model component. Also, the Modified input coverage applies to Boolean values too.

For example, in the next state machine the DebugMode value never changes because it is connected to a
constant. In some cases it is needed to add a justification why that constant is required, but in this example
the criterion finds a debug element that the designer forgot to remove from the model.

Figure 9-6: Modified input coverage example.

9.4.3.4. Activation Coverage

SOMCA Criterion 4: Activation coverage

All model elements whose execution depends on an external rule or signal must be activated.

49 / 62

Modified input coverage

Definition
All inputs of every block and state diagram have changed at least once

Code: SOMCA-GMV-FR-001

Date: 14/10/2011

Version: 1.E

Page: 57 of 180

SOMCA Final Study Report

For example, consider the functionality provided by a limiter block with dynamic upper and lower limits.
Besides the different input values (nominal, above the higher limit, below the lower limit), other situations
need to be considered, like the transition modifying the upper limit while.

LIM
Input LIM_Out

LO

HI

LIM
Input LIM_Out

LO

HI

LIM
Input LIM_Out

LO

HI
Figure 9-5: Functionality Coverage example.

9.4.3.3. Modified input coverage

SOMCA Criterion 3: Modified input coverage

All inputs of every block and state diagram have changed at least once.

This criterion tries to find problems in the integration of different components or blocks. It is required for all
inputs to change at least once during the verification cases, or to be justified.

Please, note that Modified input coverage is not equivalent to Range Coverage, because Range Coverage will
not force to exercise different values if there is just one equivalence class. In addition, this criterion applies to
every single basic block, while the Range Coverage criterion is intended for the inputs and outputs of each
model component. Also, the Modified input coverage applies to Boolean values too.

For example, in the next state machine the DebugMode value never changes because it is connected to a
constant. In some cases it is needed to add a justification why that constant is required, but in this example
the criterion finds a debug element that the designer forgot to remove from the model.

Figure 9-6: Modified input coverage example.

9.4.3.4. Activation Coverage

SOMCA Criterion 4: Activation coverage

All model elements whose execution depends on an external rule or signal must be activated.
50 / 62

Activation coverage

Definition
All model elements whose execution depends on an external rule or signal
must be activated

Code: SOMCA-GMV-FR-001

Date: 14/10/2011

Version: 1.E

Page: 58 of 180

SOMCA Final Study Report

This criterion covers:
 Enabled components: The signal that enables the block execution must be activated.

 State machine actions: Those actions in a State Machine associated to specific event (e.g. entry, during,
exit) must be executed.

This basic criterion covers both State Machines and Block Diagrams, and the differences between both of them
could be enough to divide it into two different criteria. It has been keep as a single one because the final
objective is the same in both situations: to check that all elements of the model have been executed.

For example, in the next SCADE model the inc block is wrapped within a conditional block, and thus the inc
block will be executed just when the activation decision is True (when input signal ‘in’ is less or equal to 7).
Therefore, to satisfy the Activation coverage this conditional block needs to be enabled at least once during the
execution of the verification cases, otherwise the inc block would never been exercised. An equivalent
example in Simulink would involve enabled subsystems.

Figure 9-7: Activation coverage example.

9.4.3.5. Local Decision Coverage

SOMCA Criterion 5: Local Decision Coverage

Every block decision and Boolean output of a basic block has taken on all possible values at least once.

This criterion applies the classical Decision Coverage to all blocks in a block diagram that depends on a Boolean
expression, including:

 Logical operators: the output of each logical operators has taken both the True and False values (e.g.
and, or, xor, not…)

 Relational operators: the output of each relation operator has taken both the True and False values
(e.g. equals, greater than, less than…)

 Switch blocks: the decision of the switch / if block has taken both the True and False values, activating
both inputs.

 Selectors: the decision of the selector has taken both the True and False values, enabling the processing
of the contents of each branch.

For example, in the next model, during the execution of the verification cases the local outputs of each of the 4
logical blocks is recorded. The output of both relational blocks and the output of the ‘nand’ operator have taken
both Boolean values, satisfying the Local Decision Coverage for these three blocks. However, this criterion
detected that the output of the ‘and’ operator has just taken the True value, due to a missing case of the
scenario. This was resolved adding a new verification case to exercise that situation.

51 / 62

Local decision coverage

Definition
Every block decision and Boolean output of a basic block has taken on
all possible values at least once

This criterion applies the classical Decision Coverage to all blocks in a
block diagram that depends on a Boolean expression, including:

Logical operators: the output of each logical operators has taken
both the True and False values (e.g., and, or, xor, not, . . .)
Relational operators: the output of each relation operator has
taken both the True and False values (e.g., equals, greater than, less
than, . . .)
Switch blocks: the decision of the switch/if block has taken both
the True and False values, activating both inputs.
Selectors: the decision of the selector has taken both the True and
False values, enabling the processing of the contents of each branch.

52 / 62

Logic path coverage

Definition
The input of every logic path has been shown to independently affect the
output of the logic path.

For satisfying this criterion it is necessary to verify that a change in the
input of a logic path modifies the output of that path when all the links
of the path are active (i.e., no block masks any of the links of the path).
This requires at least two different verification cases where all links of
each logic path are active, and also that the output link has both the
True and False values.

53 / 62

Logic path coverage

Code: SOMCA-GMV-FR-001

Date: 14/10/2011

Version: 1.E

Page: 60 of 180

SOMCA Final Study Report

Figure 9-10: Logic Path Coverage criterion example

For example, in the next table we evaluate the data flow for the input vectors {In1=False, In2=0, In3=0} and
{In1=True, In2=0, In3=1}, showing in italics the inputs and outputs of each block involved in the logic path.
In this case the first input vector activates all the links of the middle logic path, resulting in a True value at the
end of the path. However, for the second input vector the OR block masks the middle path (the True value at
I1 for the OR block will always result in a True value, regardless of the value of I2), so even if at the end of the
logic path the False value is get it is not enough to satisfy the Logic Path Coverage criterion for this path.
Usually, not satisfying the criterion means modifying a verification case or adding an additional verification case
to exercise that part of the model, but actually in this case it is not possible to satisfy the criterion because the
False output can be obtained just when the path is not active.

Input ports Relational block AND block OR block NOT block Switch

In1 In2 In3 I1 I2 O I1 I2 O I1 I2 O I O I2

False 0 1 0 1 True False True False False False False False True True

True 0 1 0 1 True True True True True Masked True True False False

Table 9-1: Activation example middle logic path.

9.4.3.7. Parent State Coverage

SOMCA Criterion 7: Parent State coverage

All states and substates have been entered and exited (except for those without exit transitions), and all
substates have been active at least once when parent state exits.

The Parent State Coverage criterion not only requires that all substates have been activated, but also that the
parent state (which contains different substates, and thus are active whenever one of its substates is active)
has been exited when each specific substate was active. This tests the behaviour of the state machine when
the parent state is interrupted at every possible situation. It is worth noting that some parent states do not
have a global exit transition but each sub-state can have specific transitions to other states, and thus this
criterion does not apply to those sub-states.

For example, consider the next Stateflow model with two concurrent state machines. The ‘On’ state contains to
substates (‘TempOK’ and ‘TempNeedsChange’), which can terminate and transition to the PressOff state
whenever the Button is pressed. Thus, to satisfy the Parent Coverage criterion the ‘On’ state has to be exited
from both substates.

Test vector 1 = In1 = False, In2 = 0, In3 = 0
Test vector 2 = In1 = True, In2 = 0, In3 = 1

The OR block masks the middle path in test vector 2

53 / 62

Parent state coverage

Definition
All states and substates have been entered and exited (except for those
without exit transitions), and all substates have been active at least once
when parent state exits.

Comment: The Parent State Coverage criterion not only requires that
all substates have been activated, but also that the parent state (which
contains different substates, and thus are active whenever one of its
substates is active) has been exited when each specific substate was
active.

54 / 62

State history coverage

Definition
All states and substates have been entered and exited, and all substates
that were active when parent state exits have been later re-entered.

Comment: The State History Coverage criterion is similar to the Parent
State Coverage one, but also requires that the parent state is later
re-entered and the last active substate reactivated.

55 / 62

Transition coverage

Definition
All transitions of the diagram have been exercised.

Code: SOMCA-GMV-FR-001

Date: 14/10/2011

Version: 1.E

Page: 63 of 180

SOMCA Final Study Report

Figure 9-13: State machine with extra DebugMode transition.

Note that this UF could be also found thanks to the SOMCA Criterion 3: Modified input coverage, because
the DebugMode input never changes, generating a coverage problem.

9.4.3.10. Transition Decision Coverage

SOMCA Criterion 10: Transition Decision Coverage

Every decision in the transition decisions has taken all possible outcomes at least once.

This criterion improves the coverage provided by the previous one by checking the decisions associated to the
transitions.

Consider the state machine example of the Transition Coverage criterion, but with some modifications. Now
there is no extra debug transition and the DebugMode is evaluated in the last exit transition of the state
NeededNewFile. In this case, when the input constant is False the Transition Coverage criterion will not detect
the extra debug element because all the transitions will be fired at some point. However, the decision involving
the DebugMode input will always be True, and thus the Transition Decision Coverage won’t be satisfied because
this transition decision has never taken the False value, which would detect the UF.

Figure 9-14: State machine with extra DebugMode decision.

Note: The DebugMode prevents the execution of others transition if
equals to 1

56 / 62

Transition decision coverage

Definition
Every decision in the transition decisions has taken all possible outcomes
at least once.

Comment: This criterion improves the coverage provided by Transition
Criterion by checking the decisions associated to the transitions.

57 / 62

Transition MC/DC

Definition
Every condition in a transition decision have taken on all possible
outcomes at least once, and every decision in a transition decision have
taken all possible outcomes at least once, and each condition in a
transition decision has been shown to independently affect the transition
decision’s outcome.

Comment: This is the adaptation of the classic MC/DC for the State
Machines formalism. This criterion affects all the conditions evaluated in
all the diagram transitions and it is only applicable to State Machines
and not to Block Diagram formalism.

58 / 62

Event coverage

Definition
All external events are received at least once in each state that has
transitions associated to them.

Code: SOMCA-GMV-FR-001

Date: 14/10/2011

Version: 1.E

Page: 65 of 180

SOMCA Final Study Report

For example, to satisfy this criterion in the next SSM both the 'Start and 'Force events must be received
while in the Red state, even if just the reception of one of them is enough to satisfy Transition Coverage if the
decision in < 100.0 is also satisfied.

Figure 9-16: Event coverage.

Please note that this hole in the verification can also be detected by the Transition MC/DC criterion, however
this criterion is meant just for high assurance levels while the Event Coverage criterion is designed for lower
levels.

9.4.3.13. Activating Event Coverage

SOMCA Criterion 13: Activating event coverage

All external events activate a transition at least once in each state that has transitions associated to them.

This criterion is similar to the previous one, but adds the requirement that the event received activates the
associated transition at least once. This criterion only requires that the event activates each transition
associated to it. It doesn’t require both cases (received and activated, and received but not activated) for each
event and transition (activated and not activated). This means that the event is not taken as another Boolean
value in the condition associated to it. This is done to prevent a high number of combinations in the verification
cases needed to fulfil this criterion, it also improves compatibility between different formalisms. The main
difference between this criterion and the previous one is that this one requires that the received event triggers
the transition. Consider the next Stateflow example with two events: ONOFF (user button) and UPDATE
(temperature has changed). All transitions are guarded by a single event, except the one to the Overheat
state, which is implicitly evaluated when any event arrives. Therefore, to satisfy the Activating Event Coverage
criterion at this transition both the ONOFF and UPDATE events must have been fired this transition. This showed
a hole in the verification because just the UPDATE event was tested during the verification cases to trigger this
transition.

Comment: This criterion covers the reception of events when there are
transitions associated to them, providing coverage over the events that
trigger them.

59 / 62

Activation event coverage

Definition
All external events activate a transition at least once in each state that
has transitions associated to them.

Comment: This criterion is similar to the Event Coverage, but adds the
requirement that the event received activates the associated transition at
least once. This criterion only requires that the event activates each
transition associated to it.

60 / 62

Level-N loop coverage

Definition
All loops of depth N, with same inputs values maintained for a given
number of iterations (m), present in the model have been executed.

Code: SOMCA-GMV-FR-001

Date: 14/10/2011

Version: 1.E

Page: 67 of 180

SOMCA Final Study Report

The events and conditions are only taken into account when they are activated, simplifying the analysis
process. It also remove the necessity of having scenarios where no events are activated (this is impossible for
some formalisms, like Stateflow).

9.4.3.14. Level-N Loop Coverage

SOMCA Criterion 14: Level-N Loop coverage

All loops of depth N, with same inputs values maintained for a given number of iterations (m), present in
the model have been executed.

A loop of depth N in the model is a transition path of length N that starts and ends in the same state. The
“static input” qualifier refers that the loop is present for a fixed combination of input data. The cycle must be
completed without any change of the input signals to the model.

The states machines are not usually designed to execute transitions every cycle. These kind of non-stable
behaviours are usually produced by an error in the model. The objective of this criterion is to detect those
internal loops that could lead to unstable situations of the model outputs for the same inputs. In some cases,
these loops are part of the nominal behaviour of the state machine. The criterion doesn’t force the removal of
these kinds of loops, only their inclusion in the verification procedure. This criterion is similar to the All Round-
Trip Paths testing strategy found in the literature, as stated in section 9.3.2.

If the tool allows the usage of events, the analysis gets more complicated. In this case, they are not taken into
account in the application of this criterion.

The application of this Criterion needs a previous identification of the model loops. There is not yet an
automatic method to find them, but they maybe could be found by arithmetic resolution of the transition
condition combinations. The typical size of this kind of loops is 1, 2 or 3. The depth of the analysis will depend
on the DAL level.

Sometimes, a loop can exist in the model but it’s impossible to reproduce due to the preconditions on the input
data or the model inputs. In these cases, a justification is needed to fulfil this criterion.

The number of iterations necessary to check that the loop has been covered (m) depends on several variables,
and it should be determined specifically for each model. Typical numbers are 10, 50 or 100 iterations, but it
can be higher or lower.

Let’s see an example:

Figure 9-18: Loop Criteria Example

This figure presents a very illustrative example of function loops. The desired behaviour of this state machine is
to enter state On when Button is pressed, and switch to Off after the button is pressed again. During the On
state, the lights 1 and 2 blink alternatively.

Comment: A loop of depth N in the model is a transition path of length
N that starts and ends in the same state. The “static input” qualifier
refers that the loop is present for a fixed combination of input data. The
cycle must be completed without any change of the input signals to the
model.

61 / 62

Conclusion

Testing Model Coverage is important to assert the absence of unintended
functions.

Model Testing activity is still a complex task in regards to software
testing.

Model Testing Coverage Criteria, as SOMCA defined them, are new in
the industry

A question on verification
Model coverage vs Source Code coverage vs Object Code coverage?

62 / 62

	Lecture 5
	Software architecture
	Software testing
	Model testing

