Alexandre Chapoutot
ENSTA Paris

2022-2023

Part |

2/62

Software architecture |

e Software architecture

9 Software testing

e Model testing

3/62

Software Architecture

From |EEE 1471, architecture of a "software-intensive system”:
The fundamental organization of a system embodied in its com-
ponents, their relationships to each other, and to the environ-
ment, and the principles guiding its design and evolution.

4/62

Architecture an important first step

@ Architecture is the set of earliest design decisions

o hardest to change
e most critical to get right

@ Architecture is the first artifact design on which a system's quality
attributes are considered.

Quality attributes:
@ From the end user: performance, availability, usability, security
@ From the developer: Maintainability, portability, re-usability,
testability
@ From the business: time-to-market, cost-and-benefits, integration
with legacy systems, etc.

5/62

Design principles and properties

Divide-and-conquer: Abstraction, Hierarchical structure
Modularity: coupling and cohesion

Information hiding

Limited complexity

Focus on Coupling and cohesion i.e., structural criteria on individual
modules and their interactions.

Cohesion the glue that keeps a module together

Coupling the strength of the connection between modules

6/62

Cohesion type!

Coincidental (worst): is when parts of a module are grouped
arbitrarily; the only relationship between the parts is that they have
been grouped together (e.g. Utility module).

Logical: is when parts of a module are grouped because they are
logically categorized to do the same thing (e.g., mouse an keyboard
handlers).

Temporal; is when parts of a module are grouped by when they are
processed - the parts are processed at a particular time in program
execution (e.g., exception handler).

Procedural: is when parts of a module are grouped because they
always follow a certain sequence of execution (file permission
checks).

Communicational: is when parts of a module are grouped because
they operate on the same data.

Sequential: is when parts of a module are grouped because the
output from one part is the input to another part like an assembly
line.

Functional (best): is when parts of a module are grouped because

_ they all contribute to a single well-defined task of the module.

http://en.wikipedia.org/wiki/Cohesion_(computer_science)

7/62

http://en.wikipedia.org/wiki/Cohesion_(computer_science)

Coupling type?

@ Content (high): one module relies on the internal workings of
another module.

@ Common: two modules share the same global data

o External: modules share an externally imposed data format, or
communication protocol

@ Control: one module controls the flow of another, by passing it
information on what to do

@ Stamp: modules share a composite data structure and use only part
of it

e Data: modules share data through, e.g., through parameters

e Message (low): Component communicate via message passing

@ No coupling: Modules do not communicate at all with one another

2http://en.wikipedia.org/wiki/Coupling_(computer_programming)

8/62

http://en.wikipedia.org/wiki/Coupling_(computer_programming)

A good design

Strong cohesion and weak coupling

Goal J

Consequences
@ Simpler interfaces
@ Simpler communication
@ Simpler correctness proof
Modification on a module less impact on other modules

Re-usability increased

Comprehensibility increased

9/62

Complexity?

@ Measure a certain feature of the software
@ Use these numbers as a criterion to assess or to guide the design
@ Higher value then higher complexity then more effort
For example:
@ number of lines of code (problem of verbosity of languages)

@ Halstead complexity measures: n; number of unique operator, n
number of unique operands, N total number of operators, N, total
number of operands.

Size of vocabulary: n=n1 + m

Program length: N = N; + N,

Volume: V = Nlog, n

Programming effort: £ = V/L, etc.

@ Cyclomatic complexity (from the CFG) M = E — N 4 2P

o E: number of edges
o N: number of nodes
o P: number of connected components

3http://en.wikipedia.org/wiki/Halstead_complexity_measures
http://en.wikipedia.org/wiki/Cyclomatic_complexity

10/62

http://en.wikipedia.org/wiki/Halstead_complexity_measures
http://en.wikipedia.org/wiki/Cyclomatic_complexity

Conclusion

Recipe
o Essence of the design process: decompose system into parts

@ Wanted properties of a decomposition:

e coupling/cohesion,
e information hiding,
o (layers of) abstraction

o Complexity of a decomposition: these properties are expressed
with numbers

Several design methods
@ Theses ideas are still valid for model-based design.

e But some notions, e.g., complexity, have to be refine/clarify in the
context of models.

11/62

Software testing |

c Software architecture

e Software testing

e Model testing

12/62

Computer-aided design |

Introduction to software testing

13/62

Software testing

Definition (tentative)

Detection of unwanted behaviors with program execution process in order
to validate the software.

Mainly two kinds of test activities:
@ Structural testing: To detect implementation errors.
@ Functional testing: Is the software fulfill its specification?

Best way: combine both

Other verification methods:

@ Code inspection: may detect static errors but not dynamic ones
and does not scale up well.

@ Formal methods: gives mathematical arguments to validate the
software. (Note: model and executable are not the same)

14/62

Testing activities in the

VALIDATION

cycle of development

Validation de la

, Spécification des

Spécification des
exigences de Sgencesde | g
sécurité des E/E/EP sécurité du logiciel
dapplication

b

[y

Conception de
I du

sécurité

Systeme
validé

Test d'intégration du

Arimfecn:_n:n en “ logiciel
sous-systemes d'application

[E;

Réalisation du
logiciel
dapplication

logiciel d
avec le SEP

@ Unit testing .

Test du logiciel J

d'application

[i

Réalisation des

modules
dapplication

Tests modulaires

du logiciel
d'application

Codage

@ Integration testing software/software:

@ Integration testing software/hardware:

15/62

Testing activities in the cycle of development

. Spécification des VALIDATION 5
Spei?mec::w:sndies oxgoncesde | g Validation de la ‘ Systeme
_ exige sécurité du logiciel sécurite validé
sécurité des E/E/EP e ¢
dapplication
' ‘\
Conception de Test d'intégration du
] [du ¢ Jor
Architecture en “ ogicel logiciel d
sous-systemes dapplication avec le SEP
Y
Realisation du Test du logiciel
logiciel dlapplication
dapplication PP!
D
Reéalisation des Tests modulaires
mo ciel
Pplication d'appWation

»
|—> Codage

@ Unit testing ¢
@ Integration testing software/software:

@ Integration testing software/hardware:

15/62

Testing activities in the cycle of development

, Spécification des VALIDATION ‘
Spei?mec::w:sndies oxgoncesde | g Validation de la ‘ Systeme
_ exige sécurité du logiciel sécurite validé
séourité des E/E/EP ite d
dapplication

[y

b

Conception de
[

du Test d' |n|égra|v|on‘du

logiciel d
avec le SEP

logiciel
d'application

Architecture en “
Sous-systémes

%
Heahsgu‘on du Test dglogiciel
logiciel >
) i d ation
dapplication

[}
Réalisation des Tesjg'modulaires

mo el
pplication d'appWation

L 7

@ Unit testing ¢
@ Integration testing software/software:

@ Integration testing software/hardware:

15/62

Testing activities in the cycle of development

, Spécification des VALIDATION ‘
Spei?mec::w:sndies oxgoncesde | g Validation de la ‘ Systeme
_ exige sécurité du logiciel sécurite validé
séourité des E/E/EP ite d
dapplication

[y

b

Conception de
[

du Test d'intégration du

logiciel d'agplication
avec € SEP

logiciel
d'application

Architecture en “
Sous-systémes

y 1
Heahsgu‘on du Test dglogiciel J
logiciel y
) i d’ ation
dapplication

[}
Réalisation des Tesjg'modulaires

mo el
pplication d'appWation

L 7

@ Unit testing ¢
@ Integration testing software/software:

@ Integration testing software/hardware:

15/62

Test activity and the development levels

Unit testing: separately testing each software component.

Integration testing: testing the good behavior when components are
composed.

Conformance testing: validation of the adequacy between code and
specification.

But we can also find: regression testing: verify that software
corrections/updates do not introduce errors; target testing: verify that
the code on the target is correct (# host testing).

Mainly two approaches:

o Black box: (i.e., functional testing) testing activity from the
specifications, a model, function prototypes or component interfaces.

e White box: (i.e., structural testing) testing activity from the source
code.

16 /62

Software testing challenges

The main difficulty in software testing come from the definition of:
@ a set of inputs in function of a test coverage criterion.

@ a set of outputs in function of a determined set of inputs (oracle
problem).

and the definition of stubs.

Importance of test cases:

@ the test cases is a representation of particular values of the input
defined in the component specification.

@ A complete software testing = full specification coverage.
but combinatorial explosion:
e.g. addition of two 32 bits integers requires 2%* test cases!

17/62

Testing coverage

Goal of the coverage
@ For the client: defined the level of trust in the software.

@ For the verifier: defined the contract between the client and the
tester

@ For the tester: defined the measure criterion.

Problem: stop criterion: When should we stop testing?

o Negative criterion: blocking bugs, we cannot test the remainder of
the software.

@ Positive criterion: rate of coverage
ideally 100% but may require “justifications”

Test cases and coverage

Each test case must increase the testing coverage.

18/62

Computer-aided design |

Introduction to software testing

Structural testing

19/62

Test structural

Software testing activity based on the software structure.

Goals
@ Detect implementation errors;
@ Verify that the software does not do more than its specification;

@ Verify that there is no bugs like:
e.g. overflow, non initialization variable, etc.

Stopping criterion
@ in function of the code structure. J

20/62

Structural testing coverage

Definition J

Measure the rate of tested source code.

One sees these coverages
e Control flow coverage: instructions, branches, paths, LCSAJ

@ Logical condition coverage

21/62

Example: instruction coverage

Source code

procedure P
(in Boolean C1;
in Boolean C2)
is
begin
if Cl then
sl;
end if;
if C2 then
s2;
end if;
end P;

Remark

Only one test is enough.

Control flow
graph Testl
cl = true
sl
c2 = true
s2

22/62

Example: branch coverage

Source code

procedure P
(in Boolean C1;
in Boolean C2)
is
begin
if Cl1 then
sl;
end if;
if C2 then
s2;
end if;
end P;

Remark

Two tests are required.

Control flow
graph Test 1

cl = true
sl

c2 = false

Test 2

false

true
s2

23/62

Example: path coverage

Source code

procedure P Control flow

(in Boolean CI1; graph Test 1
in Boolean C2)
is
begin
if C1 then
sl;
end if;
if C2 then
s2;
end if;
end P;

cl = true
sl

c2 = true
s2

Remark

Four tests are required.

Test 2

true
sl

false

Test 3

false

true
s2

Test 4

false

false

Question what about loops, is this coverage feasible?

24 /62

Linear Code Subpath And Jump (LCSAJ).

The idea is to split the source code into linear parts in order to have
paths coverage.

A piece of vocabulary
In a control flow graph, we can distinguish:
@ Special nodes: input, output or the target of a jump.
@ Special edges: jumps and by default the edge to the output.

Definition

We call LCSAJ a path going from a special node to an other special node
containing only one special edge between the last node and the node
before.

@ Pros: a better coverage than branches coverage without being to
expensive.

25/62

Example: LCASJ paths

LCASJ:

e L5, L20, L30,
L60

e L5, L20, L30,
L40, L60, L80

e L5, L20, L30,
L40, L60, L70,
L90

@ etc.

> L100

A=-2

26/62

Limitation of control flow coverage
Two programs doing the same computation:

procedure Pl
(in Boolean CI1;

in Boolean C2) procedure P2

I')segin (in Boolean C1;
S := False: N in Boolean C2)
if Cl then begin

if C2 then S = C1 and C2:
> = Trues end P2;
end if; ;
end if;
end P1;

Paths coverage: 3 tests for P1 and 1 test for P2.
The previous coverage are too dependent on the control flow.

Partial conclusion one never uses the source code itself to test the

software but the specifications!!!
27/62

Logical conditions coverage

In control-flow coverage, we do not take into account the values of nodes.

Principle

In the logical condition coverage, instead of going once in the "true"
branch and in the "false” branch, we seek the different way to make
condition "true” or "false".)

Consequence

We increase the confidence in the software.)

28/62

Logical condition coverage: truth table

procedure P
(in Boolean C1; in Boolean C2; in Boolean C3)
is
begin
if C1 or C2 or C3
then
sl;
else
s2;
end if;
end P;

Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7 | Test 8
(voviv) | (vovif) | (vfv) | (vf,f) | (fvv) | (fv.f) | (ffv) | (1)
sl sl sl sl sl sl sl

s2
Also called: multiple condition coverage 2"

29/62

Strategies to limit the combinatorial explosion

o Strategy for OR operator, do

o one test with all the sub-conditions set to "false".
e one test for each sub-conditions set to "true” one by one.
o one test with all sub-conditions set to "true".

Consequence: n + 2 tests

o Strategy for AND operator, do
e one test with all sub-conditions set to "true".

e one test for each sub-conditions set to "false” one by one.

Consequence: n+ 1 tests

Called also MC/DC (Modified Condition/ Decision Coverage)
@ Decision: same as branches coverage.

@ Condition: each condition must be true or false.

e Condition/Decision: combination of the two previous criteria.

e MC/DC: independence of each conditions.

30/62

Computer-aided design |

Introduction to software testing

Functional testing

31/62

Functional testing

also called black box testing.

Goal

@ Check the software behaviors in regards to the specification.

@ Check that some constraints are fulfilled (e.g. performance, memory
consumption, etc.) or quality factors are met (e.g. portability,
maintainability, etc.)

Stopping criteria the functional coverage is qualitative
We cannot know a priori the number of tests to do.
We have to use the only one thing we know: the specification.

Remark usually we use structural coverage to help in this task!

32/62

Recall on specifications

A specification must describe at least:
@ the software functions;
@ the software interface;

@ the development constraints.

Kinds of coverage

@ Nominal testing;

@ Functional limit testing;
© Robustness testing;

@ Conformance testing.

1 and 2 test the function of the software.

3 and 4 are quality factors.

33/62

Software function testing

To test the functional behaviors
Two cases:

@ Nominal testing check the conformance to the specification for a
normal behavior of the software.

@ Limit testing: check the behaviors at the functional limits of the
software.

Building test cases with partition analysis

Idea of the method
group together each input into equivalent classes, i.e. inputs which
produce the same functional behaviors.

34/62

Partition analysis

Recipe: for each function in the specification
@ Determine inputs and their domains of values.

@ From the control part of the specification split the input domain into
equivalent classes.

@ For each equivalence classes:

e choose one element in it
e from the process part of the specification determine the output value
associated to the chosen inputs.

Oracle problem
@ when algorithms are too complex, e.g., controller

o all the inputs are not available for the tester (e.g., clocks)

35/62

Limit and outside limit tests

Function: Produit_valeurs_absolues

Output: S

°

@ Input: E1 and E2
°

°

Processing: this function compute the absolute value of the product of

E1l and E2.

Equivalence classes:

[EL | E2 |
[Minint, —1] | [Minlnt, —1]
[0, MaxInt] | [0, Maxint]

Definition: Limit tests

Functional limit test: taking values at the limits of each functional
equivalence classes.

Definition: outside limit tests

Functional outside limit test: taking values outside the limits of
functional equivalence classes.

< 36/62

Example: limit and outside limit tests

If E1 and E2 has the same functional domain: [—100, 100]

Limit tests
El E2

[-100,-1] | —100 || [-100,—1] | —57
[-100, —1] -1 [0,100] 64

[0,100] 0 [-100, —1] -5

[0,100] 100 [0,100] 98
[-100,-1] | —59 [-100, —1] -1

[0, 100] 48 [-100,-1] | —100
[-100,-1] | —63 [0,100] 0

[0,100] 75 [0,100] 100

Outside limit tests

[-100, —1] | —234 | [=100,—1] | —42

[-100,—1] | —84 | [0,100] | 115
[0,100] 32 | [-100,-1] | —567
[0,100] | 174 | [0,100] 39

37/62

Data coverage

Remark

In the previous coverages, we did not interest in manipulated data format
nor numerical values to make condition to true or false.

The data coverage tries to choose:

@ the right numerical values to make a condition true or false.
(remarkable value)

@ the limit values of the input.

@ the numerical values to get particular values or behaviors (overflow,
division by zero, etc.)

38/62

Example: data coverage

Domain of a data
—32768 0 32767

procedure P

(in Integer E) Test1l | Test2 | Test3 | Test4 | Test5 | Test6
is
begin 359 31 30 0 —32768 | 32767
if E> 30
then sl sl sl
S1;
end if;

end P;

39/62

Data coverage

It is possible to split the domain of each data in equivalence classes.
Each class defines a particular behaviors of the data.

In the previous example, two classes are possible [—32768,29] and
[30,32767]. Note: 30 is a remarkable value.

From the tester point of view, we need two kinds of tests:

o Limit testing: taking values at the limits of each functional
equivalence classes.

@ QOutside limit testing: taking values outside the limits of functional
equivalence classes.

20/62

A word on stubs

When a component uses an external function £ and we have or not this
function, in a first step we wish to test the behavior of the component
independently of £.

The stubbing technique aims at:

@ add one artificial input in the test cases. This input is associated to
the output of f.

@ write a stub to replace the code of f: this code only returns the
value set by the test case.

Remark
With this technique the tester can fully control the tests to do. J

41/62

Conclusion: software testing

Everyone knows that debugging is twice as hard as writing a program
in the first place. So if you're as clever as you can be when you write
it, how will you ever debug it?

Brian Kernighan

Main industrial challenge:
@ The verification step is highly important: economic issues.

@ But testing activity a comlex task starting in the specification step
of the cycle of development.

Efficient way to do testing
Combine structural and functional testing:
@ define the test cases from the speficiation

@ compute the covergare from these test cases

42/62

Model testing |

c Software architecture

e Software testing

e Model testing

43/62

Computer-aided design |

Introduction to model testing

44 /62

Context

Model vs Software
@ Software: statements, loop, conditional
@ Model: State/Transition or equations

Coverage criteria on software do not applied on models!

Model-based design

Fact: source code automatically generated from models.

Need to apply testing coverage on models

SOMCA: safety implication in performing SOftware Model Coverage
Analysis

15/62

Example: Model Coverage

A small program: a pressure detector

Main operator

10.0 |—_-
pressure %

1

ThresholdDetector

60

—

1

DeviceTrigger

—> alarm

16/62

Example: Model Coverage

A small program: a pressure detector
Comparator

measure >—|—

threshold >_,—-

_—> over

16/62

Example: Model Coverage

A small program: a pressure detector
Automaton

duration times true /

16/62

Example: Model Coverage

A small program: a pressure detector

= EimodelCoverage M1C NS 1. (modelCoverage MIC INST. =2 modelCoverage_MTC_INST el
-3 modelCoverage MTC INST =4 modelCoverage MTC_INST = {3 modelCoverage_MTC_INST
=4 DeviceTrigger (0/8] = {3 DeviceTrigger (2/5)
B @ 1[0/ (& 5M1(2/8) @

#- Main (0/6] = Main [2/8] # T Main (48]

48 ThresholdDetector [0/2) -3 ThresholdDetector (1/2) +-48 ThiesholdDetector [2/2)
< > < >

< »

@ Predefined coverage criteria: Decision coverage, MC/DC, Masking
MC/DC

@ Predefined integration criteria: control activation, control and data
activation

16/62

SOMCA: criteria

Criterion Name

Block Diagrams

State Diagrams

DAL

A B [A B c
SOMCA Criterion 1: Range coverage v v |V v v v
SOMCA Criterion 2: Functionality coverage v v v v v v
SOMCA Criterion 3: Modified input coverage v v v v v v
SOMCA Criterion 4: Activation coverage v v |V v v v
SOMCA Criterion 5: Local Decision Coverage v v NA NA NA NA NA
SOMCA Criterion 6: Logic Path coverage v NA NA NA NA NA
SOMCA Criterion 7: Parent State coverage NA NA | NA | NA | NA v v
SOMCA Criterion 8: State History coverage NA NA | NA | NA | NA v
SOMCA Criterion 9: Transition coverage NA | NA | NA | NA | NA v v v
gg\:l(j:ggriterion 10: Transition Decision NA NA | NA | NA | NA v v
SOMCA Criterion 11: Transition MC/DC NA NA | NA | NA | NA v
SOMCA Criterion 12: Event coverage NA | NA | NA | NA | NA v v v
SOMCA Criterion 13: Activating event coverage NA NA | NA | NA | NA v v
SOMCA Criterion 14: Level-N Loop coverage NA NA | NA | NA | NA (:;g* (2)* (1‘;*

(* The number in brackets means the N level used in the coverage criterion)

47/62

Range coverage

Definition
All the significant values of the inputs and outputs of each model
component must be exercised. That is

@ All singular points of functional components

@ All equivalence classes

@ Continuous and discontinuous input signals.

In:int16

InZ: uintd
Relational

Operatort Switch1

=
In3: uint18

48 /62

Functionality coverage

Definition
All characteristics of the functionality in context must be exercised for
each component. That is
@ Activation of characteristic (e.g., watchdog function is triggered)
@ Reaching internal conditions (e.g., saturation block fed with an
input over the upper limit)
o Stability of transfer functions (e.g., fed with step wave, sine wave,
etc.)

LIM
Input —>_/_ — LIM_Out

LO4

HI

19/62

Modified input coverage

All inputs of every block and state diagram have changed at least once

Definition J

Debughiode IndexTollse | ————

Caonstant %%

————————————W{curFileSize IndexTo Delate —

LogRotate

50/62

Activation coverage

Definition
All model elements whose execution depends on an external rule or signal
must be activated

51/62

Local decision coverage

Definition
Every block decision and Boolean output of a basic block has taken on
all possible values at least once

This criterion applies the classical Decision Coverage to all blocks in a
block diagram that depends on a Boolean expression, including:

o Logical operators: the output of each logical operators has taken
both the True and False values (e.g., and, or, xor, not, ...)

o Relational operators: the output of each relation operator has
taken both the True and False values (e.g., equals, greater than, less
than, ...)

@ Switch blocks: the decision of the switch/if block has taken both
the True and False values, activating both inputs.

@ Selectors: the decision of the selector has taken both the True and
False values, enabling the processing of the contents of each branch.

52/62

Logic path coverage

Definition
The input of every logic path has been shown to independently affect the
output of the logic path.

For satisfying this criterion it is necessary to verify that a change in the
input of a logic path modifies the output of that path when all the links
of the path are active (i.e., no block masks any of the links of the path).
This requires at least two different verification cases where all links of
each logic path are active, and also that the output link has both the
True and False values.

53/62

Logic path coverage

- e
In1
" M — (D)
> bool " e Outd
OR block
CGHr— Relational ~ AND block ’ HOT Block BoolSwitch
In3 Operator
-
»
p— = 100
-
X Switch
P
Frodueti

@ Test vector 1 = Inl = False, In2 =10, In3 =0
@ Test vector 2 = Inl = True, In2 =0, In3 =1
The OR block masks the middle path in test vector 2

53/62

Parent state coverage

Definition

All states and substates have been entered and exited (except for those
without exit transitions), and all substates have been active at least once
when parent state exits.

Comment: The Parent State Coverage criterion not only requires that
all substates have been activated, but also that the parent state (which
contains different substates, and thus are active whenever one of its
substates is active) has been exited when each specific substate was
active.

54./62

State history coverage

Definition
All states and substates have been entered and exited, and all substates
that were active when parent state exits have been later re-entered.

Comment: The State History Coverage criterion is similar to the Parent
State Coverage one, but also requires that the parent state is later
re-entered and the last active substate reactivated.

55 /62

Transition coverage

All transitions of the diagram have been exercised.

Definition J

Tarninal [currFileSize = 100000] NeededMewFile
entry IndexToDelste=0; entry:

[Debughode==1] IndexTolse++
FilesinBuffer++;

2 [FilesinBuffer==3]

b

DeleteFile
entry IndexToDelste=IndexTolUse-3;

Note: The DebugMode prevents the execution of others transition if
equals to 1

56 /62

Transition decision coverage

Definition
Every decision in the transition decisions has taken all possible outcomes
at least once.

Comment: This criterion improves the coverage provided by Transition
Criterion by checking the decisions associated to the transitions.

57 /62

Transition MC/DC

Definition

Every condition in a transition decision have taken on all possible
outcomes at least once, and every decision in a transition decision have
taken all possible outcomes at least once, and each condition in a
transition decision has been shown to independently affect the transition
decision’s outcome.

Comment: This is the adaptation of the classic MC/DC for the State
Machines formalism. This criterion affects all the conditions evaluated in
all the diagram transitions and it is only applicable to State Machines
and not to Block Diagram formalism.

58/62

Event coverage

Definition
All external events are received at least once in each state that has
transitions associated to them.

Comment: This criterion covers the reception of events when there are
transitions associated to them, providing coverage over the events that

trigger them. /62

Activation event coverage

Definition
All external events activate a transition at least once in each state that
has transitions associated to them.

Comment: This criterion is similar to the Event Coverage, but adds the
requirement that the event received activates the associated transition at
least once. This criterion only requires that the event activates each
transition associated to it.

60/62

Level-N loop coverage

Definition
All loops of depth N, with same inputs values maintained for a given
number of iterations (m), present in the model have been executed.

Cn

¥
Up
light1=on;
light2=0ff;

[Button]
i
P
Down
[Buttan] light1=off;
lightZ=on;
./

Comment: A loop of depth N in the model is a transition path of length
N that starts and ends in the same state. The “static input” qualifier
refers that the loop is present for a fixed combination of input data. The
cycle must be completed without any change of the input signals to the
model.

61/62

Conclusion

Testing Model Coverage is important to assert the absence of unintended
functions.

Model Testing activity is still a complex task in regards to software
testing.

Model Testing Coverage Criteria, as SOMCA defined them, are new in
the industry

A question on verification J

Model coverage vs Source Code coverage vs Object Code coverage?

62/62

	Lecture 5
	Software architecture
	Software testing
	Model testing

