
Modèle et génération automatique de code

Alexandre Chapoutot

ENSTA Paris

2022-2023

Part I

Lecture 4

2 / 29

Compilation of SCADE models

1 Compilation of SCADE models

3 / 29

Compilation of SCADE models

The compiler

4 / 29

Compilation of SCADE 6 – 1
Goal: translating parallel and modular language into sequential code.

Recall of the main steps of a compiler:
Lexical analysis; Grammatical analysis
Semantic analysis (e.g. typing, etc.)
Optimization (e.g. constant folding, function in-lining, etc.)
Code generation

A node is compiled into one function:
X = X0
whi le (1)

read (i n p u t)
out , X = s t ep (X, i n p u t)
w r i t e (out)

done
Remark: step function has to be embedded in a OS-dependent loop.
The SCADE compiler can generate code targeted specific real-time OS as
VxWorks

5 / 29

Modular compilation

It is a mandatory feature to be assured for
the traceability of the compilation process
the low code size generation

A small problem: it is not possible in the general case
node t w o c o p i e s (a , b : i n t) r e tu rn s (x , y : i n t)
l e t

x = a ; y = b ;
t e l ;

(x , y) = t w o c o p i e s (a , x) ;

Solutions:
in-line all nodes: code size increasing
a loop between nodes must contain pre or fby operator

6 / 29

Lustre/SCADE compiler

7 / 29

Type checking

Goal:
check that all operations are allowed between typed input.
refuse programs that are not type safe.
avoid implicit cast

node cpt (t i c k : bool) r e tu rn s (c : i n t)
var tmp : bool :
l e t

c = 0 −> pre c + 3 . 1 4 ;
tmp = (t i c k + 1) and c >= tmp ;

t e l ;

8 / 29

Example – Bad types

9 / 29

Definition of new types

In SCADE we can define new types, mainly: arrays, enumerations,
structures

For example, the process to create enumeration type is
Select project repository in Workspace
Insert -> Package Item -> Types

Enter the name of the new type; double click on it to get Type View

Select Definition tab to choose the category enumeration

Right-clik on the name of the type; choose
Insert -> Definition element to add new item

10 / 29

Clock calculus

Goal:
check that all operations involve elements living on the same clock.
refuse programs that are not synchronized.
guarantee the memory consumption is bounded

x x0 x1 x2 x3 x4
y y0 y1

x + y ? ? ? ? ?

11 / 29

Example – Clocks

12 / 29

Causality analysis

Goal:
check the absence of causality loop
guarantee that the time of execution is bounded

node cpt (t i c k : bool) r e tu rn s (c : i n t)
l e t

c = c + 1 ;
t e l ;

13 / 29

Example – Causality error

14 / 29

Initialization analysis
Goal:

Check that all memories are initialized
guarantee the determinism of the executions

15 / 29

Example – bad initialization

16 / 29

Intermediate language and C code generation

The code generation is based on an object oriented language:
very simple class with two methods: step and reset.
no dynamical allocation, no inheritance.

Translation of each class in a C struct and two functions

The latest processing
Before generating C code, we have to schedule equations.

Files generated:

<root_name>.h, <root_name>.c,
<operator_name>.h, <operator_name>.c,
kcg_types.h, kcg_types.c,
kcg_consts.h, kcg_consts.c, kcg_sensors.h

17 / 29

Example – Simple counter

 Page 2/9

logic, filters, and control laws. It typically represents
60% to 80% of the software embedded in an
airborne computer.

Figure 2: SCADE addresses the applicative part of

software

SCADE represents a bridge between Control
Engineering and Software Engineering because it
provides a common, rigorous graphical and textual
language for both communities that reflect control
engineering constructs:
• Its data flow structure fits the block diagram
approach.
• Its time operators fit the z operator of control
engineering. For instance, z-1, the operator of
control engineering (meaning a unit delay), has an
equivalent operator called “pre” in SCADE.
SCADE is now used for critical control software in
aircraft, helicopters, nuclear power plants and
railway switching systems.
SCADE modelling capabilities cover designing,
verifying and optimising complex algorithms, control
intensive applications, and graphic interfaces.
Furthermore, the SCADE automatic Code Generator
has been qualified to produce a portion of the
evidence mandated by certification authorities,
supporting a safety-critical process in a cost effective
manner.

2. SCADE 6: Unified Modelling Style

SCADE Version 6 is a new version of the SCADE
language that keeps the foundation (formal and
synchronous execution, strong typing, explicit
initialization of data flows, explicit management of
time, simple expression of concurrency) and extends
the modelling capabilities towards several directions:

• Data flow extensions that improve the
control part (reset, activate, merge)

• Control features expressed in terms of state-
machines

• Safe loop features implemented using higher
order iterators

• Other modelling features that improve the
connection to the environment (Sensor) and
ease the reusability with a better
encapsulation of data (Package) and
polymorphism

2.1 Data flow extension toward control
Work performed [5] started with defining an
extension of the data flow part with several
constructs that will be the support for state machine
extension.
restart is a higher-order operator that allows to
retrieve the initial state. This construct is very useful
in dataflow model in order to implement reset feature
without modelling this with inputs, wires and if/switch
constructs.
The syntax of a restart instantiation is:
(restart N every c)(e).
Example:

1

PRE

0

C

c = 0 -> (1 + pre c);

Node : Count

Figure 3: Count Node

1

Count

r

C

C = (restart count every r)();

Node Resettable_Count

Figure 4: Resettable_Count Node

This primitive affects flow initializations in the
instantiated node by making them returning their first
argument as if it were the first cycle. Example in
figure 6,7 and the behaviour shown in figure 8
illustrates this purpose.

/∗ Compteur . h ∗/

t y p e d e f s t r u c t {
k c g i n t y ;
k cg boo l i n i t ;

} outC Compteur ;

18 / 29

Example – Simple counter

#i n c l u d e ” k c g c o n s t s . h”
#i n c l u d e ” k c g s e n s o r s . h”
#i n c l u d e ”Compteur . h”

vo i d Compteu r r e s e t (outC Compteur ∗outC)
{

outC−> i n i t = k c g t r u e ;
}

18 / 29

Example – Simple counter

v o i d Compteur (outC Compteur ∗outC)
{

i f (outC−> i n i t) {
outC−>c = 0 ;

}
e l s e {

outC−>c = 1 + outC−>c ;
}
outC−> i n i t = k c g f a l s e ;

}

18 / 29

Code optimization – Scade 6.4 only

Remark to guarantee traceability model/source code a very limited
number of optimization are allowed.

Four levels of optimizations (data-flow part)
Level 0 no optimization
Level 1 expressions simplification, equivalent flows simplification,

unused variables elimination and expression in-lining
Level 2 and 3 iterator optimizations

For Level 1 to 3, optimizations on control flow e.g.,
Reordering control blocks, then merging the content of control
structures having the same condition to reduce the number of tests
and allow potential additional optimization
Removing negative conditions in if statements

19 / 29

Example – Switch block

20 / 29

Example – Switch block

Optimization level 0

i f (outC−> i n i t) {
L10 = 0 ;

}
e l s e {

L10 = outC−> L1 ;
}
outC−> L1 = inC−>x ;
L11 = outC−> L1 − L10 ;
L9 = 2 ;
L5 = inC−>z ;
L8 = L5 − L9 ;
L7 = 1 ;
L4 = 0 ;
L3 = L11 > L4 ;
L6 = L5 + L7 ;

i f (L3) {
L2 = L6 ;

}
e l s e {

L2 = L8 ;
}
outC−>y = L2 ;
outC−> i n i t = k c g f a l s e ;

20 / 29

Example – Switch block
Optimization level 1

v o i d cond (inC cond ∗ inC , outC cond ∗outC)
{

k c g i n t tmp ;

i f (outC−> i n i t) {
tmp = 0 ;

}
e l s e {

tmp = outC−>rem x ;
}
i f (inC−>x − tmp > 0) {

outC−>y = inC−>z + 1 ;
}
e l s e {

outC−>y = inC−>z − 2 ;
}
outC−>rem x = inC−>x ;
outC−> i n i t = k c g f a l s e ;

}

20 / 29

Example – If block

21 / 29

Example – If block
Optimization level 0

i f (outC−> i n i t) {
L4 = 0 ;

}
e l s e {

L4 = outC−> L5 ;
}
outC−> L5 = inC−>x ;
L1 = outC−> L5 − L4 ;
L3 = 0 ;
L2 = L1 > L3 ;

c = L2 ;
I f B l o c k 1 c l o c k = c ;
i f (I f B l o c k 1 c l o c k) {

L 1 I f B l o c k 1 = inC−>z ;
L 2 I f B l o c k 1 = 1 ;
L 3 I f B l o c k 1 = L 1 I f B l o c k 1 + L 2 I f B l o c k 1 ;

y1 = L 3 I f B l o c k 1 ;
outC−>y = y1 ;

}
e l s e {

L 1 4 I f B l o c k 1 = inC−>z ;
L 2 3 I f B l o c k 1 = 2 ;
L 3 2 I f B l o c k 1 = L 1 4 I f B l o c k 1 − L 2 3 I f B l o c k 1 ;

y = L 3 2 I f B l o c k 1 ;
outC−>y = y ;

}
outC−> i n i t = k c g f a l s e ;

21 / 29

Example – If block
Optimization level 1

v o i d cond2 (inC cond2 ∗ inC , outC cond2 ∗outC)
{

k c g i n t tmp ;
/∗ cond2 : : c ∗/ k c g b o o l c ;

i f (outC−> i n i t) {
tmp = 0 ;

}
e l s e {

tmp = outC−>rem x ;
}
c = inC−>x − tmp > 0 ;
i f (c) {

outC−>y = inC−>z + 1 ;
}
e l s e {

outC−>y = inC−>z − 2 ;
}
outC−>rem x = inC−>x ;
outC−> i n i t = k c g f a l s e ;

}

21 / 29

Example – Activate block

22 / 29

Example – Activate block

vo i d a c t i v r e s e t (o u t C a c t i v ∗outC)
{

outC−> i n i t = k c g t r u e ;
/∗ 1 ∗/ Compteu r r e s e t (&outC−>Contex t 1) ;

}

/∗ a c t i v ∗/
vo i d a c t i v (i n C a c t i v ∗ inC , o u t C a c t i v ∗outC)
{

i f (inC−>b) {
/∗ 1 ∗/ Compteur(&outC−>Contex t 1) ;
outC−>c = outC−>Contex t 1 . c ;

}
e l s e i f (outC−> i n i t) {

outC−>c = 0 ;
}
outC−> i n i t = k c g f a l s e ;

}

22 / 29

State Machine – Strong transitions – 1

23 / 29

State Machine – Strong transitions – 2

Semantics: the transition is evaluated at the begin of each cycle. If true
then evaluate body of the new activiated state ortherwise evaluate the
body of the current activated state.

Note by default entering a new state reset all the memory used in this
state (Restart behavior)
To keep the value of the memory between each activation use Resume
behavior

24 / 29

State machine – Strong transition .h

25 / 29

State machine – Strong transition .c – 1

26 / 29

State machine – Strong transition .c – 2

27 / 29

State Machine – Weak transitions

Semantics: the transition is evaluated at the end of each cycle after
evaluating the body of current active state. If true then activiate the
target state at the next cycle ortherwise do nothing.

28 / 29

State machine – Weak transition .c – 1

29 / 29

	Lecture 4
	Compilation of SCADE models

