Alexandre Chapoutot
ENSTA Paris

2022-2023

Part |

2/29

Reactive software

e Embedded software are also known as reactive programs: they
continuously produce outputs in response to inputs coming from the
physical environment.

Embedded software

Input
Physical environment

@ The execution of embedded software is described by discrete-time
dynamics i.e. it is a sequence of reactions.

h I I3
l l l time

@ ldeally we should have that:
o Output O; should be emitted before input /i+1 and no important
input /; is missed.
o The software is deterministic: same input produces same output.
o A finite amount of memory is used.

3/29

An ideal abstraction: synchronicity

@ The execution of embedded software is described by discrete-time
dynamics i.e. it is a sequence of reactions.
We assume that the computation time is zero

/11 /2l /3l

time

o Conceptually

o Output are produced infinitly quickly
o All the computation are done in parallel

o Verification of the hypothesis
o Compute WCET and check that input are not faster than WCET

Remark: we deal with discrete-time abstraction

4/29

Classical implementation

A reactive software is mainly an infinte loop of the form

Two possible implementations: sampled-base or event-based

S = So S = 50

for each tick do for each event do
Read / Read /
(S, 0) = step(S, 1) (S, 0) = step(S, 1)
Write O Write O

end for end for

The function step is the targeted applications of SCADE language

Linear filters or state machines I

5/29

Model-based: kind of software targeted

SCADE function is based on
o data-flow equations

@ state machines

Hardware

6/29

@ Fle Edt View Operator Insert Layout Project Tools Navigate Window Help

D@ $BAEXo 2N

B0 F
(== =" N N = T R

W& ke v
Zlx

= &9 automate.etp
= 23 automate
= 3 Operators
= mean
=33 Interface
iy
By

S m
® diagram_mean_1
T meant

B> LD Y
(L=~

automate.etp) Fael

= 3
BEHRERsEE SO EET0E DDDE D

SCADE: Safety Critical Application Development
Environment

& & o &8 e &8

S>m

- 2
FileView 3] Framework
=Rl C] 2
X[loading project automate.etp x| General
4|Successfully loaded project autonate.etp | peclaration Name: |:x
Clock
o Pathe [mean/s/
Comment
Note Filename: |
KCG
Traceability
Visiilty
]] >

70T\ Messages {MTC J, Dump), Buid , Smulstor }\ Matlab /||

Backup in progress...

Data-flow approach

A classical approach in circuits and control theory.

node mean (x, y : real)

ﬁ@m returns (m : real);
let
y

m=(x+vy)/ 2
2 tel;

Synchronous interpretation:

VtEN, th(Xt+yt)/2

A Lustre/SCADE program is described by a set of data-flow equations.

8/29

Main language construction

Mathematical ‘oo & OO
Logical DDD&E b
Structure/Array BaEED BEBE oo
Higher Order PRV RLR O
Comparison =

Time B oEE s

Choice ‘& 5

9/29

Example in SCADE

=-{} nand

=-£3 Inteface
B X
By
= &

=-£3 Locals
o u

@ diagram_nand_1

10/29

Operator hierarchy

Remark

Only one root to be defined at compile time J
nputt | | ——>0upunt
\nput2>—'_ Rodt _‘—>Outputz

e

Input1>—|— 1
nput2>—— |

Input1
Input2

- AND

Sub1

L >0utp ut1

Sub2

—|—>Output2

11/29

State Machine

@ An operator can be defined over a state machine
@ It can have several state machine in “parallel” and mixed with flows

@ each state machine must have a unique initial state

12/29

State Machine - cont’

A state
@ is graphically represented by a rectangle with a name
@ represents the memory element of a state machine

@ at each cycle, a state in one state machine is either active or not

e e e e <OnOfFSSM> -,

true >7> SetOt]

false .7> Setn false >7> SatOn

Note: the content, i.e., the computations, of a state is defined
graphically by dataflow diagrams or even other state-machines or both.

13/29

Dataflow in states

Main rules
@ Equations are computed only when the state is active

@ Ech declare variables (local or output) must have exactly one
definition at each cycle where its scope is active

What happens when a definition is missing in a given state?
@ Producing a default value if there is one defined for the flow

@ Or maintaining the last value of the flow.
Remark: If the flow is not defined at the initial cycle, the flow must
have an init value for the last

= ceneral

4 pedaration Tupe: int =l
Use Kind
Clock Last [0 =] Onput
Comment ® Output
Mate .
o Default =003 o hidden

14/29

State machine transitions

A transition has the general form:

SCADE textual expression /| SCADE textual expression

A A
r N ™

Trigger Effect

Preemption during transition

e weak: (until), when the transition is taken, the next state is
activated in the next instant.

@ strong: (unless), when the transition is taken, the next state is
activated in the current instant.

Remark: the effects of a transition are computed in the current instant.

15/29

State machine transitions

B LEEEEEEEEEEPEEEPEEES <G -,
; \

=

i
Trigger: |
Event condition)
i :L:cco:ar;l:::;;]jlil /Emit SignalZ;
E or 'Signall

Effect: signal
emissions

15/29

State machine transitions

Triggers
are made of
@ Boolean expressions
e times operator (presented in a few slides)

Examples: Locall >= 8

Events
are made of
@ variable definitions based on any Scade expressions

Examples: Locall = 3+x;
Remark: an expression shall be terminated by a ';’

15/29

State machine transitions

3 A

last .
= | - >
1 1

x>=5/

Remark

The keyword last stands for memory that gives the value of x at the
previous tick (the memory is shared between all states).

15/29

State machine transitions

| false true -
STRONG O = false |0 = true |O = true
WEAK DELAYED O = false |0 = false |0 = true

15/29

State machine — factors

Factors

A factor specifies on many time a condition must be true in a guard of an
automaton.
Note: can also be used in data-flow equations.

5 H

times -~ .

{* State!) . / State2 A
T b oo l.:l

false |—> TimeOut troe l—> TimeOut E
[m]

O.-------Q------.0

true in the guard can be replaced by an other Boolean flow.

16/29

State machine in textual representation

node UpDown () returns (x: int last=0)
let

automaton UD

intial state A

x = last 'x + 1; until if x >= 5 restart B;
state B
x = last 'x — 1; until if x <= —5 restart A;

returns x;
let

17/29

State machine transition priority

@ When conditions of several transitions starting from the same active

state are true, only the one with the highest priority is fired.

Transitions
Comment
Hote

Frioiy

History
@PRestat (O Resume

Palline Mode

18/29

State machine — complex transitions

Decision point in an automaton

Fork J

19/29

Local variable

@ A local variable is only seen in the operator in which its is declared
@ Can be used in in/out mode as many time as necessary.

Used as output
>—I—‘ /
|

D—|—[> Loealt e e e € SMT> -- N

: Inputd .~ Logal? = trus;
> Outputt '
Input?

B S e

g\ Used as input

20/29

Communication between state machines

Signals are a special values which are usefull to catch specific situation
in several state-machines

@ A signal is emitted in several parallel SSM when a condition is met

@ A parallel SSM waits for the presence of the signal to respond to the
event

21/29

Example: Pressure controller

Goal of the controller
detect pression over 20 bars and set an alarm for 60 cycles.

Implementation in 3 operators

Operator 1: thresholdDetector
=¥ mY thresholdDetector

23 Inteface nessure
¥ measure e > over
+ threshold
-> over threshad
@ diagram_thresholdDetector_1

22/29

Example: Pressure controller

Goal of the controller
detect pression over 20 bars and set an alarm for 60 cycles. J

Implementation in 3 operators

Operator 2: timedDevice

S-E0peators 0 WM 00000 e PV
- main
-1 thresholdDetector
{7 timedDevice
-3 Interface
+ duration
+ order
- alam
2} SM1
®

diagram_timedDevice_1

(2 bvert

22/29

Example: Pressure controller

Goal of the controller
detect pression over 20 bars and set an alarm for 60 cycles.

Implementation in 3 operators

Operator 3: pressureController

| PressureControler

(N Operators @
=-{F main
= neasure
= Interface 1 ‘
¥ measure et timedDevics
- alam
20

@ diagram_main_1

22/29

Causality loop

Definition
It is a cyclic dependencies of flow calculation, or a mix of
State/Transition execution and flow calculation

KCG compiler can automatically detects them!

Note: this problem can be
solved using weak transition
or using fby operator.

Qati=2

1 error(s) detected -

Category Code Message
Causality error at causality/SM1:Statel:
Causality the strong guards of state State1 depend on flow Output1 ; (causality/Output1/) the definition of flow Output1 depends on

ERR_400 shared flow Output1 via a control
block ; (causality/SM1:State1:Output1=) the definition of shared flow Output1 depends on the state of automaton SM1 via
the control context ; (causality/SM1:State1:) the state of automaton SM1 depends on the strong guards of state State1 ;

Error

23/29

Main language construction

Mathematical ‘oo & OO
Logical DDD&E b
Structure/Array BaEED BEBE oo
Higher Order PRV RLR O
Comparison =

Time B oEE s

Choice ‘& 5

24/29

Data structure: Arrays — defintion

Restriction

@ Only static size is
allowed

@ First index is 0

Definition:
@ Vector: Real"3

@ Matrix: Bool"3"2
typedef real line_3 [3];

General
Declaration
Clack
Comment
Mote

KCG
Traceability

typedef line.3 matrix_2_3 [2];

Il Type: |bool "3 ~|
Last: ~| E]
Kind: + Input v

stands for 2 rows, 3 columns

25/29

Data structure: Arrays — accessors

U
ta] amr
l: > @ Dynamic access in

index I reading (with default
value for out-of-bound)

1
tabl O > ami

@ Static access in reading

tatz >—‘|: j—> anz o Writing
troe 5—’_Dg

Textual notation
with square brackets x[0] J

26/29

Main language construction

Mathematical ‘oo & OO
Logical DDD&E b
Structure/Array BaEED BEBE oo
Higher Order PRV RLR O
Comparison =

Time B oEE s

Choice ‘& 5

27/29

Iterators in brief — map function

node SumScalar (a, b: int) returns (s: int) let s = a + b; tel
v = (map SumScalar «3»)(t, u);

Definition
x = (map N <<dimension>>)(arguments);

@ A node N with k arguments.

@ From k arrays of dimension d we want to create a new array v of
dimension d.

@ The elements of v are the result of the application of N on the

elements of the arrays in parameter.
v = [N(x1[0],..., xk[0]); N(x1[1], ..., xk[1]); ...; N(x1[d-1],...,xk[d-1])]

28/29

Iterators in brief — map function

a>—|—_
b>—|7

c=a+b

\‘/

map<<3>>

1 S

u Sum_scalar

iv={map Sum_scalar<<3==){t, u),

28/29

Conclusion

Lustre/SCADE

Is a specialized language for critical embedded software
@ having a limited but well chosen language constructions;
@ mixing data-flow equations and state machines;

@ with a precise and formalized semantics.

The main paradigm is the synchronicity
@ assumption: computation in zero time

@ time is abstracted by logical ticks

29/29

	Lecture 3

