
Modèle et génération automatique de code

Alexandre Chapoutot

ENSTA Paris

2022-2023



Part I

Lecture 3

2 / 29



Reactive software
Embedded software are also known as reactive programs: they
continuously produce outputs in response to inputs coming from the
physical environment.

Embedded software

Physical environment

Input Output

The execution of embedded software is described by discrete-time
dynamics i.e. it is a sequence of reactions.

time
I1 I2 I3

O1 O2 O3

Ideally we should have that:
Output Oi should be emitted before input Ii+1 and no important
input Ii is missed.
The software is deterministic: same input produces same output.
A finite amount of memory is used.

3 / 29



An ideal abstraction: synchronicity

The execution of embedded software is described by discrete-time
dynamics i.e. it is a sequence of reactions.
We assume that the computation time is zero

time
I1 I2 I3

O1 O2 O3

Conceptually
Output are produced infinitly quickly
All the computation are done in parallel

Verification of the hypothesis
Compute WCET and check that input are not faster than WCET

Remark: we deal with discrete-time abstraction

4 / 29



Classical implementation

A reactive software is mainly an infinte loop of the form

Two possible implementations: sampled-base or event-based

S := S0
for each tick do

Read I
(S, O) = step(S, I)
Write O

end for

S := S0
for each event do

Read I
(S, O) = step(S, I)
Write O

end for

The function step is the targeted applications of SCADE language

Examples of reactive programs
Linear filters or state machines

5 / 29



Model-based: kind of software targeted

Hardware

Input/Output

RTOS Drivers

SCADE
Software

Hand-
written
Code

Hand-
written
Code

SCADE function is based on
data-flow equations
state machines

6 / 29



SCADE: Safety Critical Application Development
Environment

7 / 29



Data-flow approach

A classical approach in circuits and control theory.

+

x

y

÷

2

m
node mean ( x , y : r e a l )
r e tu rn s (m : r e a l ) ;
l e t

m = ( x + y ) / 2 ;
t e l ;

Synchronous interpretation:

∀t ∈ N, mt = (xt + yt)/2

A Lustre/SCADE program is described by a set of data-flow equations.

8 / 29



Main language construction

59

Toolbars: Predefined Operators

Mathematical

Logical

Structure/Array

Higher Order

Comparison

Time

Choice

9 / 29



Example in SCADE

10 / 29



Operator hierarchy

Remark
Only one root to be defined at compile time

56

SCADE Design

�Hierarchy of operator instances with one root operator 
instance

AND

XOR

NOTInput1
Input2

11 / 29



State Machine

An operator can be defined over a state machine
It can have several state machine in “parallel” and mixed with flows
each state machine must have a unique initial state

73

SSM Creation

�SSM are created within SCADE operators
�An operator can contain several parallel SSMs, each 
containing one or several states
�Each SSM must have a unique initial state
�A SSM is surrounded by dashed lines to delimit it from 
the other SSM or data-flow behaving in parallel

12 / 29



State Machine - cont’

A state
is graphically represented by a rectangle with a name
represents the memory element of a state machine
at each cycle, a state in one state machine is either active or not

74

SSM States

�States
�Graphical rectangle that should be named
�Basic memory element of a SSM
�At each cycle, a state is either active or not

Note: the content, i.e., the computations, of a state is defined
graphically by dataflow diagrams or even other state-machines or both.

13 / 29



Dataflow in states

Main rules
Equations are computed only when the state is active
Ech declare variables (local or output) must have exactly one
definition at each cycle where its scope is active

What happens when a definition is missing in a given state?
Producing a default value if there is one defined for the flow
Or maintaining the last value of the flow.
Remark: If the flow is not defined at the initial cycle, the flow must
have an init value for the last

82

Data Flow Inside State (1/5)

�Equations are calculated only when the state is active
�Each declared flow (local or output) must have exactly one 
definition for each cycle where its scope is active
�What happens when a definition is missing in a given state?
�Produce a default value if there is one defined for the flow
�Otherwise, maintain the last value of the flow. If the flow is not defined at the 
initial cycle, the flow must have an init value for the last

14 / 29



State machine transitions

A transition has the general form:

78

Transition Labeling

SCADE textual expression / SCADE textual expression

Trigger

Trigger:
Event condition

Effect: signal 
emissions

Effect

Preemption during transition
weak: (until ), when the transition is taken, the next state is
activated in the next instant.
strong: (unless), when the transition is taken, the next state is
activated in the current instant.

Remark: the effects of a transition are computed in the current instant.

15 / 29



State machine transitions

78

Transition Labeling

SCADE textual expression / SCADE textual expression

Trigger

Trigger:
Event condition

Effect: signal 
emissions

Effect

15 / 29



State machine transitions

Triggers
are made of

Boolean expressions
times operator (presented in a few slides)

Examples: Local1 >= 8

Events
are made of

variable definitions based on any Scade expressions
Examples: Local1 = 3+x;
Remark: an expression shall be terminated by a ’;’

15 / 29



State machine transitions

 Page 5/9 

state-machines bring useful syntactical facilities but 
do not break the data-flow principles.  
Let us explain the main principle through an 
example. We choose the same example as in [11] 
that illustrates how a data can be computed in 
several ways according to modes.   

<UD>

B

1

 last 'x x

A

 last 'x

1

x

1

x >= 5

1

x <= -5

 
In textual : 

 
Figure 18: Node UpDown 

 
Figure 19: UpDown node behaviour 

The initial state is A, in this state x is computed 
according to x = last’x + 1, last’x is the value 
of x in the previous cycle in the complete state-
machine. When x >= 5 then the cycle after (weak 
transition) state B is activated. x = last’x-1 is 
then computed until x<=-5. 
State transitions: 
SCADE offers three different kinds of state 
transitions: strong, weak and synchronisation 
transition. The two first ones correspond to common 
ways to fire a transition in control models. The last 
one allows synchronizing parallel state-machines. 
In SCADE, a State Machine has one and only one 
active state per cycle. 
This property preserves the unicity of the definition of 
a flow during a cycle. 
With strong preemption transition, when the 
transition is fired, the target state becomes active 
within the cycle. 

Example: 
<ev en_odd_c>

C

3 o

ODD

2 o

EVEN

1 o

1

a

2

b

1

true
1true

 
Figure 20: Node UpDown 

 
Figure 21: even_odd_c node behaviour 

With weak transition, when the transition is fired, the 
target state becomes active the cycle after but the 
actions on transition are activated within the cycle. 
Example: 

<ev en_times_delay ed>

ODD

i

-2
o

EVEN

1

i

o

1

c

1

c

  
node even_times_delayed (c: bool; i : int ) returns (o: int )
let
  automaton
    initial state EVEN
      let
        o = i + 1 ;
      tel
    until if c restart ODD ;
    state ODD
      let
        o = -2 * i ;
      tel
    until if c restart EVEN ;
  returns o;
tel

 
Figure 22: Node even_time_delayed 

 
Figure 23: even_time_delayed node behavior 

 

Remark
The keyword last stands for memory that gives the value of x at the
previous tick (the memory is shared between all states).

15 / 29



State machine transitions

90

Strong and Weak Preemption

I false true -

STRONG O = false O = true O = true

WEAK DELAYED O = false O = false O = true

15 / 29



State machine – factors

Factors
A factor specifies on many time a condition must be true in a guard of an
automaton.
Note: can also be used in data-flow equations.

true in the guard can be replaced by an other Boolean flow.

16 / 29



State machine in textual representation

Example

node UpDown ( ) r e tu r n s ( x : i n t l a s t =0)
l e t

automaton UD
i n t i a l s ta te A

x = l a s t ’ x + 1 ; u n t i l i f x >= 5 r e s t a r t B;
s ta te B

x = l a s t ’ x − 1 ; u n t i l i f x <= −5 r e s t a r t A;
r e tu rn s x ;

l e t

17 / 29



State machine transition priority

When conditions of several transitions starting from the same active
state are true, only the one with the highest priority is fired.

87

Transition Priorities

�When conditions of several transitions starting from the 
same active state are true, only the one with the highest 
priority (1 is the highest) is fired
�The priority is mandatory to ensure determinism
�A default value is automatically added by the SCADE Editor, but it can 
be manually changed by the designer

18 / 29



State machine – complex transitions

Fork
Decision point in an automaton

19 / 29



Local variable
A local variable is only seen in the operator in which its is declared
Can be used in in/out mode as many time as necessary.

77

Local Variables

© Esterel Technologies - An ISO 9001:2000 Certified Company - Confidential & Proprietary

�Seen only by the operator in which it is declared.
�Can be used as many times as necessary.

Used as output

Used as input
20 / 29



Communication between state machines
Signals are a special values which are usefull to catch specific situation
in several state-machines

A signal is emitted in several parallel SSM when a condition is met
A parallel SSM waits for the presence of the signal to respond to the
event

21 / 29



Example: Pressure controller

Goal of the controller
detect pression over 20 bars and set an alarm for 60 cycles.

Implementation in 3 operators

Operator 1: thresholdDetector

22 / 29



Example: Pressure controller

Goal of the controller
detect pression over 20 bars and set an alarm for 60 cycles.

Implementation in 3 operators

Operator 2: timedDevice

22 / 29



Example: Pressure controller

Goal of the controller
detect pression over 20 bars and set an alarm for 60 cycles.

Implementation in 3 operators

Operator 3: pressureController

22 / 29



Causality loop

Definition
It is a cyclic dependencies of flow calculation, or a mix of
State/Transition execution and flow calculation

KCG compiler can automatically detects them!

Note: this problem can be
solved using weak transition
or using fby operator.

23 / 29



Main language construction

59

Toolbars: Predefined Operators

Mathematical

Logical

Structure/Array

Higher Order

Comparison

Time

Choice

24 / 29



Data structure: Arrays – defintion

Restriction
Only static size is
allowed
First index is 0

Definition:
Vector: Realˆ3
Matrix: Boolˆ3ˆ2 stands for 2 rows, 3 columns

typedef real line 3 [3];
typedef line 3 matrix 2 3 [2];

25 / 29



Data structure: Arrays – accessors

Dynamic access in
reading (with default
value for out-of-bound)

Static access in reading

Writing

Textual notation
with square brackets x [0]

26 / 29



Main language construction

59

Toolbars: Predefined Operators

Mathematical

Logical

Structure/Array

Higher Order

Comparison

Time

Choice

27 / 29



Iterators in brief – map function

Example: map
node SumScalar (a, b: int) returns (s: int) let s = a + b; tel
v = (map SumScalar «3»)(t, u);

Definition
x = (map N <<dimension>>)(arguments);

A node N with k arguments.
From k arrays of dimension d we want to create a new array v of
dimension d .
The elements of v are the result of the application of N on the
elements of the arrays in parameter.
v = [ N(x1[0],..., xk[0]); N(x1[1], ..., xk[1]); ...; N(x1[d-1],...,xk[d-1])]

28 / 29



Iterators in brief – map function

 Page 7/9 

    |ST0 : 
      let 
        o = i + 1; 
        state_next = ST0; 
 tel 
    |ST1 : 
      let 
        o = -2 * i; 
        activate if fired_strong <> 
                    no_trans 
       then state_next = ST1; 
       else state_next=if c1 then 
   ST0 else ST1 ; 
 returns ..; 
 tel 
    returns o, state_next ; 
tel 
 

2.3 Safe loop (iterators) 
Repeating a computation for large array data or 
computing vectors or matrices is very common in 
embedded systems. The challenge for a modeling 
language addressing safety critical systems is to 
provide safe loop constructs. The principle in 
SCADE version 6 is to provide several predefined 
iterators scheme. We present in this paper the main 
ones.  
Iterators are again higher order operators with the 
following general syntactic form: 
X = (iterator Node <<dimension >>) ( arguments ) ;  
Map: 
Given a node N, that requires k arguments, and k 
arrays of size d. Let suppose now that the expected 
result is a new array of size d built out of the 
application of node N to the successive elements of 
these arrays, as follows: 
X = [ N(x[0] ,... ,z [0]) , N(x[1] ,... ,z [1]) , ... , N(x[d -1] 
,... ,z[d -1]) ] ; 
This expanded form can be summarized using the 
map iterator applied on node N: 
X = (map N <<d > >)(x ,... ,z) ;  

Example: 
Pointwise sum of two arrays can be expressed in the 
following way: 

b

a
c

Node Sum_scalar

c = a + b  
Figure 21: Node Sum_Scalar 

v
u

t
1

Sum_scalar

map<<3>>

Node sum_array

 

 

Figure 21: Node Sum_array 
 
Fold: 
The fold operator also allows applying a node 
successively to array arguments. But contrary to 
map operator, it does not build an array of the same 
size as its arguments: it provides an element 
belonging to the basic type of the arrays (called 
accumulator) which is initialized in the called 
parameter then passed from one array element to 
the next one. The result is the accumulator provided 
by the N applyed to the last element. 
Example Sum of the elements of an array: 

s
0

1

Sum_scalar

fold<<3>>

a
t

Node Array_sum

 
 

Figure 22: Node Array_sum 
s = Sum_scalar ( Sum_scalar ( sum_scalar (0, t[0]) , 
t[1]) , t [2]) ; 
Other iterators exist such as mapfold which is a 
combination of map and fold, others iterators allow to 
get access to the index of the computation (mapi, 
foldi, …). 
2.3 Other modelling features 
Assume and guarantee: 
Design-by-contract is a clean and safe software 
engineering principle. A contract is a specification of 
the condition of use and the expectations of a 
function (or a node). 
This contract is made of a pair of observers. 
• one corresponding to condition of use: assume, 
• one corresponding to ensured properties: 
guarantee. 
Assume and guarantee do not impact the semantic 
of the model, they are part of the model for proof 
purpose. 

 Page 7/9 

    |ST0 : 
      let 
        o = i + 1; 
        state_next = ST0; 
 tel 
    |ST1 : 
      let 
        o = -2 * i; 
        activate if fired_strong <> 
                    no_trans 
       then state_next = ST1; 
       else state_next=if c1 then 
   ST0 else ST1 ; 
 returns ..; 
 tel 
    returns o, state_next ; 
tel 
 

2.3 Safe loop (iterators) 
Repeating a computation for large array data or 
computing vectors or matrices is very common in 
embedded systems. The challenge for a modeling 
language addressing safety critical systems is to 
provide safe loop constructs. The principle in 
SCADE version 6 is to provide several predefined 
iterators scheme. We present in this paper the main 
ones.  
Iterators are again higher order operators with the 
following general syntactic form: 
X = (iterator Node <<dimension >>) ( arguments ) ;  
Map: 
Given a node N, that requires k arguments, and k 
arrays of size d. Let suppose now that the expected 
result is a new array of size d built out of the 
application of node N to the successive elements of 
these arrays, as follows: 
X = [ N(x[0] ,... ,z [0]) , N(x[1] ,... ,z [1]) , ... , N(x[d -1] 
,... ,z[d -1]) ] ; 
This expanded form can be summarized using the 
map iterator applied on node N: 
X = (map N <<d > >)(x ,... ,z) ;  

Example: 
Pointwise sum of two arrays can be expressed in the 
following way: 

b

a
c

Node Sum_scalar

c = a + b  
Figure 21: Node Sum_Scalar 

v
u

t
1

Sum_scalar

map<<3>>

Node sum_array

 

 

Figure 21: Node Sum_array 
 
Fold: 
The fold operator also allows applying a node 
successively to array arguments. But contrary to 
map operator, it does not build an array of the same 
size as its arguments: it provides an element 
belonging to the basic type of the arrays (called 
accumulator) which is initialized in the called 
parameter then passed from one array element to 
the next one. The result is the accumulator provided 
by the N applyed to the last element. 
Example Sum of the elements of an array: 

s
0

1

Sum_scalar

fold<<3>>

a
t

Node Array_sum

 
 

Figure 22: Node Array_sum 
s = Sum_scalar ( Sum_scalar ( sum_scalar (0, t[0]) , 
t[1]) , t [2]) ; 
Other iterators exist such as mapfold which is a 
combination of map and fold, others iterators allow to 
get access to the index of the computation (mapi, 
foldi, …). 
2.3 Other modelling features 
Assume and guarantee: 
Design-by-contract is a clean and safe software 
engineering principle. A contract is a specification of 
the condition of use and the expectations of a 
function (or a node). 
This contract is made of a pair of observers. 
• one corresponding to condition of use: assume, 
• one corresponding to ensured properties: 
guarantee. 
Assume and guarantee do not impact the semantic 
of the model, they are part of the model for proof 
purpose. 

28 / 29



Conclusion

Lustre/SCADE
Is a specialized language for critical embedded software

having a limited but well chosen language constructions;
mixing data-flow equations and state machines;
with a precise and formalized semantics.

The main paradigm is the synchronicity
assumption: computation in zero time
time is abstracted by logical ticks

29 / 29


	Lecture 3

