
Modèle et génération automatique de code

Alexandre Chapoutot

ENSTA Paris

2022-2023

Part I

Lecture 2

2 / 35

Reactive software
Embedded software are also known as reactive programs: they
continuously produce outputs in response to inputs coming from the
physical environment.

Embedded software

Physical environment

Input Output

The execution of embedded software is described by discrete-time
dynamics i.e. it is a sequence of reactions.

time
I1 I2 I3

O1 O2 O3

Ideally we should have that:
Output Oi should be emitted before input Ii+1 and no important
input Ii is missed.
The software is deterministic: same input produces same output.
A finite amount of memory is used.

3 / 35

An ideal abstraction: synchronicity

The execution of embedded software is described by discrete-time
dynamics i.e. it is a sequence of reactions.
We assume that the computation time is zero

time
I1 I2 I3

O1 O2 O3

Conceptually
Output are produced infinitly quickly
All the computation are done in parallel

Verification of the hypothesis
Compute WCET and check that input are not faster than WCET

4 / 35

Classical implementation

A reactive software is mainly an infinte loop of the form

Two possible implementations: sampled-base or event-based

S := S0
for each tick do

Read I
(S, O) = step(S, I)
Write O

end for

S := S0
for each event do

Read I
(S, O) = step(S, I)
Write O

end for

The function step is the targeted applications of SCADE language

Examples of reactive programs
Linear filters or state machines

5 / 35

Model-based: kind of software targeted

Hardware

Input/Output

RTOS Drivers

SCADE
Software

Hand-
written
Code

Hand-
written
Code

SCADE function is based on
data-flow equations
state machines

6 / 35

SCADE: Safety Critical Application Development
Environment

7 / 35

Data-flow approach

A classical approach in circuits and control theory.

+

x

y

÷

2

m
node mean (x , y : r e a l)
r e tu rn s (m : r e a l) ;
l e t

m = (x + y) / 2 ;
t e l ;

Synchronous interpretation:

∀t ∈ N, mt = (xt + yt)/2

A Lustre/SCADE program is described by a set of data-flow equations.

8 / 35

Mean example in Scade

output
input

operator
constant or textual expression

9 / 35

Flows

Definition
A flow is an infinite sequence of values of the same type.

All the Lustre/SCADE variables are flows.

Type of flows: bool, int8, int16, int32, int64, float32, or
float64.

Flow example
true ≡ true, true, true, . . .
1 ≡ 1, 1, 1, . . .

3.14 ≡ 3.14, 3.14, 3.14, . . .

10 / 35

Operations on flows

An operator is applied on flows of particular type and produce an
other flow of a particular type.

Operator example
”and” is an operator applied on two Boolean flows and produces an other
Boolean flow.

Operators are applied point-wisely.

Example
0 1 2 3 4 5 6 7

x true false true false true false true false
y true true false true false false true true

x and y true false false false false false true false

11 / 35

Example in SCADE

A set of atomic opertions is offered by SCADE:

Arithmetic

59

Toolbars: Predefined Operators

Mathematical

Logical

Structure/Array

Higher Order

Comparison

Time

Choice

Logical

59

Toolbars: Predefined Operators

Mathematical

Logical

Structure/Array

Higher Order

Comparison

Time

Choice

Comparison

59

Toolbars: Predefined Operators

Mathematical

Logical

Structure/Array

Higher Order

Comparison

Time

Choice

Remark: SCADE Suite can be configured to display type variable

12 / 35

Lustre/SCADE program
A Lustre/SCADE program is made of a set of equations such that:

The order of equations is not important

follows the substitution principle

Example

node nand (x , y : bool) r e tu rn s (z : bool) ;
var u : bool ;
l e t

z = not u ;
u = x and y ;

t e l

Execution:

x true true false true true false . . .
y false true false false true false . . .
u false true false false true false . . .
z true false true true false true . . .

13 / 35

Example in SCADE

14 / 35

Main language construction

59

Toolbars: Predefined Operators

Mathematical

Logical

Structure/Array

Higher Order

Comparison

Time

Choice

15 / 35

if expression

Example

node max (x , y : i n t) r e tu rn s (m: i n t) ;
l e t

m = i f (a >= b) then a e l s e b ;
t e l

Remark: if expression as in functional language
if: (bool flow) × (t flow) × (t flow) → (t flow)

Remark: always then and else ⇒ determinism.

16 / 35

Example in SCADE

17 / 35

if block

18 / 35

-> operator

Solve the initialisation problem of pre operator by fixing the initial value.

(x - > y)i =
{

xi if i = 0
yi if i > 0

Warning the dates i are absolute and not relative to the current
instant.

Example
x 1 1 1 0 . . .

0 - > x 0 1 1 0 . . .

What is the value of: 0 −> (0 −> 1)?

19 / 35

pre operator

pre: retains in memory previous values of a flow.

(pre(e))i =
{

⊥ if i = 0
ei−1 if i > 0

Memory size: number of embedded pre operators.

Example
e 1 0 1 0 1 . . .

pre e ⊥ 1 0 1 0 . . .

Remark: Initialisation problem of pre operator which solves using ->
operator.

20 / 35

Example: min and max

min/max program

node minmax (x : i n t)
r e tu rn s (min , max : i n t) ;
l e t

min = x −> i f (x < pre (min)) then x e l s e pre (min) ;

max = x −> i f (x > pre (max)) then x e l s e pre (max) ;
t e l

Execution:

x 12 5 7 -2 21 0 . . .
min 12 5 5 -2 -2 -2 . . .
max 12 12 12 12 21 21 . . .

21 / 35

fby (followed by) operator

Idea
Combination of the two operators: pre and ->

Syntax
fby(exp;delay ; init)

exp: flow expression;
delay: number of delay instants;
init: initial values.

Example
y = fby(x ;1;0) + 1;
equivalent to
y = (0 −> pre(x)) + 1;

22 / 35

Definition of recursive flows

Corrects definition
The sequence of values can be defined step by step

i.e., the recursion is not related to the past

i.e., no short circuit:
e.g., equation x = x + 1 has no solution
Remark: in some cases the recursion has a solution
e.g., x = 1/(2 − x)
but the computation is unbounded.

Example of recursive flows

a l t = f a l s e −> not pre a l t

⇒ built flow: false true false true . . .

23 / 35

A graphical representation

Lustre/SCADE is mostly used with this graphical representation

!"#$%$&'($)*+,&,-.$"
!

/0#012&,3'4,5$&.+-6'7.89&$':,;+#$%

As a watch is something that counts time, let us start with a simple counter. First create an
empty project, add a Count operator with a single Boolean incr input that enables the
counting and an integer output called count; and make this counter counts cycles using
the fby, + and if operators:

2.-;%$'<6'"#$%&'()#*+,-.)/#

If this is not straightforward, remember that the fby operator is a memory introducing a
user-defined delay and an initial value for the time before this delay (1 and 0 respectively
in this example). The specification can be read as : let Count be its previous value +1 if
incr is true, else maintain its previous value. At the first tick, the previous value of
Count is zero.

You can quickly verify that your counter behaves correctly with a simple simulation.

We are planning to count time, and as time is inherently cyclic, so must be our counter.
Copy and paste the Count operator and rename it to modCount, then add an integer
input named modulo. It indicates the maximum value for our counter. When the counter
reaches this value, it simply restarts from zero. The design hereafter is one possible
implementation:

its textual representation

count = fby (count + i f i n c r then 1 e l s e 0 ; 1 ; 0)

24 / 35

SCADE operator (Lustre node)

Equations define the output values by constraining the input flows.

Instantaneous evaluation and the order of equations is not important

the value of output flow must be uniquely defined.

Node example

node v o t e r (e1 , e2 , e2 : bool) r e tu rn s (s : bool) ;
var tmp1 , tmp2 : bool ;
l e t

tmp1 = e1 and e2 ;
s = tmp1 or (e1 and tmp2) ;
tmp2 = e2 or e3 ;

t e l

25 / 35

Operator hierarchy

Remark
Only one root to be defined at compile time

56

SCADE Design

�Hierarchy of operator instances with one root operator
instance

AND

XOR

NOTInput1
Input2

26 / 35

Operator semantics

A Lustre/SCADE node is a specification of constraints between
input and output flows.

The semantics of one node is then a set of input and output flows
which are admissible for these constraints.

Every node defined by the user can be reuse.

Remark
a node without state should be declared as a function.

Example
- the input flow X is taken into account only if it is maintained more

than n hundredths of a second;
- the input flow cs is true each hundredth of a second.
- the output flow y is true when the input X is maintained more than

n hundredths of a second;
27 / 35

Example - 1

Two nodes are needed:
CounterReset: increases a counter when X is true and it is reset
when reset (priority) is true;
Detector:

CounterReset node

28 / 35

Example - 2

Two nodes are needed:
CounterReset: increases a counter when X is true and it is reset
when reset (priority) is true;
Detector:

Detector node

28 / 35

Clocks and sampling operator

Sampling operator: when
uses to define a slower rate flow than its output.

Example of sampling
X 4 1 −3 0 2 7 8 . . .
C true false false true true false true . . .

X when C 4 0 2 8 . . .

Remark: when C is false, X when C does not exist.

Warning: operators are applied on flows on the same clock.
e.g., x + (x when c) is not allowed

Remark 2: we can sample a sampled flow.

29 / 35

Clocks and nodes

node cpt (x : bool) r e tu rn s (y : i n t) ;
var cpt : i n t ;
l e t

y = 0 −> i f x then pre cpt + 1 e l s e pre cpt
end

Sampling input is not equivalent to sampling output.

Sampling examples
C true true false false true false . . .

cpt (true when C) 0 1 2 . . .
cpt (true) when C 0 1 4 . . .

30 / 35

merge operator

Bring back a low rate flow on a faster clock.

Definition

merge(h; x1; ...; xp) =

x1

n if h match e1

...
xp

n if h match ep

h is an element of enumerated type among e1, . . . , ep.

Projection example
X 2 −2 2 −2 2 −2 2 . . .
Y −1 1 −1 1 −1 1 −1 . . .
C true false false true true false true . . .

U = X when C 2 −2 2 2 . . .
V = Y when not C 1 −1 1 . . .
N = merge(C;U;V) 2 1 −1 −2 2 1 2 . . .

31 / 35

Conditional activation of an operator

Definitions
activate N every clock expr
N is activated when clock clock expr is true.
activate N every clock expr default exp
Idem except that the value of expr2 is returned when clock expr
is false.
activate N every clock expr initial default exp
N is activated when clock expr is true. And when clock expr is
false the result is set with the value of expr2 at the first instant
then it is the latest value of N which is used.

node i n t e g r (X : i n t) r e t r u n s (Y : i n t)
l e t

Y = X + (0 −> pre (Y)) ;
t e l

32 / 35

Conditional activation of an operator

Definitions
activate N every clock expr
N is activated when clock clock expr is true.
activate N every clock expr default exp
Idem except that the value of expr2 is returned when clock expr
is false.
activate N every clock expr initial default exp
N is activated when clock expr is true. And when clock expr is
false the result is set with the value of expr2 at the first instant
then it is the latest value of N which is used.

Example
t = activate(integr every C) (X)

X 1 2 3 4 5 6 . . .
C false true false false true true . . .
t 2 7 13 . . .

32 / 35

Conditional activation of an operator

Definitions
activate N every clock expr
N is activated when clock clock expr is true.
activate N every clock expr default exp
Idem except that the value of expr2 is returned when clock expr
is false.
activate N every clock expr initial default exp
N is activated when clock expr is true. And when clock expr is
false the result is set with the value of expr2 at the first instant
then it is the latest value of N which is used.

Example
t = activate(integr every C default 0) (X)

X 1 2 3 4 5 6 . . .
C false true false false true true . . .
t 0 2 0 0 5 11 . . .

32 / 35

Conditional activation of an operator

Definitions
activate N every clock expr
N is activated when clock clock expr is true.
activate N every clock expr default exp
Idem except that the value of expr2 is returned when clock expr
is false.
activate N every clock expr initial default exp
N is activated when clock expr is true. And when clock expr is
false the result is set with the value of expr2 at the first instant
then it is the latest value of N which is used.

Example
t = activate(integr every C initial default 0) (X)

X 1 2 3 4 5 6 . . .
C false true false false true true . . .
t 0 2 2 2 5 11 . . .

32 / 35

Conditional activation of a set of equations

Definition
activate if exp then equation set1 else equation set2 ;
If expr is true then equation set1 is evaluated else
equation set2 is evaluated.

Example

node N (e : i n t ; h : bool) r e tu r n s (s : i n t ; t : i n t l a s t =0)
l e t

s = i n t e g r (e) ;
a c t i v a t e i f h then t = i n t e g r (e) ; e l s e t = l a s t ’ t ;
r e tu rn s t ;

t e l

e 1 2 3 4 5 6 7 . . .
h false true false false true true false . . .
s 1 3 6 10 15 21 28 . . .
t 0 2 2 2 7 13 13 . . .

33 / 35

Example of activated node

34 / 35

restart operator

Definition
(restart N every c)(e);
is used to set the node N in is initial state.

Example

node S (e : i n t) r e tu rn s (sum : i n t)
l e t sum = 0 −> e + pre sum ; t e l

node Count () r e tu rn s (x : i n t)
l e t x = 0 −> (1 + pre (x)) ; t e l

s = (r e s t a r t S every (0 −> pre s >= 10)) (Count ()) ;

Count() 0 1 2 3 4 5 6 7 8 9 . . .
s 0 1 3 6 10 0 6 13 0 9 . . .

35 / 35

	Lecture 2

