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Anatomy of an embedded system

Embedded systems are made of different components which highly
interact together.

Plant Software Hardware

The jobs of the designer and the programmer are:
Design an algorithm to control a physical process
Implement this algorithm on a given hardware

Remark: we deal with two different worlds
continuous-time evolution for the plant.
discrete-time (periodic sampling) evolution for the software.
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Ingredients for the design of embedded systems

The challenges
1 Safety critical systems (e.g. x-by-wire systems)
2 Complex functions to implement
3 Reduction of the time-to-market design
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Ingredients for the design of embedded systems

The challenges
1 Safety critical systems (e.g. x-by-wire systems)
2 Complex functions to implement
3 Reduction of the time-to-market design

Solution for problem 1
For the past decades some safety standards have been written such as

avionic: DO178B/C
automotive: ISO 26262

Consequence:
the life cycle of development is codified;
definition of system level of integrity (SIL or ASIL);
a set of rules have to be followed to certify the SIL, e.g. mc/dc test
coverage.

This is a very long and costly process.
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Ingredients for the design of embedded systems

The challenges
1 Safety critical systems (e.g. x-by-wire systems)
2 Complex functions to implement
3 Reduction of the time-to-market design

Solution for problem 2
Increase the level of abstraction to describe the systems.

Initially software was written in assembly language

Now, more and more the development uses the model-based design
paradigm.

Stay independent of a particular architecture as long as possible to
simplify the reasoning and to increase reusability.
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Ingredients for the design of embedded systems

The challenges
1 Safety critical systems (e.g. x-by-wire systems)
2 Complex functions to implement
3 Reduction of the time-to-market design

Solution for problem 3
Increase the use of automatizing in the process of development.

It is possible with the model-based design because we can make early
simulation at the beginning of the cycle of development.

Moreover, the increase of productivity is possible if the process of
development is well defined.
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Challenge for the industry

To emphasize the challenges for the industry, we recall:
In 2007: Daimler Chrysler recalls 62369 vehicles to reprogram brake
systems.
Between 2009 and 2010: Toyota recalls around 2M vehicles to fix a
acceleration pedal problem.

And last but not least, Volvo and
its crash avoidance system in the S60 vehicle.
its pedestrian crash avoidance system in the V60 vehicle.

Conclusion
The design of embedded systems is highly difficult and critic for industry.
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Cycle of development

Goals
Split the system into sub-systems.
Specification and conception of the sub-systems.
Integration of all the components: gather sub-systems and validate
the behaviors.

61508-3  IEC:1998 – 27 –

E/E/PES safety
requirements
specification

Programmable
electronic hardware

Non-programmable
hardware

Hardware safety requirements

Programmable
electronics design
and development

 Non-programmable
hardware design
and development
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software)

E/E/PES
architecture

Software safety
requirements

Software design
and development

Scope of
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E/E/PES
integration
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Figure 4 – Relationship between and scope of IEC 6158-2 and IEC 61508-3
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Figure 5 – Software safety integrity and the development lifecycle (the V-model)
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Design of an embedded system
The classical flow of conception is based on the V cycle which is paper
intensive.
Model-based design uses “computers” to help designing the embedded
systems.

Difficulties of the model-based design
Modelling: Specification and simulation
Validation: Proof of properties

Main technical issues
Integration of models mixing discrete/continuous behaviors
Numerical approximations

Remark: two kinds of model-based design
System level with for example SysML or AADL
Component level with Simulink/Stateflow or Lustre/SCADE
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Safety Standard

1 Introduction

2 Safety Standard

3 Model-Based Cycle of Development
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Critical embedded systems

Definition of system
A system is a combination of components which act together to
produce a result.

Service delivered by the system: its behavior as it is perceived by its
user(s) or an other system.

A failure is a temporary or permanent deviation of the delivered
service.
A failure is due to one or more errors.
An error comes from one or more faults.

The safety standards organized the failures such that:
the severity of consequences.
the frequency of occurrences.

A system is critic if consequences of a failure can be catastrophic for
human or for the mission.
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Critical embedded systems

Dependability
Ability of a system to deliver service that can be justifiably be trusted.
(definition due to J.C. Laprie)

Features:
Availability: readiness for correct usage.
Reliability: continuity of correct service.

Safety: absence of catastrophic consequences on the user(s) and
the environment.

Confidentiality: Absence of unauthorized disclosure of information.
Integrity: absence of improper system alterations.

Maintainability: ability for a process to undergo modifications and
repairs.

We speak about RAMS which stand for Reliability, Availability,
Maintainability, Safety. (FMDS en francais)
Security only deals with: Availability, Confidentiality and Integrity
aspects.
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IEC61508 standard
This standard integrates the reliability into the cycle of development:

International standard: CEI (Commission Electrotechnique
Internationale)
First edition in 1998
Related to Electrical/Electronic/Programmable Electronic
Safety-related Systems (E/E/PE system).

It is made of 7 parts
Part 1 : global prescriptions.
Part 2 : prescriptions related to the hardware of E/E/PE systems.
Part 3 : prescriptions related to software.
Part 4 : definitions and abbreviations.
Part 5 : examples of the methods used to determine the safety
integrity level.
Part 6 : guidelines for the application of Part 2 and Part 3.
Part 7 : overview of the methods that may be used.
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Goals of the IEC61508 standard

IEC61508 standard is a general approach of all the steps related to the
lifecycle of the safety of E/E/PE systems.

Idea : the safety is obtained by combining safety systems:
global approach of the safety and
independence of the domain of activity.

In order to facilitate the definition of new standards for particular areas.
For example,

Railway: IEC 50129
Nuclear: IEC 61513/60880
Automotive: ISO 26262
etc.
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Safety integrity level

The standard uses the notion of Safety Integrity Level (SIL) in order to
define the targeted level of safety of a system.

It adopts risk-based approach to determine the safety integrity levels.

It sets quantitative objectives (a lower limit) for the measures of the
failures of systems which are related to the SIL.

For example, the number of accepted failures in function of the SIL.

SIL Continuous mode On demand mode
1 10−5 > λ ≥ 10−6 10−1 > PFD ≥ 10−2

2 10−6 > λ ≥ 10−7 10−2 > PFD ≥ 10−3

3 10−7 > λ ≥ 10−8 10−3 > PFD ≥ 10−4

4 10−8 > λ ≥ 10−9 10−4 > PFD ≥ 10−5

λ is the probability of failure per hour, e.g. λ = 10−9 is equivalent
to one failure every 1 billion of hours.
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Evaluation of SIL: risk graph

Some evaluation methods are given in IEC61508 standard Part 5.
In particular, the method based on risk graphs (Appendix D).

In this method, the risk R is defined by:

R = C × F × P × W

Where the 4 parameters are:
C : Consequence risk parameter
F : Frequency and exposure time risk parameter
P : Possibility of avoiding hazard risk parameter.
W : Probability of the unwanted occurrence.
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Evaluation of SIL: risk graph
Classification of parameters

Consequences
C1 Minor injury
C2 Serious permanent injury to one or more

persons; death to one person
C3 Death to several people
C4 Very many people killed
Frequency of, and exposure time in, the hazardous zone
F1 Rare to more often exposure in the haz-

ardous zone
F2 Frequent to permanent exposure in the

hazardous zone
Possibility of avoiding the event
P1 Possible under certain conditions
P2 Almost impossible
Probability of the unwanted occurrence
W1 A very slight probability
W1 A slight probability
W3 A relatively high probability
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Evaluation of SIL: risk graph
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IEC 61508 Standard Part-3
For all software
forming part of a safety related system
or used to develop a safety related system.

This part establishes requirements for safety lifecycle phases and
activities which shall be applied during the design and development of
the safety-related software.

Important features of the lifecycle (design):
Step 9.2 : definition of software specifications from hardware
specifications.
Step 9.2 : validation plan (in parallel of the development).
Step 9.3 :

Definition of the software architecture and the module specifications.
Definition of integration tests (software/hardware,
software/software).
List of development tools.

Step 9.4 : Results of integration tests.
Step 9.6 : Results of the validation.
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Lifecyle of the software (design)

9.1.2
Spécification des 
prescriptions pour 

l'intégrité de sécurité
9.1.1

Spécification des 
prescriptions des 

fonctions de sûreté 
des logiciels

9.1 Spécifications des prescriptions de sécurité 
pour les logiciels

9.2 Planning de validation 
de sécurité des logiciels 9.3 Conception et 

développement du logiciel

9.4 Intégration du PE
(matériel/logiciel)

9.6 Validation de la sécurité du 
logiciel

9.5 Procédure d'exploitation
et modification du logiciel

Vers l'étape 12 du
cycle de vie globale

Vers l'étape 14 du
cycle de vie globale

9 Système de sécurité
E/E/EP

Réalisation
(Matériel)
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Cycle of development software

Spécification des 
exigences de 

sécurité des E/E/EP

Spécification des 
exigences de 

sécurité du logiciel 
d'application

Validation de la 
sécurité

Conception de 
l'architecture du 

logiciel 
d'application

Réalisation du 
logiciel 

d'application

Architecture en 
sous-systèmes

Réalisation des 
modules 

d'application

Tests modulaires 
du logiciel 

d'application

Codage

Test du logiciel 
d'application

Test d'intégration du 
logiciel d'application 

avec le SEP

Système
validé

VALIDATION

Vérification
Résultat

Each step must be validated!
a set of documents must be given to certification authority.
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Recommendations for Step 9.3 (development)

Design tools
Techniques SIL1 SIL2 SIL3 SIL4
Right programming language HR HR HR HR
Strong typed programming language HR HR HR HR
Subset of programming language – – HR HR
Certified tools (experienced) R (HR) HR HR HR
Certified compilers (experienced) R (HR) HR HR HR
Certified/experienced software libraries R HR HR HR
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Recommendations for Step 9.3 (development)

Programming aspects
Techniques SIL1 SIL2 SIL3 SIL4
Defensive programming – R HR HR
Modular approach HR HR HR HR
Coding rules R HR HR HR
Structured programming HR HR HR HR
Verified/experienced software libraries R HR HR HR

And also:
no dynamical memory;
limited use of pointers, recursive functions and/or interruptions;
no goto, . . .
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Summary

Design of critical embedded systems is strongly codified by safety
standards.

Always remember that the cost of the certification is around 30% to
50% of the global budget of a project.

Tools and design methods which reduce the time-to-market and/or
reduce the cost of certification is seek by the industry.

Current strategy
Model-based design: Lustre/SCADE and Matlab/Simulink/Stateflow.

Important reuse of software;
Automatic code generation;
Early error detection: simulation and/or formal methods.
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Model-Based Cycle of Development

1 Introduction

2 Safety Standard

3 Model-Based Cycle of Development
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Anatomy of an embedded system

Embedded systems are made of different components which highly
interact together.

Plant Software Hardware

The jobs of the designer and the programmer are:
Design an algorithm to control a physical process
Implement this algorithm on a given hardware

Remark: we deal with two different worlds
continuous-time evolution for the plant.
discrete-time (periodic sampling) evolution for the software.
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Reactive software
Embedded software are also known as reactive programs: they
continuously produce outputs in response to inputs coming from the
physical environment.

Embedded software

Physical environment

Input Output

The execution of embedded software is described by discrete-time
dynamics i.e. it is a sequence of reactions.

time
I1 I2 I3

O1 O2 O3

Ideally we should have that:
Output Oi should be emitted before input Ii+1 and no important
input Ii is missed (real-time constraints)
The software is deterministic: same input produces same output.
A finite amount of memory is used.
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An ideal abstraction: synchronicity

The execution of embedded software is described by discrete-time
dynamics i.e. it is a sequence of reactions.
We assume that the computation time is zero

time
I1 I2 I3

O1 O2 O3

Conceptually
Output are produced infinitly quickly
All the computation are done in parallel

Verification of the hypothesis
Compute WCET and check that input are not faster than WCET
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Integration of the software with the environment

Plant Software Hardware

The problem is to define a control/command software with respect to a
particular physical environment.

Problematic: How to focus on the function without taking into account
the implementation details.

Idea:
Working with both a model of software and the physical
environment.
Furthermore, with well-defined models we can reason on them.
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Integration of the software with the hardware

Plant Software Hardware

Problematic: to make the software and the hardware working together.

Idea:
Automatic code generation, parametrized with hardware taget
features.
Furthermore, well-defined language and compilation processes allow
to guarantee some good properties as determinism, boundness of
memory consumption.
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Classical design and validation methodology: automotiveA simple example: mathematical models

A semi-active suspension of a quarter-car model

Mass (m)
Sensor

k Controller
zb − zr

c(t)

zb

zr

m = 250 kg
k = 20000 N/m
cmax = 16000 N/m/s
cmin = 0

Mathematical model of the mechanical system

z̈b = − 1
m

�
k(zb − zr ) + c(t)

�
.

Mathematical model of the controller

c(t) =

�
−cmax(zb − zr ) if (zb − zr )(żb − żr ) < 0
cmin if (zb − zr )(żb − żr ) ≥ 0

.

8 / 1

mẍ + cẋ + kx = u

Mathematical model

zb

relative_position
1

Integrator1

1
s

Integrator

1
s

Gain1

1/m

Gain

k

c(t)
2

road
1

dot_zbddot_zb

Road_profile

road

Quarter_car

road

damping_force

relative_position

Controller

relative_positiondamping_force

Controller definition

Identification

Computer description

experimental studies
Theoretical and

Remarks
Mathematical models are an approximated descriptions of
physical systems.
The computer descriptions are studied with numerical tools.
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Classical design and validation methodology: automotive

MIL: Model in the loop
Definition of a mathematical model of the plant and the controller.

Simulation platform: Matlab/Simulink/Stateflow

Test process

Controller: model Plant Model

Sensor model

Actuator model

Test vectors Expected output

Aim of the testing activity
Does the controller fulfil the specification?
The set of tests will be used as “an oracle” in the next steps.
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Classical design and validation methodology: automotive

SIL: Software in the loop
Implementation of the controller in a target language.

Simulation platform: M/S/S

Test process

Controller: source code Plant Model

Sensor model

Actuator model

Test vectors Expected output

Aim of the testing activity
Do the hand-written or generated code still fulfil the specification?
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Classical design and validation methodology: automotive

PIL: Processor in the loop
Compilation of the controller and execute it on a virtual processor.

Simulation platform: M/S/S

Test process

Controller: object code

Virtual targeted CPU

Plant Model

Sensor model

Actuator model

Test vectors Expected output

Aim of the testing activity
Does the low-level implementation still fulfil the specification?
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Classical design and validation methodology: automotive

HIL: Hardware in the loop
Put the software on the real hardware target with sensors and actuators.

Simulation platform: M/S/S

Test process

Controller: object code

Targeted CPU

Plant Model

Sensors

Actuators

Test vectors Expected output

Aim of the testing activity
Does the implemented solution still fulfil the specification?
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Classical design and validation methodology: airplane
A simple example: mathematical models

A semi-active suspension of a quarter-car model

Mass (m)
Sensor

k Controller
zb − zr

c(t)

zb

zr

m = 250 kg
k = 20000 N/m
cmax = 16000 N/m/s
cmin = 0

Mathematical model of the mechanical system

z̈b = − 1
m

�
k(zb − zr ) + c(t)

�
.

Mathematical model of the controller

c(t) =

�
−cmax(zb − zr ) if (zb − zr )(żb − żr ) < 0
cmin if (zb − zr )(żb − żr ) ≥ 0

.

8 / 1

mẍ + cẋ + kx = u

Mathematical model

zb

relative_position
1

Integrator1

1
s

Integrator

1
s

Gain1

1/m

Gain

k

c(t)
2

road
1

dot_zbddot_zb

Road_profile

road

Quarter_car

road

damping_force

relative_position

Controller

relative_positiondamping_force

Controller+Plant

Introduction: 1
Getting Started with SCADE Suite Projects

Esterel Technologies
1 - 10

Figure 1.3: Complete RollControl model

The role and behavior of each of the components of the RollControl SCADE Suite model 
are detailed in the following tables. 

• Roll rate calculation requirements in Table 1.1 
• Roll rate warning alarms requirements in Table 1.2 
• Roll mode management requirements in Table 1.3 
• Definition of required constant in Table 1.4     
Table 1.1: RollControl requirements - I 

Roll Rate Calculation

Short 
description

The roll rate calculation subsystem calculates the plane roll rate, according to a 
joystick command and the adverse yaw coupling effects.

Inputs
- Joystick command
- Adverse yaw induced by left wing
- Adverse yaw induced by right wing

Outputs - Plane roll rate

Controller discrete model

Getting Started with SCADE Suite
4 - 167

Code Generation: 4
Generating Code from the SCADE Suite Model

To display a C file in SCADE Suite Editor

1 In FileView, double-click the RollControl_RollControl.c file.

Figure 4.191: Extract of generated code displayed in SCADE Suite Editor

The RollControl_RollControl.c file is displayed in the SCADE Suite built-in 
syntactic C code viewer, as you can see in the extract above. The generated code is 
readable and traceable and has been optimized according to the options set in the Standard 
configuration.  

You have now completed the Getting Started with SCADE Suite and have seen how to 
capture requirements into a SCADE Suite model, how to debug this model and how to 
generate code from it. You are ready to capture your own specification. In any case, if you 
need to learn more about SCADE Suite design environment and tools, refer to the 
complete SCADE Suite documentation set.

Tip
Annotations, as well as comments, that you previously added to the SCADE 
Suite design are propagated to the generated code as comments, which are 
located right before the declaration of the RollControl function.

Controller implementation

Identification

Computer description

experimental studies
Theoretical and

safety architecture SCADE translation

KCG compiler
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Model-based design and cycle of development
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H6("3%-.(%-)".&"F("$7(8"0&%".6(",)5-8).-&*"&0"%(C$-%(>(*.7").".6("717.(>"5(,(5")%("8(73%-F(8"-*"
#E@L:"<"+M9;NL;;LN;"7(3.-&*"L")*8"-*"#E@L:+"<"+M9;NL;;LN;+"7(3.-&*"N4;4"H6("3%-.(%-)"0&%"
,(%-0-3).-&*"&0"%(C$-%(>(*.7").".6("717.(>"5(,(5")%("8(73%-F(8" -*"+M9;LN;"7(3.-&*"R")*8" -*"
#E@L:+"<"+M9;NL;;LN;+"7(3.-&*"N4N4"

Problem: add confidence in the built software w.r.t. requirements.
Written software must be safe and so we require it is:

readable
deterministic
without ambiguity
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Model-based design approach

Pros
Ability to focus on functionality without taking into account
low-level implementation details.
Ability to early simulate the system to found errors or to complete
the specifications.
Ability to automatically generate code reducing the introduction
of translation errors.
Ability to continuously validate each step of the cycle of
development.

Challenges
Modelling the physical environment with enough details.
Modelling the software and its interactions with the physical
environment and the hardware.
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