
Efficient resolution of logical models
ENSTA-IA303

Alexandre Chapoutot and Sergio Mover

ENSTA Paris

2020-2021

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 1 / 28



Lecture 8: Program verification using SMT
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Main goals for today

In class1:
Understand how SMT solvers can be used to prove/disprove program
correctness
Transition systems expressed with FOL formulas
From (simple) programs to FOL formulas
Verification of transition systems (bounded model checking, induction)

In the tutorial:
Implement BMC for transition systems
Implement induction for transition systems

1Main references:

BMC paper, TACAS99

Software Verification (from Handbook of satisfiability)

Calculus of Computation, Chapter 5
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1 Program verification using SMT
Program verification
Infinite-state Transition Systems
Bounded Model Checking - Finding a violation
Proving safety
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Software Errors
Several examples of software bugs in critical systems:

Patriot Missile not intercepting enemy’s missiles, 1991: bug in the time-step
calculation (truncating errors)
Explosion of the Ariane 5 in 1996: wrong conversion from a 64 bit floating
point number to a 16 bit signed integer
Loss of communication with Mars Climate Orbiter, 1998: different modules
used different unit of measure (imperial vs. metric system)
. . .
Toyota car, accelerate unintentionally, 2007: bug in the drive-by-wire throttle
system
. . .
Boeing 737 Max glitch in MCAS system leading to fatal plane crash, 2018:
wrong data from a (single) faulty sensor
Medtronic pacemakers recalled in 2019: a software bug could cause the
device to lose pacing function.

Need for automatic technique to find bugs and certify software correctness
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Software Verification Problem

i n t f ( i n t i , i n t j ) {
i f ( i < 0 | | j < 0) {

r e t u r n 0 ;
}
wh i l e ( i >= 0) {

j = j + 1 ;
i = i − 1 ;

}
a s s e r t ( i < 0 && j > i ) ;
r e t u r n j ;

}

Does the assertion i < 0∧ j > 1 hold, for
all possible values of i and j?

Can we automatically prove the program correct?
i.e., that the assertion holds for all executions of the program
Can we automatically find bugs?
i.e., that there exists an execution of the program that violatates the
assertion
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Different kind of properties

Safety properties (partial correctness):
Does the program never reach a “bad” state?
Example: assert ( i < 0 && j > i);

Progress properties (total correctness):
Does the program eventually reach a set of states?
Example: The program always terminate.

Today: we focus on safety properties.
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Some of the existing approaches in program verification

Abstract interpretation

Verification using the Control-Flow Automata (e.g., based on SMT)
Reduce the safety verification problem to the verification based on SMT
of FOL formulas:

I Verification condition generation
I Verification of Infinte-state transition systems
I Verification of Constrained Horn Clauses

Today:
Verification using infinite-state transition systems
Very generic: can be applied to other formalism (e.g., LUSTRE)
Limitations: no recursion, no dynamic memory allocation (some techniques
overcome these limitations)
Mainly focus on finding violations of safety properties (while not too much
emphasis on proving)

Reminder: the verification problem is undecidable - the algorithms either
approximate the results or may not terminate.
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Program verification
Infinite-state Transition Systems
Bounded Model Checking - Finding a violation
Proving safety

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 9 / 28



Symbolic representation of a state machine

We can represent the 2-bit counter with:

two Boolean variables
V := {b0, b1}
The set of initial state as a
Propositional Logic formula:
I (V ) := ¬b0 ∧ ¬b1

The transitions as the formula:
T (V ,V ′) := (b′0 ↔ ¬b0) ∧ (b′1 ↔
(b0 ⊕ b1))

A state is an assignment to the variables V {b0 7→ ⊥, b1 7→ ⊥}
Formulas over V represents sets of states
Formulas over V ′,V represents a set of transitions (V ′ is the next state)
A path {b0 7→ ⊥, b1 7→ ⊥}; {b0 7→ >, b1 7→ ⊥}; {b0 7→ >, b1 7→ >}; . . .
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Finite-state transition system

S = (V , I (V ),T (V ,V ′)) is a finite-state transition system where:
V is a set of Boolean variables
I (V ) is a propositional logic formula over the variables V
T (V ′,V ) is a propositional logic formula over the variables V

A path π := s0; s1; . . . ; sk is a path of S if:
A state si assigns a value to the variables V
s0 |= I (V )

si , si+1 |= T (V ′,V ) for all 0 ≤ i < k
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Infinite-State transition system

S = (V , I (V ),T (V ,V ′)) is an infinite-state transition system where:
V is a set of theory variables (i.e., 0-ary functions)
I (V ) is a ΣT -formula over the variables V
T (V ′,V ) is a ΣT -formula over the variables V ∪ V ′

A path π := s0; s1; . . . ; sk is a path of S if:
A state si assigns a value to the variables V
Since the domain of V is infinite, the system as an infinite number of states.
s0 |= I (V )

si , si+1 |= T (V ′,V ) for all 0 ≤ i < k

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 12 / 28



Infinite-State transition system

S = (V , I (V ),T (V ,V ′)) is an infinite-state transition system where:
V is a set of theory variables (i.e., 0-ary functions)
I (V ) is a ΣT -formula over the variables V
T (V ′,V ) is a ΣT -formula over the variables V ∪ V ′

A path π := s0; s1; . . . ; sk is a path of S if:
A state si assigns a value to the variables V
Since the domain of V is infinite, the system as an infinite number of states.
s0 |= I (V )

si , si+1 |= T (V ′,V ) for all 0 ≤ i < k

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 12 / 28



Infinite state transition system - Example

The infinite-state transition system for the counter:
V := {i}
I (V ) := i ≤ 2
T (V ,V ′) := i ′ = i + 1
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From programs to TS - Control Flow Automata (CFA)

i n t f ( i n t i , i n t j ) {
l 0 : i f ( i < 0 | | j < 0) {
l 6 : r e t u r n 0 ;

}
l 1 : wh i l e ( i >= 0) {
l 2 : j = j + 1 ;
l 3 : i = i − 1 ;

}
l 4 : a s s e r t ( i < 0 && j > i ) ;
l 5 : r e t u r n j ;
l 7 :

}

CFA are an intermediate representation of the program where the control-flow is
explicit
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From Control Flow Automata to Transition System

V := {pc, i}
I (V ) := pc = l0

T (V ,V ′) :=

(pc = l0 ∧ i ≥ 0 ∧ j ≥ 0 ∧ pc ′ = l1 ∧ i ′ = i ∧ j ′ = j)∨
(pc = l0 ∧ ¬(i ≥ 0 ∧ j ≥ 0) ∧ pc ′ = l7 ∧ i ′ = i ∧ j ′ = j)∨
. . . (pc = l2 ∧ pc′ = l3 ∧ i ′ = i ∧ j ′ = j + 1)∨
. . . (pc = l4 ∧ i < 0 ∧ j > 0 ∧ pc ′ = l5 ∧ i ′ = i ∧ j ′ = j)∨
(pc = l4 ∧ i ≥ 0 ∧ j ≤ i ∧ pc ′ = error ∧ i ′ = i ∧ j ′ = j)∨
. . .
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From programs to TS - Considerations
Need to represent the intended semantic of the program:

I Integers in C are not Z
I Floating point types (e.g., float and double) are not Q
I In practice:

F Pick the “right” abstraction, depending on the verification goal
F Using Z works assuming there are no overflows (otherwise, need to use

bit-vectors)
F Using Q works to check algorithm logic (but ignores floating point issues!)

What do we represent in the TS?
I The source code?
I The intermediate representation generated from the compiler? (e.g.,

optimizations)
I Another issue: are the transformation from source code correct? (e.g.,

problem of certified compilers)

In the lab, you will have this translation
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Bounded Model Checking (BMC)

Bounded Model Checking - idea:
Incomplete verification: can the program reach a violation in k steps?
Idea: encode all the possible paths of length k that can reach a violation to
the property

Some history:
Started for model checking hardware systems (using SAT)
Applied to software (still using SAT, so finite domains)
Then extended to use SMT - more expressive (e.g., bit-vectors, integers,
reals, . . . )
“Enabler” of other verification techniques - also to prove safety (e.g.,
k-induction, interpolant-based verification, IC3, . . . )

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 18 / 28



Bounded Model Checking (BMC)

Bounded Model Checking - idea:
Incomplete verification: can the program reach a violation in k steps?
Idea: encode all the possible paths of length k that can reach a violation to
the property

Some history:
Started for model checking hardware systems (using SAT)
Applied to software (still using SAT, so finite domains)
Then extended to use SMT - more expressive (e.g., bit-vectors, integers,
reals, . . . )
“Enabler” of other verification techniques - also to prove safety (e.g.,
k-induction, interpolant-based verification, IC3, . . . )

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 18 / 28



BMC Encoding

Input:

transition system S := (V , I (V ),T (V ,V ′)) safety property P(V )

Encode a path of length k reaching a violation to the property P:

BMCk(V ) :=I (V 0) ∧
k∧

i=1

T (V i−1,V i ) ∧
k−1∧
i=0

P(V i ) ∧ ¬P(V k)

Some notation:
V i := {v i | v ∈ V }: copies of the variables V (k + 1 copies)
φ(V i ): substitutes the variables φ in the formula φ(V )

We can check the satisfiability of the formula BMCk(V ):
If BMCk(V ) is satisfiable, then there is a path of length k − 1 that reach the
violates P
What if BMCk(V ) is unsatisfiable? We just know that there no paths of
length k can reach ¬P

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 19 / 28



BMC Encoding

Input:

transition system S := (V , I (V ),T (V ,V ′)) safety property P(V )

Encode a path of length k reaching a violation to the property P:

BMCk(V ) :=I (V 0) ∧
k∧

i=1

T (V i−1,V i ) ∧
k−1∧
i=0

P(V i ) ∧ ¬P(V k)

Some notation:
V i := {v i | v ∈ V }: copies of the variables V (k + 1 copies)
φ(V i ): substitutes the variables φ in the formula φ(V )

We can check the satisfiability of the formula BMCk(V ):
If BMCk(V ) is satisfiable, then there is a path of length k − 1 that reach the
violates P
What if BMCk(V ) is unsatisfiable? We just know that there no paths of
length k can reach ¬P

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 19 / 28



BMC Encoding

Input:

transition system S := (V , I (V ),T (V ,V ′)) safety property P(V )

Encode a path of length k reaching a violation to the property P:

BMCk(V ) :=I (V 0) ∧
k∧

i=1

T (V i−1,V i ) ∧
k−1∧
i=0

P(V i ) ∧ ¬P(V k)

Some notation:
V i := {v i | v ∈ V }: copies of the variables V (k + 1 copies)
φ(V i ): substitutes the variables φ in the formula φ(V )

We can check the satisfiability of the formula BMCk(V ):
If BMCk(V ) is satisfiable, then there is a path of length k − 1 that reach the
violates P
What if BMCk(V ) is unsatisfiable?

We just know that there no paths of
length k can reach ¬P

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 19 / 28



BMC Encoding

Input:

transition system S := (V , I (V ),T (V ,V ′)) safety property P(V )

Encode a path of length k reaching a violation to the property P:

BMCk(V ) :=I (V 0) ∧
k∧

i=1

T (V i−1,V i ) ∧
k−1∧
i=0

P(V i ) ∧ ¬P(V k)

Some notation:
V i := {v i | v ∈ V }: copies of the variables V (k + 1 copies)
φ(V i ): substitutes the variables φ in the formula φ(V )

We can check the satisfiability of the formula BMCk(V ):
If BMCk(V ) is satisfiable, then there is a path of length k − 1 that reach the
violates P
What if BMCk(V ) is unsatisfiable? We just know that there no paths of
length k can reach ¬P
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BMC Encoding - example

Infinite state counter:
V := {i}
I (V ) := i ≤ 2
T (V ,V ′) := i ′ = i + 1

Property:
P := i < 5

BMC encoding for a path of length 3:

i0 ≤ 2∧
i1 = i0 + 1 ∧ i2 = i1 + 1 ∧ i3 = i2 + 1∧

i0 < 5 ∧ i1 < 5 ∧ i2 < 5∧
¬i3 < 5

The encoding is satisfiable and the counter-example is the assigment:

i0 = 2; i1 = 3; i2 = 4; i3 = 5
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BMC - search for a counter-example

We can search for a path violating the property P incrementally:
1 Start with k = 0
2 If BMC0(V ) is satisfiable, return the counter-example
3 Otherwise, k := k + 1 and iterate.

Different strategies are possible:
Check for the existence of the bug “up to” length k

Increment k by different values (not just 1 every time)
Use the SMT solver incrementality: most of the formula does not change
from k to k + 1 (i.e., all the < k are still asserted).
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1 Program verification using SMT
Program verification
Infinite-state Transition Systems
Bounded Model Checking - Finding a violation
Proving safety
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Inductive invariant - intuition

transition system S := (V , I (V ),T (V ,V ′)) safety property P(V )

The set φ an Inductive invariant.

How can we check if a set of states is an inductive invariant?
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Inductive Invariants with logic

An inductive invariant φ(V ) is a formula such that:

I (V ) |= φ(V )

φ(V ) |= P(V )

φ(V ) ∧ T (V ,V ′) |= P(V ′)

iff I (V )→ φ(V ) is valid
iff φ(V )→ P(V ) is valid
iff (φ(V ) ∧ T (V ,V ′))→ P(V ′) is
valid

Check for validity: ψ is valid iff ¬ψ is unsatisfiable

What can we do:
Check if a formula ψ is an inductive invariant “Easy”: satisfiability checks
Find a formula ψ that is an inductive invariant Difficult: need to find ψ

Safety property verification reduced to findind an inductive invariant
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Inductive invariant - examples

Infinite state counter:

V :={i}
I (V ) :=i = 0

T (V ,V ′) :=((i < 5 ∨ (i > 6 ∧ i ≤ 10))→ i ′ = i + 1)∧
((i = 5 ∨ i = 6)→ i ′ = i)

P :=i ≤ 6

i ≤ 5 is an inductive invariant:
i = 0 |= i ≤ 5
i ≤ 5 |= i ≤ 6
i ≤ 5 ∧ T (i , i ′) |= i ′ ≤ 5
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When induction fails

Infinite state counter:

V :={i}
I (V ) :=i = 0

T (V ,V ′) :=((i < 5 ∨ (i > 6 ∧ i ≤ 10))→ i ′ = i + 1)∧
((i = 5 ∨ i = 6)→ i ′ = i)

P :=i ≤ 10

i ≤ 10 is an invariant (i ≤ 5 is still and inductive invariant), but it is not
inductive:

i = 0 |= i ≤ 10
i ≤ 10 |= i ≤ 10
i ≤ 10 ∧ T (i , i ′) |= i ′ ≤ 10

No!
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To sum up

What did we see today?
Symbolic representation of infinite-state systems (like software) using FOL
Find a counter-example to a safety property using BMC
Prove that a property holds, using inductive invariants
How can we represent programs as infinite-state transition systems (intuition)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 27 / 28



References I

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 28 / 28


	Program verification using SMT
	Program verification
	Infinite-state Transition Systems
	Bounded Model Checking - Finding a violation
	Proving safety


