Efficient resolution of logical models ENSTA-IA303

Alexandre Chapoutot and Sergio Mover

ENSTA Paris

2020-2021

Lecture 4: Decision Procedures for the Theory of Linear Real and Integer Arithmetic

Main goals for today

In class¹:

- Understand the theories that can express linear arithmetic constraints.
- How to decide the *T*-satisfiability for quantifier-free formula in the Theory of Linear Real Arithmetic (LRA) - *LA*(ℚ)
- $\bullet\,$ Same for the Theory of Linear Integers Arithmetic (LIA) $\mathcal{LA}(\mathbb{Z})$

¹Main references:

• The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)

Main goals for today

In class¹:

- Understand the theories that can express linear arithmetic constraints.
- How to decide the *T*-satisfiability for quantifier-free formula in the Theory of Linear Real Arithmetic (LRA) - *LA*(ℚ)
- $\bullet\,$ Same for the Theory of Linear Integers Arithmetic (LIA) $\mathcal{LA}(\mathbb{Z})$

In the tutorial (somehow disconnected from LRA and LIA):

- Encoding for the job shop problem
- This week: just one encoding (more for next week, together with verification)

¹Main references:

[•] The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)

Decision Procedures for the Theory of Linear Real and Integer Arithmetic

- Linear Arithmetic Theories
- A decision procedure for LRA $(\mathcal{LA}(\mathbb{Q}))$
- A decision procedure for LIA $(\mathcal{L}A(\mathbb{Z}))$
- Remarks

Linear Arithmetic Theories

• Formulas are a Boolean combinations of linear atoms in the form:

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b$$

Linear Arithmetic Theories

• Formulas are a Boolean combinations of linear atoms in the form:

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b$$

• In Linear Real Arithmetic $(\mathcal{LA}(\mathbb{Q}))$:

 x_j is a real-valued variable, $c_i, b \in \mathbb{Q}$ and $\bowtie \in \{<, \leq, =\}$

• In Linear Integer Arithmetic $(\mathcal{L}A(\mathbb{Z}))$:

 x_j is an integer-valued variable, $c_i, b \in \mathbb{Z}$ and $\bowtie \in \{<, \leq, =\}$

• Several problems just require linear constraints:

- Several problems just require linear constraints:
 - program verification: some classes of programs do not have "complex" math (e.g., device driver)

- Several problems just require linear constraints:
 - program verification: some classes of programs do not have "complex" math (e.g., device driver)
 - real time systems: linear constraints are usually sufficient to express time constraints

- Several problems just require linear constraints:
 - program verification: some classes of programs do not have "complex" math (e.g., device driver)
 - real time systems: linear constraints are usually sufficient to express time constraints
 - ▶ ...
 - linear constraints may be already a sufficient approximations of a problem (e.g., 1-norm instead of euclidian distance, convex polyhedra to approximate "non-linear sets" as circles)

- Several problems just require linear constraints:
 - program verification: some classes of programs do not have "complex" math (e.g., device driver)
 - real time systems: linear constraints are usually sufficient to express time constraints
 - ▶ ...
 - linear constraints may be already a sufficient approximations of a problem (e.g., 1-norm instead of euclidian distance, convex polyhedra to approximate "non-linear sets" as circles)
- Why don't we just use theories for non-linear arithmetic?
 - We pay a price from the increased expressibility!

- Several problems just require linear constraints:
 - program verification: some classes of programs do not have "complex" math (e.g., device driver)
 - real time systems: linear constraints are usually sufficient to express time constraints
 - ▶ ...
 - linear constraints may be already a sufficient approximations of a problem (e.g., 1-norm instead of euclidian distance, convex polyhedra to approximate "non-linear sets" as circles)
- Why don't we just use theories for non-linear arithmetic?
 - We pay a price from the increased expressibility!
 - Non-Linear Integer arithmetic: satisfiability is undecidable

- Several problems just require linear constraints:
 - program verification: some classes of programs do not have "complex" math (e.g., device driver)
 - real time systems: linear constraints are usually sufficient to express time constraints
 - ▶ ...
 - linear constraints may be already a sufficient approximations of a problem (e.g., 1-norm instead of euclidian distance, convex polyhedra to approximate "non-linear sets" as circles)
- Why don't we just use theories for non-linear arithmetic?
 - We pay a price from the increased expressibility!
 - ► Non-Linear Integer arithmetic: satisfiability is *undecidable*
 - Non-Linear Real Arithmetic (i.e., polynomial inequalities, semi-algebraic sets): decidable, but the complexity is *doubly exponential*

Decision Procedures for the Theory of Linear Real and Integer Arithmetic

• Linear Arithmetic Theories

• A decision procedure for LRA $(\mathcal{LA}(\mathbb{Q}))$

- A decision procedure for LIA $(\mathcal{L}A(\mathbb{Z}))$
- Remarks

"Usual" settings (we obtain this with a pre-processing of the formula)

• Conjunction of inequalities of the form (over rational numbers)

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \qquad \bowtie = \{\geq, \leq\}$$

"Usual" settings (we obtain this with a pre-processing of the formula)

• Conjunction of inequalities of the form (over rational numbers)

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \qquad \bowtie = \{ \ge, \le \}$$

• What about equalities?

x + 3y = 3 can be rewritten as $x + 3y \le 3 \land x + 3y \ge 3$

"Usual" settings (we obtain this with a pre-processing of the formula)

• Conjunction of inequalities of the form (over rational numbers)

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \qquad \bowtie = \{ \ge, \le \}$$

• What about equalities?

x + 3y = 3 can be rewritten as $x + 3y \le 3 \land x + 3y \ge 3$

• What about strict inequalities? Can be dealt with an extension of the algorithm we see here, see [Dutertre and De Moura, 2006]

"Usual" settings (we obtain this with a pre-processing of the formula)

• Conjunction of inequalities of the form (over rational numbers)

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \qquad \bowtie = \{ \ge, \le \}$$

• What about equalities?

x + 3y = 3 can be rewritten as $x + 3y \le 3 \land x + 3y \ge 3$

• What about strict inequalities?

Can be dealt with an extension of the algorithm we see here, see [Dutertre and De Moura, 2006]

What algorithm can we use to find a solution (to a conjunction of $\mathcal{LA}(\mathbb{Q})$ inequalities)?

• Generalized Simplex from linear programming

$$\vec{A}\vec{x} = 0$$

 $l \le x \le u$, for all $x_i \in \{m\}$

From a conjunction of inequalities to the general simplex

• Our input is a set of m inequalities and we have a total of n variables

$$\sum_{i}^{n} c_{i,1} \cdot x_{i} \bowtie b_{1}$$
...
$$\sum_{i}^{n} c_{i,m} \cdot x_{i} \bowtie b_{m}$$

• We introduce *m* equalities (e.g., $\vec{Ax} = 0$) and *m* additional bound constraints from every *j*-inequality ($j \in \{1, ..., m\}$):

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b$$

We introduce a new slack variable s_j
We add the equality ∑_iⁿ c_i · x_j - s_j = 0
We introduce the bound constraint:

* -∞ ≤ s_i ≤ b, if ⋈=≤
* b ≤ s_i ≤ ∞, if ⋈=≥

Example of general form

We can rewrite the set of constraints:

$$x + y \ge 2$$
$$2x - y \ge 0$$
$$-x + 2y \ge 1$$

In the general form:

$$x + y - \mathbf{s_1} = 0$$
$$2x - y - \mathbf{s_2} = 0$$
$$-x + 2y - \mathbf{s_3} = 0$$
$$\mathbf{s_1} \ge 2$$
$$\mathbf{s_2} \ge 0$$
$$\mathbf{s_3} > 1$$

 s_1, s_2, s_3 are **additional** variables, x, y are **problem** variables. The two problems are "equivalent"

General Form - problem

A system is in general form if is such that

$$ec{Ax} = 0$$

 $l \leq s_j \leq u$, for all $s_j \in \{1, \dots, m\}$

The size of \vec{A} is $m \times (n+m)$ (with *n* problem variables and *m* additional variables)

$$\begin{array}{l} x + y - \mathbf{s_1} = 0 \\ 2x - y - \mathbf{s_2} = 0 \\ -x + 2y - \mathbf{s_3} = 0 \\ \mathbf{s_1} \ge 2 \\ \mathbf{s_2} \ge 0 \\ \mathbf{s_3} \ge 1 \end{array} \qquad \qquad \vec{A} = \begin{pmatrix} 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -2 & 2 & 0 & 0 & -1 \end{pmatrix}$$

Tableau and Bounds Constraints

Recall the matrix \vec{A} has always the following form (with a diagonal sub-matrix):

$$\vec{A} = \begin{pmatrix} 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -2 & 2 & 0 & 0 & -1 \end{pmatrix}$$

The simplex algorithm represents the problem with a **tableau**, **bound constraints**, and **assignments**:

TableauBoundsAssignment
$$\begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{pmatrix}$$
 $2 \leq s_1 \leq \infty$ $y \rightarrow 0$ $0 \leq s_2 \leq \infty$ $s_1 \rightarrow 0$ $1 \leq s_3 \leq \infty$ $s_2 \rightarrow 0$ $s_3 \rightarrow 0$

Variables in the columns are non-basic while the variables in the rows are basic

The algorithm

The algorithm maintains the following invariants:

- $\vec{A}\vec{x} = 0$
- candidate solution α always consistent with the tableau Initially: α satisfies $\vec{A}\vec{x} = 0$

The algorithm checks if the bound for the **basic** variables is satisfied:

- If yes, then α is a feasible assignment (satisfiable!)
- $\bullet\,$ If not, the algorithm update α with a pivoting operation
- From pivoting we can either infer a conflict (terminate, unsatisfiable!) or iterate checking the bound of the basic variables.

Tableau	Bounds	Assigmnent
		x ightarrow 0
$s_1 = 1x + 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2x - 1y$	$0\leq s_2\leq\infty$	$s_1 ightarrow 0$
$s_3 = -1x + 2y$	$1\leq s_3\leq\infty$	$s_1 ightarrow 0$

Tableau	Bounds	Assigmnent
		x ightarrow 0
$s_1 = 1x + 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2x - 1y$	$0 \leq s_2 \leq \infty$	$s_1 ightarrow 0$
$s_3 = -1x + 2y$	$1 \leq s_3 \leq \infty$	$s_1 ightarrow 0$

Tableau	Bounds	Assigmnent
		$x \rightarrow 0$
$s_1 = 1x + 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2x - 1y$	$0 \leq s_2 \leq \infty$	$s_1 ightarrow 0$
$s_3 = -1x + 2y$	$1 \leq s_3 \leq \infty$	$s_1 ightarrow 0$

- $\alpha(s_1) = 0$, violates bound constraint $2 \le s_1$
- We can select x as *pivot column* Pivoting: "swap" s_i and x_j

Tableau	Bounds	Assigmnent
		$x \rightarrow 0$
$s_1 = 1x + 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2x - 1y$	$0 \leq s_2 \leq \infty$	$s_1 ightarrow 0$
$s_3 = -1x + 2y$	$1 \leq s_3 \leq \infty$	$s_1 ightarrow 0$

- We can select x as *pivot column* Pivoting: "swap" s_i and x_j
 - Ok, because 1 > 0 and $\alpha(x) \le \infty$

Tableau	Bounds	Assigmnent
		$x \rightarrow 0$
$s_1 = 1x + 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2x - 1y$	$0 \leq s_2 \leq \infty$	$s_1 ightarrow 0$
$s_3 = -1x + 2y$	$1 \leq s_3 \leq \infty$	$s_1 ightarrow 0$

- We can select x as pivot column Pivoting: "swap" s_i and x_j
 - Ok, because 1 > 0 and $\alpha(x) \le \infty$
 - Solve equation for x: $x = s_1 y$

Tableau	Bounds	Assigmnent
		x ightarrow 0
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2x - 1y$	$0\leq s_2\leq\infty$	$s_1 ightarrow 0$
$s_3 = -1x + 2y$	$1 \leq s_3 \leq \infty$	$s_1 ightarrow 0$

- We can select x as pivot column Pivoting: "swap" s_i and x_j
 - Ok, because 1 > 0 and $\alpha(x) \le \infty$
 - Solve equation for x: $x = s_1 y$
 - Replace s1 = 1x + 1y with $x = s_1 y$

Tableau	Bounds	Assigmnent
		x ightarrow 0
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2s_1 - 3y$	$0 \leq s_2 \leq \infty$	$s_1 ightarrow 0$
$s_3 = -s_1 + 3y$	$1 \leq s_3 \leq \infty$	$s_1 ightarrow 0$

- We can select x as pivot column Pivoting: "swap" s_i and x_j
 - Ok, because 1 > 0 and $\alpha(x) \le \infty$
 - Solve equation for x: $x = s_1 y$
 - Replace s1 = 1x + 1y with $x = s_1 y$
 - Replace the new x with s₁ in the other rows

Tableau	Bounds	Assigmnent
		$x \rightarrow 0$
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2s_1 - 3y$	$0\leq s_2\leq\infty$	$s_1 ightarrow 0$
$s_3 = -s_1 + 3y$	$1 \leq s_3 \leq \infty$	$s_1 ightarrow 0$

- We can select x as pivot column Pivoting: "swap" s_i and x_j
 - Ok, because 1 > 0 and $\alpha(x) \le \infty$
 - Solve equation for x: $x = s_1 y$
 - Replace s1 = 1x + 1y with $x = s_1 y$
 - Replace the new x with s₁ in the other rows
 - Compute new bounds:

Tableau	Bounds	Assigmnent
		x ightarrow 0
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2s_1 - 3y$	$0\leq s_{2}\leq\infty$	$s_1 ightarrow 2$
$s_3 = -s_1 + 3y$	$1 \leq s_3 \leq \infty$	$s_1 ightarrow 0$

- We can select x as *pivot column* Pivoting: "swap" s_i and x_j
 - Ok, because 1 > 0 and $\alpha(x) \le \infty$
 - Solve equation for x: $x = s_1 y$
 - Replace s1 = 1x + 1y with $x = s_1 y$
 - Replace the new x with s₁ in the other rows
 - Compute new bounds:
 - ★ $\alpha(s_1) = 2$ (in this case, the lower bound)

Tableau	Bounds	Assigmnent
$x = 1s_1 - 1y$ $s_2 = 2s_1 - 3y$ $s_3 = -s_1 + 3y$	$\begin{array}{l} 2\leq s_{1}\leq\infty\\ 0\leq s_{2}\leq\infty\\ 1\leq s_{3}\leq\infty\end{array}\end{array}$	$x \rightarrow 2$ $y \rightarrow 0$ $s_1 \rightarrow 2$ $s_1 \rightarrow 0$ $s_2 \rightarrow 0$ $s_2 \rightarrow 0$
		$s_3 \rightarrow 0$

•
$$\alpha(s_1) = 0$$
, violates bound constraint $2 \le s_1$

• We can select x as *pivot column* - Pivoting: "swap" s_i and x_j

- Ok, because 1 > 0 and $\alpha(x) \le \infty$
- Solve equation for x: $x = s_1 y$
- Replace s1 = 1x + 1y with $x = s_1 y$
- Replace the new x with s₁ in the other rows
- Compute new bounds:
 - ★ $\alpha(s_1) = 2$ (in this case, the lower bound)
 - * Increase $\alpha(x)$ by $\alpha(s_1 y) = 2 0 = 2$, so $\alpha(x) = 2$

Tableau	Bounds	Assigmnent
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	$\begin{array}{c} x \rightarrow 2 \\ y \rightarrow 0 \\ s_1 \rightarrow 2 \end{array}$
$s_2 = 2s_1 - 3y$ $s_3 = -s_1 + 3y$	$\begin{array}{l} 0 \leq s_2 \leq \infty \\ 1 \leq s_3 \leq \infty \end{array}$	$s_1 ightarrow 0$ $s_2 ightarrow 4$ $s_3 ightarrow -2$

• $\alpha(s_1) = 0$, violates bound constraint $2 \leq s_1$

• We can select x as *pivot column* - Pivoting: "swap" s_i and x_j

- Ok, because 1 > 0 and $\alpha(x) \le \infty$
- Solve equation for x: $x = s_1 y$
- Replace s1 = 1x + 1y with $x = s_1 y$
- Replace the new x with s₁ in the other rows
- Compute new bounds:
 - ★ $\alpha(s_1) = 2$ (in this case, the lower bound)
 - * Increase $\alpha(x)$ by $\alpha(s_1 y) = 2 0 = 2$, so $\alpha(x) = 2$
 - ★ Update bounds for s_2 and s_3

Pivoting

- Find a basic variable x_i that violates its bound (suppose, $\alpha(x_i) > u_i$)
- Find a non-basic variable x_i that make $\alpha(x_i)$ satisfy the bound:
 - Can increase the value of x_i : $c_{i,j} > 0$ and $\alpha x_j < u_j$.
 - Can decrease the value of x_i : $c_{i,j} < 0$ and $\alpha x_j > l_j$.
 - If such variable does not exist, return unsat
- Pivoting:
 - c_{i,j} is the pivot element
 - x_j is the pivot column
 - x_i is the pivot row
 - "Swap" x_j with x_i

Pivoting x_i and x_j

Same step as in Gaussian elimination:

- Replace *i* row:
 - *i*-th row in the tableau: $x_i = c_{i,j}x_j + \sum_{k \neq j} c_{i,k}x_k$
 - Becomes: $x_j = \frac{1}{c_{i,j}} x_i + \sum_{k \neq j} \frac{-c_{i,j}}{c_{i,k}} x_k$
- Replace x_j with $\frac{1}{c_{i,j}}x_i + \sum_{k \neq j} \frac{-c_{i,j}}{c_{i,k}}x_k$ in all the other columns

Update assignment α :

- $\alpha(x_i)$ is the upper (lower) bound (the bound that was violated).
- $\alpha(x_j)$ is incremented by $\frac{u_i \alpha(x_i)}{c_{i,j}}$ (or decremented, depending on the violated bound)
- Update the other basic variables
- x_j becomes basic, so it may violate some bounds.

Tableau	Bounds	Assigmnent
		x ightarrow 2
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2=2s_1-3y$	$0\leq s_{2}\leq\infty$	$s_1 ightarrow 2$
$s_3 = -s_1 + 3y$	$1 \leq s_3 \leq \infty$	$s_2 ightarrow 4$
		$s_3 \rightarrow -2$

Tableau	Bounds	Assigmnent
		$x \rightarrow 2$
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2=2s_1-3y$	$0\leq s_{2}\leq\infty$	$s_1 ightarrow 2$
$s_3 = -s_1 + 3y$	$1\leq s_3\leq\infty$	$s_2 ightarrow 4$
		$s_2 \rightarrow -2$

Tableau	Bounds	Assigmnent
		$x \rightarrow 2$
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2s_1 - 3y$	$0\leq s_{2}\leq\infty$	$s_1 ightarrow 2$
$s_3 = -s_1 + 3y$	$1 \leq s_3 \leq \infty$	$s_2 ightarrow 4$

- $\alpha(s_3) = 0$, violates bound constraint $1 \leq s_3$
- We can seletc y as pivot column

Tableau	Bounds	Assigmnent
		$x \rightarrow 2$
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2s_1 - 3y$	$0\leq s_{2}\leq\infty$	$s_1 ightarrow 2$
$s_3 = -s_1 + 3y$	$1\leq s_3\leq\infty$	$s_2 ightarrow 4$
		$s_3 \rightarrow -2$

- $\alpha(s_3) = 0$, violates bound constraint $1 \leq s_3$
- We can seletc y as pivot column
 - Ok, because 3 > 0 and $\alpha(y) \leq \infty$

Tableau	Bounds	Assigmnent
		$x \rightarrow 2$
$x = 1s_1 - 1y$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = 2s_1 - 3y$	$0\leq s_{2}\leq\infty$	$s_1 ightarrow 2$
$s_3 = -s_1 + 3y$	$1\leq s_3\leq\infty$	$s_2 ightarrow 4$
		$s_2 \rightarrow -2$

- We can seletc y as pivot column
 - Ok, because 3 > 0 and $\alpha(y) \leq \infty$
 - Solve equation for y: $y = \frac{1}{3}s_3 + \frac{1}{3}x$

Tableau	Bounds	Assigmnent
$x = 1s_1 - 1y$ $s_2 = 2s_1 - 3y$ $y = \frac{1}{2}s_3 + \frac{1}{2}s_1$	$\begin{array}{l} 2 \leq s_1 \leq \infty \\ 0 \leq s_2 \leq \infty \\ 1 \leq s_3 \leq \infty \end{array}$	$\begin{array}{c} x \rightarrow 2 \\ y \rightarrow 0 \\ s_1 \rightarrow 2 \\ s_2 \rightarrow 4 \end{array}$
3 3 3 -		$s_2 \rightarrow -2$

- We can seletc y as pivot column
 - Ok, because 3 > 0 and $\alpha(y) \leq \infty$
 - Solve equation for y: $y = \frac{1}{3}s_3 + \frac{1}{3}x$
 - Replace $s_3 = -1x + 3y$ with $y = \frac{1}{3}s_1 + \frac{1}{3}s_3$

Tableau	Bounds	Assigmnent
2 1		x ightarrow 2
$x = \frac{1}{3}s_1 - \frac{1}{3}s_3$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = s_1 - s_3$	$0\leq s_2\leq\infty$	$s_1 ightarrow 2$
$v = \frac{1}{-s_1} + \frac{1}{-s_2}$	$1\leq s_3\leq\infty$	$s_2 ightarrow 4$
3 3 3		$s_2 \rightarrow -2$

- We can seletc y as pivot column
 - Ok, because 3 > 0 and $\alpha(y) \leq \infty$
 - Solve equation for y: $y = \frac{1}{3}s_3 + \frac{1}{3}x$
 - Replace $s_3 = -1x + 3y$ with $y = \frac{1}{3}s_1 + \frac{1}{3}s_3$
 - Replace the new y with s₃ in the other rows

Tableau	Bounds	Assigmnent
2 1		x ightarrow 2
$x = \frac{1}{3}s_1 - \frac{1}{3}s_3$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = s_1 - s_3$	$0\leq s_2\leq\infty$	$s_1 ightarrow 2$
$v = \frac{1}{-s_1} + \frac{1}{-s_2}$	$1\leq s_3\leq\infty$	$s_2 ightarrow 4$
3 3 3		$s_2 \rightarrow -2$

- We can seletc y as pivot column
 - Ok, because 3 > 0 and $\alpha(y) \leq \infty$
 - Solve equation for y: $y = \frac{1}{3}s_3 + \frac{1}{3}x$
 - Replace $s_3 = -1x + 3y$ with $y = \frac{1}{3}s_1 + \frac{1}{3}s_3$
 - Replace the new y with s₃ in the other rows
 - Compute new bounds:

Tableau	Bounds	Assigmnent
2 1		x ightarrow 2
$x = \frac{1}{3}s_1 - \frac{1}{3}s_3$	$2 \leq s_1 \leq \infty$	y ightarrow 0
$s_2 = s_1 - s_3$	$0\leq s_2\leq\infty$	$s_1 ightarrow 2$
$v = \frac{1}{-s_1} + \frac{1}{-s_2}$	$1\leq s_3\leq\infty$	$s_2 ightarrow 4$
3 3 3		$s_2 \rightarrow -2$

- We can seletc y as pivot column
 - Ok, because 3 > 0 and $\alpha(y) \leq \infty$
 - Solve equation for y: $y = \frac{1}{3}s_3 + \frac{1}{3}x$
 - Replace $s_3 = -1x + 3y$ with $y = \frac{1}{3}s_1 + \frac{1}{3}s_3$
 - Replace the new y with s₃ in the other rows
 - Compute new bounds:
 - * $\alpha(s_3) = 1$ (in this case, the lower bound)

Tableau	Bounds	Assigmnent
2 1		x ightarrow 1
$x = \frac{1}{3}s_1 - \frac{1}{3}s_3$	$2 \leq s_1 \leq \infty$	y ightarrow 1
$s_2 = s_1 - s_3$	$0\leq s_{2}\leq\infty$	$s_1 ightarrow 2$
$v = \frac{1}{-s_1} + \frac{1}{-s_2}$	$1 \leq s_3 \leq \infty$	$s_2 ightarrow 1$
3 3 3		$s_3 \rightarrow 1$

- We can seletc y as pivot column
 - Ok, because 3 > 0 and $\alpha(y) \leq \infty$
 - Solve equation for y: $y = \frac{1}{3}s_3 + \frac{1}{3}x$
 - Replace $s_3 = -1x + 3y$ with $y = \frac{1}{3}s_1 + \frac{1}{3}s_3$
 - Replace the new y with s₃ in the other rows
 - Compute new bounds:
 - * $\alpha(s_3) = 1$ (in this case, the lower bound)
 - * Increase $\alpha(y)$ by $\alpha(\frac{1}{3}s_1 + \frac{1}{3}s_3) = \frac{2}{3} + \frac{1}{3} = 1$, so $\alpha(y) = 1$

Tableau	Bounds	Assigmnent
2 1		x ightarrow 1
$x = \frac{1}{3}s_1 - \frac{1}{3}s_3$	$2 \leq s_1 \leq \infty$	y ightarrow 1
$s_2 = s_1 - s_3$	$0\leq s_{2}\leq\infty$	$s_1 ightarrow 2$
$v = \frac{1}{-s_1} + \frac{1}{-s_2}$	$1 \leq s_3 \leq \infty$	$s_2 ightarrow 1$
3 3 3		$s_3 \rightarrow 1$

- We can seletc y as pivot column
 - Ok, because 3 > 0 and $\alpha(y) \leq \infty$
 - Solve equation for y: $y = \frac{1}{3}s_3 + \frac{1}{3}x$
 - Replace $s_3 = -1x + 3y$ with $y = \frac{1}{3}s_1 + \frac{1}{3}s_3$
 - Replace the new y with s₃ in the other rows
 - Compute new bounds:
 - * $\alpha(s_3) = 1$ (in this case, the lower bound)
 - * Increase $\alpha(y)$ by $\alpha(\frac{1}{3}s_1 + \frac{1}{3}s_3) = \frac{2}{3} + \frac{1}{3} = 1$, so $\alpha(y) = 1$
 - * Update $\alpha(x) = 1$ and $\alpha(s_2) = 1$

- Generalized simplex: n variables, m equations
- In practice: a sequence of pivot steps to find a feasible bound
- The algorithm runtime can be exponential (in the number of variables) in the worst case. However, good performance in practice

Decision Procedures for the Theory of Linear Real and Integer Arithmetic

- Linear Arithmetic Theories
- A decision procedure for LRA $(\mathcal{LA}(\mathbb{Q}))$
- A decision procedure for LIA $(\mathcal{LA}(\mathbb{Z}))$
- Remarks

• conjunction of inequalities of the form (over Integer numbers)

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \qquad \bowtie = \{\geq, \leq\}$$

• conjunction of inequalities of the form (over Integer numbers)

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \qquad \bowtie = \{ \ge, \le \}$$

• satisfiability for $\mathcal{LA}(\mathbb{Z})$ is NP-COMPLETE

• conjunction of inequalities of the form (over Integer numbers)

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \qquad \bowtie = \{ \ge, \le \}$$

- satisfiability for $\mathcal{LA}(\mathbb{Z})$ is NP-COMPLETE
- main idea: use simplex on a problem relaxation, then use branch and bound

• conjunction of inequalities of the form (over Integer numbers)

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \qquad \bowtie = \{ \geq, \leq \}$$

- satisfiability for $\mathcal{LA}(\mathbb{Z})$ is NP-COMPLETE
- main idea: use simplex on a problem relaxation, then use branch and bound
 - ► If the relaxation is unsatisfiable, then the original problem is unsatisfiable

• conjunction of inequalities of the form (over Integer numbers)

$$\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \qquad \bowtie = \{ \geq, \leq \}$$

• satisfiability for $\mathcal{LA}(\mathbb{Z})$ is NP-COMPLETE

• main idea: use simplex on a problem relaxation, then use branch and bound

- > If the relaxation is unsatisfiable, then the original problem is unsatisfiable
- If the relaxation is satisfiable:
 - * Select a non-integral value r for a variable x_i found in the relaxation
 - ★ Force the integral value $v \leq \lfloor r \rfloor$, and search for a new solution
 - * 2nd branch: force the integral value $v \ge \lceil r \rceil$, and search for a new solution

Branch and Bound for LIA (using the LRA relaxation)

```
procedure Branch-and-bound-LIA(S)
  ISSAT, \alpha := simplex(relaxed(S))
  if \neg ISSAT then
     return unsatisfiable
  else
     if \alpha is integral then
       return satisfiable
     else
        select a variable x_i such that \alpha(x_i) = r is not integral
       floor := Branch-and-bound-LIA(S \cup (v \le |r|))
        ceil := Branch-and-bound-LIA(S \cup (v \ge \lceil r \rceil))
       return floor \vee ceil
```

Decision Procedures for the Theory of Linear Real and Integer Arithmetic

- Linear Arithmetic Theories
- A decision procedure for LRA $(\mathcal{LA}(\mathbb{Q}))$
- A decision procedure for LIA $(\mathcal{L}A(\mathbb{Z}))$
- Remarks

Satisfiability is not enough

The implementation of an efficient theory solver should also:

- be incremental: stack-based interface (*assert*, *backtrack*), adding and removing conjunctions (e.g., for T-deduction and early pruning)
- Produce a small set of conflicts
- Correct under numerical errors (another difference with LP implementation):
 - Use an infinite precision representation for numbers (i.e., no floating point!), eventually
 - More implementation "tricks" to scale (e.g., use integers number, faster, in simplex first, and switch to rationals when needed)

To sum up

What did we see today?

- A decision procedure for $\mathcal{LA}(\mathbb{Q})$ (simplex algorithm)
- A decision procedure $\mathcal{LA}(\mathbb{Z})$

Next week: Application of SMT solvers to verification

References I

Bradley, A. R. and Manna, Z. (2007).

The calculus of computation - decision procedures with applications to verification.

Springer.

Dutertre, B. and De Moura, L. (2006).

A fast linear-arithmetic solver for dpll (t).

In International Conference on Computer Aided Verification, pages 81–94. Springer.