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Main goals for today

In class1:
Understand the theories that can express linear arithmetic constraints.
How to decide the T -satisfiability for quantifier-free formula in the Theory of
Linear Real Arithmetic (LRA) - LA(Q)

Same for the Theory of Linear Integers Arithmetic (LIA) - LA(Z)

In the tutorial (somehow disconnected from LRA and LIA):
Encoding for the job shop problem
This week: just one encoding (more for next week, together with verification)

1Main references:

The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)
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1 Decision Procedures for the Theory of Linear Real and Integer Arithmetic
Linear Arithmetic Theories
A decision procedure for LRA (LA(Q))
A decision procedure for LIA (LA(Z))
Remarks
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Linear Arithmetic Theories

Formulas are a Boolean combinations of linear atoms in the form:
n∑
i

ci · xj ./ b

In Linear Real Arithmetic (LA(Q)):

xj is a real-valued variable, ci , b ∈ Q and ./∈ {<,≤,=}

In Linear Integer Arithmetic (LA(Z)):

xj is an integer-valued variable, ci , b ∈ Z and ./∈ {<,≤,=}
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Why do we specialize to the linear case?

Several problems just require linear constraints:

I program verification: some classes of programs do not have “complex” math
(e.g., device driver)

I real time systems: linear constraints are usually sufficient to express time
constraints

I . . .
I linear constraints may be already a sufficient approximations of a problem

(e.g., 1-norm instead of euclidian distance, convex polyhedra to approximate
“non-linear sets” as circles)

Why don’t we just use theories for non-linear arithmetic?
I We pay a price from the increased expressibility!
I Non-Linear Integer arithmetic: satisfiability is undecidable
I Non-Linear Real Arithmetic (i.e., polynomial inequalities, semi-algebraic sets):

decidable, but the complexity is doubly exponential
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A decision procedure for LRA (LA(Q))
“Usual” settings (we obtain this with a pre-processing of the formula)

Conjunction of inequalities of the form (over rational numbers)
n∑
i

ci · xj ./ b ./= {≥,≤}

What about equalities?

x + 3y = 3 can be rewritten as x + 3y ≤ 3 ∧ x + 3y ≥ 3

What about strict inequalities?
Can be dealt with an extension of the algorithm we see here,
see [Dutertre and De Moura, 2006]

What algorithm can we use to find a solution (to a conjunction of LA(Q)
inequalities)?

Generalized Simplex from linear programming

~A~x = 0
l ≤ x ≤ u, for all xi ∈ {m}
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From a conjunction of inequalities to the general simplex
Our input is a set of m inequalities and we have a total of n variables

n∑
i

ci,1 · xi ./ b1

. . .
n∑
i

ci,m · xi ./ bm

We introduce m equalities (e.g., ~A~x = 0) and m additional bound constraints
from every j-inequality (j ∈ {1, . . . ,m}):

n∑
i

ci · xj ./ b

1 We introduce a new slack variable sj
2 We add the equality

∑n
i ci · xj − sj = 0

3 We introduce the bound constraint:
F −∞ ≤ si ≤ b, if ./=≤
F b ≤ si ≤ ∞, if ./=≥
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Example of general form
We can rewrite the set of constraints:

x + y ≥ 2
2x − y ≥ 0
−x + 2y ≥ 1

In the general form:

x + y − s1 = 0
2x − y − s2 = 0
−x + 2y − s3 = 0

s1 ≥ 2
s2 ≥ 0
s3 ≥ 1

s1, s2, s3 are additional variables, x , y are problem variables.
The two problems are “equivalent”
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General Form - problem

A system is in general form if is such that

~A~x = 0
l ≤ sj ≤ u, for all sj ∈ {1, . . . ,m}

The size of ~A is m× (n+m) (with n problem variables and m additional variables)

x + y − s1 = 0
2x − y − s2 = 0
−x + 2y − s3 = 0

s1 ≥ 2
s2 ≥ 0
s3 ≥ 1

~A =

 1 1 −1 0 0
2 −1 0 −1 0
−2 2 0 0 −1



Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 11 / 25



Tableau and Bounds Constraints

Recall the matrix ~A has always the following form (with a diagonal sub-matrix):

~A =

 1 1 −1 0 0
2 −1 0 −1 0
−2 2 0 0 −1


The simplex algorithm represents the problem with a tableau, bound
constraints, and assignments:

Tableau Bounds Assigmnent

 1 1
2 −1
−1 2

 2 ≤ s1 ≤ ∞
0 ≤ s2 ≤ ∞
1 ≤ s3 ≤ ∞

x → 0
y → 0
s1 → 0
s2 → 0
s3 → 0

Variables in the columns are non-basic while the variables in the rows are basic
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The algorithm

The algorithm maintains the following invariants:
~A~x = 0
candidate solution α always consistent with the tableau
Initially: α satisfies ~A~x = 0

The algorithm checks if the bound for the basic variables is satisfied:
If yes, then α is a feasible assignment (satisfiable!)
If not, the algorithm update α with a pivoting operation
From pivoting we can either infer a conflict (terminate, unsatisfiable!) or
iterate checking the bound of the basic variables.
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Example of Pivoting
Tableau Bounds Assigmnent

s1 = 1x + 1y
s2 = 2x − 1y

s3 = −1x + 2y

2 ≤ s1 ≤ ∞
0 ≤ s2 ≤ ∞
1 ≤ s3 ≤ ∞

x → 0
y → 0
s1 → 0
s1 → 0

α(s1) = 0, violates bound constraint 2 ≤ s1
We can select x as pivot column - Pivoting: “swap” si and xj

I Ok, because 1 > 0 and α(x) ≤ ∞
I Solve equation for x : x = s1 − y
I Replace s1 = 1x + 1y with x = s1 − y
I Replace the new x with s1 in the other rows
I Compute new bounds:

F α(s1) = 2 (in this case, the lower bound)
F Increase α(x) by α(s1 − y) = 2− 0 = 2, so α(x) = 2
F Update bounds for s2 and s3
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Pivoting

Find a basic variable xi that violates its bound (suppose, α(xi ) > ui )
Find a non-basic variable xj that make α(xi ) satisfy the bound:

I Can increase the value of xi : ci,j > 0 and αxj < uj .
I Can decrease the value of xi : ci,j < 0 and αxj > lj .
I If such variable does not exist, return unsat

Pivoting:
I ci,j is the pivot element
I xj is the pivot column
I xi is the pivot row
I “Swap” xj with xi

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 15 / 25



Pivoting xi and xj

Same step as in Gaussian elimination:
Replace i row:

I i-th row in the tableau: xi = ci,jxj +
∑

k 6=j ci,kxk
I Becomes: xj = 1

ci,j
xi +

∑
k 6=j

−ci,j
ci,k

xk

Replace xj with 1
ci,j

xi +
∑

k 6=j
−ci,j
ci,k

xk in all the other columns

Update assignment α:
α(xi ) is the upper (lower) bound (the bound that was violated).

α(xj) is incremented by ui−α(xi )
ci,j

(or decremented, depending on the violated
bound)
Update the other basic variables
xj becomes basic, so it may violate some bounds.
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Example of Simplex (cont)
Tableau Bounds Assigmnent

x = 1s1 − 1y
s2 = 2s1 − 3y
s3 = −s1 + 3y

2 ≤ s1 ≤ ∞
0 ≤ s2 ≤ ∞
1 ≤ s3 ≤ ∞

x → 2
y → 0
s1 → 2
s2 → 4

s3 → −2

α(s3) = 0, violates bound constraint 1 ≤ s3
We can seletc y as pivot column

I Ok, because 3 > 0 and α(y) ≤ ∞
I Solve equation for y : y = 1

3 s3 +
1
3x

I Replace s3 = −1x + 3y with y = 1
3 s1 +

1
3 s3

I Replace the new y with s3 in the other rows
I Compute new bounds:

F α(s3) = 1 (in this case, the lower bound)
F Increase α(y) by α( 1

3 s1 + 1
3 s3) =

2
3 + 1

3 = 1, so α(y) = 1
F Update α(x) = 1 and α(s2) = 1
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Simplex - some remarks

Generalized simplex: n variables, m equations
In practice: a sequence of pivot steps to find a feasible bound
The algorithm runtime can be exponential (in the number of variables) in the
worst case. However, good performance in practice
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1 Decision Procedures for the Theory of Linear Real and Integer Arithmetic
Linear Arithmetic Theories
A decision procedure for LRA (LA(Q))
A decision procedure for LIA (LA(Z))
Remarks

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 19 / 25



A decision procedure for LIA (LA(Z))

conjunction of inequalities of the form (over Integer numbers)

n∑
i

ci · xj ./ b ./= {≥,≤}

satisfiability for LA(Z) is NP-COMPLETE
main idea: use simplex on a problem relaxation, then use branch and bound

I If the relaxation is unsatisfiable, then the original problem is unsatisfiable
I If the relaxation is satisfiable:

F Select a non-integral value r for a variable xi found in the relaxation
F Force the integral value v ≤ brc, and search for a new solution
F 2nd branch: force the integral value v ≥ dre, and search for a new solution
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Branch and Bound for LIA (using the LRA relaxation)

procedure Branch-and-bound-LIA(S)
ISSAT, α := simplex(relaxed(S))
if ¬ ISSAT then

return unsatisfiable
else

if α is integral then
return satisfiable

else
select a variable xi such that α(xi ) = r is not integral
floor := Branch-and-bound-LIA(S ∪ (v ≤ brc))
ceil := Branch-and-bound-LIA(S ∪ (v ≥ dre))
return floor ∨ ceil
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Satisfiability is not enough . . .

The implementation of an efficient theory solver should also:
be incremental: stack-based interface (assert, backtrack), adding and
removing conjunctions (e.g., for T -deduction and early pruning)
Produce a small set of conflicts
Correct under numerical errors (another difference with LP implementation):

I Use an infinite precision representation for numbers (i.e., no floating point!),
eventually

I More implementation “tricks” to scale (e.g., use integers number, faster, in
simplex first, and switch to rationals when needed)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 23 / 25



To sum up

What did we see today?
A decision procedure for LA(Q) (simplex algorithm)
A decision procedure LA(Z)

Next week: Application of SMT solvers to verification
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