Efficient resolution of logical models ENSTA-IA303

Alexandre Chapoutot and Sergio Mover

ENSTA Paris
2020-2021

Lecture 4: Decision Procedures for the Theory of Linear Real and Integer Arithmetic

Main goals for today

In class ${ }^{1}$:

- Understand the theories that can express linear arithmetic constraints.
- How to decide the \mathcal{T}-satisfiability for quantifier-free formula in the Theory of Linear Real Arithmetic (LRA) - $\mathcal{L A}(\mathbb{Q})$
- Same for the Theory of Linear Integers Arithmetic (LIA) - $\mathcal{L A}(\mathbb{Z})$

[^0]
Main goals for today

In class ${ }^{1}$:

- Understand the theories that can express linear arithmetic constraints.
- How to decide the \mathcal{T}-satisfiability for quantifier-free formula in the Theory of Linear Real Arithmetic (LRA) - $\mathcal{L A}(\mathbb{Q})$
- Same for the Theory of Linear Integers Arithmetic (LIA) - $\mathcal{L A}(\mathbb{Z})$ In the tutorial (somehow disconnected from LRA and LIA):
- Encoding for the job shop problem
- This week: just one encoding (more for next week, together with verification)

[^1](1) Decision Procedures for the Theory of Linear Real and Integer Arithmetic - Linear Arithmetic Theories

- A decision procedure for LRA $(\mathcal{L} A(\mathbb{Q}))$ - A decision procedure for LIA $(\mathcal{L} A(\mathbb{Z}))$
- Remarks

Linear Arithmetic Theories

- Formulas are a Boolean combinations of linear atoms in the form:

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b
$$

Linear Arithmetic Theories

- Formulas are a Boolean combinations of linear atoms in the form:

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b
$$

- In Linear Real Arithmetic $(\mathcal{L A}(\mathbb{Q}))$:
x_{j} is a real-valued variable, $c_{i}, b \in \mathbb{Q}$ and $\bowtie \in\{<, \leq,=\}$
- In Linear Integer Arithmetic $(\mathcal{L A}(\mathbb{Z}))$:
x_{j} is an integer-valued variable, $c_{i}, b \in \mathbb{Z}$ and $\bowtie \in\{<, \leq,=\}$

Why do we specialize to the linear case?

- Several problems just require linear constraints:

Why do we specialize to the linear case?

- Several problems just require linear constraints:
- program verification: some classes of programs do not have "complex" math (e.g., device driver)

Why do we specialize to the linear case?

- Several problems just require linear constraints:
- program verification: some classes of programs do not have "complex" math (e.g., device driver)
- real time systems: linear constraints are usually sufficient to express time constraints

Why do we specialize to the linear case?

- Several problems just require linear constraints:
- program verification: some classes of programs do not have "complex" math (e.g., device driver)
- real time systems: linear constraints are usually sufficient to express time constraints
- linear constraints may be already a sufficient approximations of a problem (e.g., 1-norm instead of euclidian distance, convex polyhedra to approximate "non-linear sets" as circles)

Why do we specialize to the linear case?

- Several problems just require linear constraints:
- program verification: some classes of programs do not have "complex" math (e.g., device driver)
- real time systems: linear constraints are usually sufficient to express time constraints
-...
- linear constraints may be already a sufficient approximations of a problem (e.g., 1-norm instead of euclidian distance, convex polyhedra to approximate "non-linear sets" as circles)
- Why don't we just use theories for non-linear arithmetic?
- We pay a price from the increased expressibility!

Why do we specialize to the linear case?

- Several problems just require linear constraints:
- program verification: some classes of programs do not have "complex" math (e.g., device driver)
- real time systems: linear constraints are usually sufficient to express time constraints
...
- linear constraints may be already a sufficient approximations of a problem (e.g., 1-norm instead of euclidian distance, convex polyhedra to approximate "non-linear sets" as circles)
- Why don't we just use theories for non-linear arithmetic?
- We pay a price from the increased expressibility!
- Non-Linear Integer arithmetic: satisfiability is undecidable

Why do we specialize to the linear case?

- Several problems just require linear constraints:
- program verification: some classes of programs do not have "complex" math (e.g., device driver)
- real time systems: linear constraints are usually sufficient to express time constraints
- ...
- linear constraints may be already a sufficient approximations of a problem (e.g., 1-norm instead of euclidian distance, convex polyhedra to approximate "non-linear sets" as circles)
- Why don't we just use theories for non-linear arithmetic?
- We pay a price from the increased expressibility!
- Non-Linear Integer arithmetic: satisfiability is undecidable
- Non-Linear Real Arithmetic (i.e., polynomial inequalities, semi-algebraic sets): decidable, but the complexity is doubly exponential
(1) Decision Procedures for the Theory of Linear Real and Integer Arithmetic - Linear Arithmetic Theories
- A decision procedure for LRA $(\mathcal{L A}(\mathbb{Q}))$
- A decision procedure for LIA (LA(Z))
- Remarks

A decision procedure for $\operatorname{LRA}(\mathcal{L A}(\mathbb{Q}))$

"Usual" settings (we obtain this with a pre-processing of the formula)

- Conjunction of inequalities of the form (over rational numbers)

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \quad \bowtie=\{\geq, \leq\}
$$

A decision procedure for $\operatorname{LRA}(\mathcal{L} A(\mathbb{Q}))$

"Usual" settings (we obtain this with a pre-processing of the formula)

- Conjunction of inequalities of the form (over rational numbers)

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \quad \bowtie=\{\geq, \leq\}
$$

- What about equalities?

$$
x+3 y=3 \text { can be rewritten as } x+3 y \leq 3 \wedge x+3 y \geq 3
$$

A decision procedure for $\operatorname{LRA}(\mathcal{L} A(\mathbb{Q}))$

"Usual" settings (we obtain this with a pre-processing of the formula)

- Conjunction of inequalities of the form (over rational numbers)

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \quad \bowtie=\{\geq, \leq\}
$$

- What about equalities?

$$
x+3 y=3 \text { can be rewritten as } x+3 y \leq 3 \wedge x+3 y \geq 3
$$

- What about strict inequalities?

Can be dealt with an extension of the algorithm we see here, see [Dutertre and De Moura, 2006]

A decision procedure for $\operatorname{LRA}(\mathcal{L} A(\mathbb{Q}))$

"Usual" settings (we obtain this with a pre-processing of the formula)

- Conjunction of inequalities of the form (over rational numbers)

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \quad \bowtie=\{\geq, \leq\}
$$

- What about equalities?

$$
x+3 y=3 \text { can be rewritten as } x+3 y \leq 3 \wedge x+3 y \geq 3
$$

- What about strict inequalities?

Can be dealt with an extension of the algorithm we see here, see [Dutertre and De Moura, 2006]
What algorithm can we use to find a solution (to a conjunction of $\mathcal{L A}(\mathbb{Q})$ inequalities)?

- Generalized Simplex from linear programming

$$
\begin{aligned}
& \vec{A} \vec{x}=0 \\
& I \leq x \leq u, \text { for all } x_{i} \in\{m\}
\end{aligned}
$$

From a conjunction of inequalities to the general simplex

- Our input is a set of m inequalities and we have a total of n variables

$$
\begin{array}{r}
\sum_{i}^{n} c_{i, 1} \cdot x_{i} \bowtie b_{1} \\
\ldots \\
\sum_{i}^{n} c_{i, m} \cdot x_{i} \bowtie b_{m}
\end{array}
$$

- We introduce m equalities (e.g., $\vec{A} \vec{x}=0$) and m additional bound constraints from every j-inequality $(j \in\{1, \ldots, m\})$:

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b
$$

(1) We introduce a new slack variable s_{j}
(2) We add the equality $\sum_{i}^{n} c_{i} \cdot x_{j}-s_{j}=0$
(3) We introduce the bound constraint:

$$
\begin{aligned}
& \star-\infty \leq s_{i} \leq b, \text { if } \bowtie=\leq \\
& \star \quad b \leq s_{i} \leq \infty, \text { if } \bowtie=\geq
\end{aligned}
$$

Example of general form

We can rewrite the set of constraints:

$$
\begin{aligned}
x+y & \geq 2 \\
2 x-y & \geq 0 \\
-x+2 y & \geq 1
\end{aligned}
$$

In the general form:

$$
\begin{aligned}
x+y-\mathbf{s}_{1} & =0 \\
2 x-y-\mathbf{s}_{2} & =0 \\
-x+2 y-\mathbf{s}_{3} & =0 \\
\mathbf{s}_{1} & \geq 2 \\
\mathbf{s}_{2} & \geq 0 \\
\mathbf{s}_{3} & \geq 1
\end{aligned}
$$

s_{1}, s_{2}, s_{3} are additional variables, x, y are problem variables.
The two problems are "equivalent"

General Form - problem

A system is in general form if is such that

$$
\begin{aligned}
& \vec{A} \vec{x}=0 \\
& I \leq s_{j} \leq u, \text { for all } s_{j} \in\{1, \ldots, m\}
\end{aligned}
$$

The size of \vec{A} is $m \times(n+m)$ (with n problem variables and m additional variables)

$$
\begin{array}{r}
x+y-\mathbf{s}_{1}=0 \\
2 x-y-\mathbf{s}_{\mathbf{2}}=0 \\
-x+2 y-\mathbf{s}_{3}=0 \\
\mathbf{s}_{\mathbf{1}} \geq 2 \\
\mathbf{s}_{2} \geq 0 \\
\mathbf{s}_{3} \geq 1
\end{array}
$$

$$
\vec{A}=\left(\begin{array}{ccccc}
1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & -1 & 0 \\
-2 & 2 & 0 & 0 & -1
\end{array}\right)
$$

Tableau and Bounds Constraints

Recall the matrix \vec{A} has always the following form (with a diagonal sub-matrix):

$$
\vec{A}=\left(\begin{array}{ccccc}
1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & -1 & 0 \\
-2 & 2 & 0 & 0 & -1
\end{array}\right)
$$

The simplex algorithm represents the problem with a tableau, bound constraints, and assignments:

$$
\begin{array}{ccc}
\text { Tableau } & \text { Bounds } & \text { Assigmnent } \\
& & x \rightarrow 0 \\
\left(\begin{array}{cc}
1 & 1 \\
2 & -1 \\
-1 & 2
\end{array}\right) & 2 \leq s_{1} \leq \infty & y \rightarrow 0 \\
& 0 \leq s_{2} \leq \infty & s_{1} \rightarrow 0 \\
& 1 \leq s_{3} \leq \infty & s_{2} \rightarrow 0 \\
& & s_{3} \rightarrow 0
\end{array}
$$

Variables in the columns are non-basic while the variables in the rows are basic

The algorithm

The algorithm maintains the following invariants:

- $\vec{A} \vec{x}=0$
- candidate solution α always consistent with the tableau Initially: α satisfies $\vec{A} \vec{x}=0$
The algorithm checks if the bound for the basic variables is satisfied:
- If yes, then α is a feasible assignment (satisfiable!)
- If not, the algorithm update α with a pivoting operation
- From pivoting we can either infer a conflict (terminate, unsatisfiable!) or iterate checking the bound of the basic variables.

Example of Pivoting

Tableau
Bounds
Assigmnent

$$
s_{1}=1 x+1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 0 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 0 \\
s_{1} & \rightarrow 0
\end{aligned}
$$

Example of Pivoting

Tableau
Bounds
Assigmnent

$$
s_{1}=1 x+1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
s_{2}=2 x-1 y
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 0 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 0 \\
s_{1} & \rightarrow 0
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$

Example of Pivoting

Tableau
Bounds
Assigmnent

$$
s_{1}=1 x+1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
s_{2}=2 x-1 y
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
s_{3}=-1 x+2 y
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 0 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 0 \\
s_{1} & \rightarrow 0
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$
- We can select x as pivot column - Pivoting: "swap" s_{i} and x_{j}

Example of Pivoting

Tableau
Bounds
Assigmnent

$$
s_{1}=1 x+1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
s_{2}=2 x-1 y
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
s_{3}=-1 x+2 y
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 0 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 0 \\
s_{1} & \rightarrow 0
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$
- We can select x as pivot column - Pivoting: "swap" s_{i} and x_{j}
- Ok, because $1>0$ and $\alpha(x) \leq \infty$

Example of Pivoting

Tableau
Bounds
Assigmnent

$$
s_{1}=1 x+1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
s_{2}=2 x-1 y
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
s_{3}=-1 x+2 y
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 0 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 0 \\
s_{1} & \rightarrow 0
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$
- We can select x as pivot column - Pivoting: "swap" s_{i} and x_{j}
- Ok, because $1>0$ and $\alpha(x) \leq \infty$
- Solve equation for x : $x=s_{1}-y$

Example of Pivoting

Tableau

Bounds
Assigmnent

$$
x=1 s_{1}-1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
s_{2}=2 x-1 y
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
s_{3}=-1 x+2 y
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 0 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 0 \\
s_{1} & \rightarrow 0
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$
- We can select x as pivot column - Pivoting: "swap" s_{i} and x_{j}
- Ok, because $1>0$ and $\alpha(x) \leq \infty$
- Solve equation for x : $x=s_{1}-y$
- Replace $s 1=1 x+1 y$ with $x=s_{1}-y$

Example of Pivoting

Tableau
Bounds
Assigmnent

$$
x=1 s_{1}-1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
s_{2}=2 s_{1}-3 y
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
s_{3}=-s_{1}+3 y
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 0 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 0 \\
s_{1} & \rightarrow 0
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$
- We can select x as pivot column - Pivoting: "swap" s_{i} and x_{j}
- Ok, because $1>0$ and $\alpha(x) \leq \infty$
- Solve equation for x : $x=s_{1}-y$
- Replace $s 1=1 x+1 y$ with $x=s_{1}-y$
- Replace the new x with s_{1} in the other rows

Example of Pivoting

Tableau
Bounds
Assigmnent

$$
x=1 s_{1}-1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
s_{2}=2 s_{1}-3 y
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
s_{3}=-s_{1}+3 y
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 0 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 0 \\
s_{1} & \rightarrow 0
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$
- We can select x as pivot column - Pivoting: "swap" s_{i} and x_{j}
- Ok, because $1>0$ and $\alpha(x) \leq \infty$
- Solve equation for x : $x=s_{1}-y$
- Replace $s 1=1 x+1 y$ with $x=s_{1}-y$
- Replace the new x with s_{1} in the other rows
- Compute new bounds:

Example of Pivoting

Tableau
Bounds
Assigmnent

$$
x=1 s_{1}-1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
s_{2}=2 s_{1}-3 y
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
s_{3}=-s_{1}+3 y
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 0 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{1} & \rightarrow 0
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$
- We can select x as pivot column - Pivoting: "swap" s_{i} and x_{j}
- Ok, because $1>0$ and $\alpha(x) \leq \infty$
- Solve equation for x : $x=s_{1}-y$
- Replace $s 1=1 x+1 y$ with $x=s_{1}-y$
- Replace the new x with s_{1} in the other rows
- Compute new bounds:
$\star \alpha\left(s_{1}\right)=2$ (in this case, the lower bound)

Example of Pivoting

Tableau

Bounds
Assigmnent

$$
\begin{array}{rl}
x=1 s_{1}-1 y & 2 \leq s_{1} \leq \infty \\
s_{2}=2 s_{1}-3 y & 0 \leq s_{2} \leq \infty \\
s_{3}=-s_{1}+3 y & 1 \leq s_{3} \leq \infty
\end{array}
$$

$$
\begin{aligned}
x & \rightarrow 2 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{1} & \rightarrow 0 \\
s_{2} & \rightarrow 0 \\
s_{3} & \rightarrow 0
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$
- We can select x as pivot column - Pivoting: "swap" s_{i} and x_{j}
- Ok, because $1>0$ and $\alpha(x) \leq \infty$
- Solve equation for $x: x=s_{1}-y$
- Replace $s 1=1 x+1 y$ with $x=s_{1}-y$
- Replace the new x with s_{1} in the other rows
- Compute new bounds:
$\star \alpha\left(s_{1}\right)=2$ (in this case, the lower bound)
\star Increase $\alpha(x)$ by $\alpha\left(s_{1}-y\right)=2-0=2$, so $\alpha(x)=2$

Example of Pivoting

Tableau

Bounds
Assigmnent

$$
\begin{array}{ll}
x=1 s_{1}-1 y & 2 \leq s_{1} \leq \infty \\
s_{2}=2 s_{1}-3 y & 0 \leq s_{2} \leq \infty \\
s_{3}=-s_{1}+3 y & 1 \leq s_{3} \leq \infty
\end{array}
$$

$$
\begin{aligned}
x & \rightarrow 2 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{1} & \rightarrow 0 \\
s_{2} & \rightarrow 4 \\
s_{3} & \rightarrow-2
\end{aligned}
$$

- $\alpha\left(s_{1}\right)=0$, violates bound constraint $2 \leq s_{1}$
- We can select x as pivot column - Pivoting: "swap" s_{i} and x_{j}
- Ok, because $1>0$ and $\alpha(x) \leq \infty$
- Solve equation for $x: x=s_{1}-y$
- Replace $s 1=1 x+1 y$ with $x=s_{1}-y$
- Replace the new x with s_{1} in the other rows
- Compute new bounds:
$\star \alpha\left(s_{1}\right)=2$ (in this case, the lower bound)
\star Increase $\alpha(x)$ by $\alpha\left(s_{1}-y\right)=2-0=2$, so $\alpha(x)=2$
\star Update bounds for s_{2} and s_{3}

Pivoting

- Find a basic variable x_{i} that violates its bound (suppose, $\alpha\left(x_{i}\right)>u_{i}$)
- Find a non-basic variable x_{j} that make $\alpha\left(x_{i}\right)$ satisfy the bound:
- Can increase the value of $x_{i}: c_{i, j}>0$ and $\alpha x_{j}<u_{j}$.
- Can decrease the value of $x_{i}: c_{i, j}<0$ and $\alpha x_{j}>I_{j}$.
- If such variable does not exist, return unsat
- Pivoting:
- $c_{i, j}$ is the pivot element
- x_{j} is the pivot column
- x_{i} is the pivot row
- "Swap" x_{j} with x_{i}

Pivoting x_{i} and x_{j}

Same step as in Gaussian elimination:

- Replace i row:
- i-th row in the tableau: $x_{i}=c_{i, j} x_{j}+\sum_{k \neq j} c_{i, k} x_{k}$
- Becomes: $x_{j}=\frac{1}{c_{i, j}} x_{i}+\sum_{k \neq j} \frac{-c_{i, j}}{c_{i, k}} x_{k}$
- Replace x_{j} with $\frac{1}{c_{i, j}} x_{i}+\sum_{k \neq j} \frac{-c_{i, j}}{c_{i, k}} x_{k}$ in all the other columns

Update assignment α :

- $\alpha\left(x_{i}\right)$ is the upper (lower) bound (the bound that was violated).
- $\alpha\left(x_{j}\right)$ is incremented by $\frac{u_{i}-\alpha\left(x_{i}\right)}{c_{i, j}}$ (or decremented, depending on the violated bound)
- Update the other basic variables
- x_{j} becomes basic, so it may violate some bounds.

Example of Simplex (cont)

Tableau
Bounds

$$
\begin{array}{rl}
x=1 s_{1}-1 y & 2 \leq s_{1} \leq \infty \\
s_{2}=2 s_{1}-3 y & 0 \leq s_{2} \leq \infty \\
s_{3}=-s_{1}+3 y & 1 \leq s_{3} \leq \infty
\end{array}
$$

Assigmnent

$$
\begin{aligned}
x & \rightarrow 2 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{2} & \rightarrow 4 \\
s_{3} & \rightarrow-2
\end{aligned}
$$

Example of Simplex (cont)

Tableau
Bounds
Assigmnent

$$
x=1 s_{1}-1 y
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 2 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{2} & \rightarrow 4 \\
s_{3} & \rightarrow-2
\end{aligned}
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$

Example of Simplex (cont)

Tableau
Bounds
Assigmnent

$$
\begin{array}{rl}
x=1 s_{1}-1 y & 2 \leq s_{1} \leq \infty \\
s_{2}=2 s_{1}-3 y & 0 \leq s_{2} \leq \infty \\
s_{3}=-s_{1}+3 y & 1 \leq s_{3} \leq \infty
\end{array}
$$

$$
\begin{aligned}
x & \rightarrow 2 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{2} & \rightarrow 4 \\
s_{3} & \rightarrow-2
\end{aligned}
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$
- We can seletc y as pivot column

Example of Simplex (cont)

Tableau
Bounds
Assigmnent

$$
\begin{array}{rl}
x=1 s_{1}-1 y & 2 \leq s_{1} \leq \infty \\
s_{2}=2 s_{1}-3 y & 0 \leq s_{2} \leq \infty \\
s_{3}=-s_{1}+3 y & 1 \leq s_{3} \leq \infty
\end{array}
$$

$$
\begin{aligned}
& x \rightarrow 2 \\
& y \rightarrow 0 \\
& s_{1} \rightarrow 2 \\
& s_{2} \rightarrow 4 \\
& s_{3} \rightarrow-2
\end{aligned}
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$
- We can seletc y as pivot column
- Ok, because $3>0$ and $\alpha(y) \leq \infty$

Example of Simplex (cont)

Tableau
Bounds
Assigmnent

$$
\begin{array}{rl}
x=1 s_{1}-1 y & 2 \leq s_{1} \leq \infty \\
s_{2}=2 s_{1}-3 y & 0 \leq s_{2} \leq \infty \\
s_{3}=-s_{1}+3 y & 1 \leq s_{3} \leq \infty
\end{array}
$$

$$
\begin{aligned}
x & \rightarrow 2 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{2} & \rightarrow 4 \\
s_{3} & \rightarrow-2
\end{aligned}
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$
- We can seletc y as pivot column
- Ok, because $3>0$ and $\alpha(y) \leq \infty$
- Solve equation for y : $y=\frac{1}{3} s_{3}+\frac{1}{3} x$

Example of Simplex (cont)

Tableau
Bounds
Assigmnent

$$
x \rightarrow 2
$$

$$
\begin{aligned}
x & =1 s_{1}-1 y \\
s_{2} & =2 s_{1}-3 y
\end{aligned}
$$

$$
2 \leq s_{1} \leq \infty
$$

$$
y \rightarrow 0
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
s_{1} \rightarrow 2
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
s_{2} \rightarrow 4
$$

$$
s_{3} \rightarrow-2
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$
- We can seletc y as pivot column
- Ok, because $3>0$ and $\alpha(y) \leq \infty$
- Solve equation for $y: y=\frac{1}{3} s_{3}+\frac{1}{3} x$
- Replace $s_{3}=-1 x+3 y$ with $y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3}$

Example of Simplex (cont)

Tableau

$$
\begin{gathered}
x=\frac{2}{3} s_{1}-\frac{1}{3} s_{3} \\
s_{2}=s_{1}-s_{3} \\
y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3}
\end{gathered}
$$

Assigmnent

$$
2 \leq s_{1} \leq \infty
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 2 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{2} & \rightarrow 4 \\
s_{3} & \rightarrow-2
\end{aligned}
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$
- We can seletc y as pivot column
- Ok, because $3>0$ and $\alpha(y) \leq \infty$
- Solve equation for $y: y=\frac{1}{3} s_{3}+\frac{1}{3} x$
- Replace $s_{3}=-1 x+3 y$ with $y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3}$
- Replace the new y with s_{3} in the other rows

Example of Simplex (cont)

Tableau

$$
\begin{gathered}
x=\frac{2}{3} s_{1}-\frac{1}{3} s_{3} \\
s_{2}=s_{1}-s_{3} \\
y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3}
\end{gathered}
$$

Assigmnent

$$
2 \leq s_{1} \leq \infty
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 2 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{2} & \rightarrow 4 \\
s_{3} & \rightarrow-2
\end{aligned}
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$
- We can seletc y as pivot column
- Ok, because $3>0$ and $\alpha(y) \leq \infty$
- Solve equation for $y: y=\frac{1}{3} s_{3}+\frac{1}{3} x$
- Replace $s_{3}=-1 x+3 y$ with $y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3}$
- Replace the new y with s_{3} in the other rows
- Compute new bounds:

Example of Simplex (cont)

Tableau

$$
\begin{gathered}
x=\frac{2}{3} s_{1}-\frac{1}{3} s_{3} \\
s_{2}=s_{1}-s_{3} \\
y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3}
\end{gathered}
$$

Assigmnent

$$
2 \leq s_{1} \leq \infty
$$

$$
0 \leq s_{2} \leq \infty
$$

$$
1 \leq s_{3} \leq \infty
$$

$$
\begin{aligned}
x & \rightarrow 2 \\
y & \rightarrow 0 \\
s_{1} & \rightarrow 2 \\
s_{2} & \rightarrow 4 \\
s_{3} & \rightarrow-2
\end{aligned}
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$
- We can seletc y as pivot column
- Ok, because $3>0$ and $\alpha(y) \leq \infty$
- Solve equation for y : $y=\frac{1}{3} s_{3}+\frac{1}{3} x$
- Replace $s_{3}=-1 x+3 y$ with $y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3}$
- Replace the new y with s_{3} in the other rows
- Compute new bounds:
$\star \alpha\left(s_{3}\right)=1$ (in this case, the lower bound)

Example of Simplex (cont)

Tableau

$$
\begin{array}{ccc}
\text { Tableau } & \text { Bounds } & \text { Assigmnent } \\
x=\frac{2}{3} s_{1}-\frac{1}{3} s_{3} & 2 \leq s_{1} \leq \infty & x \rightarrow 1 \\
s_{2}=s_{1}-s_{3} & 0 \leq s_{2} \leq \infty & y \rightarrow 1 \\
y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3} & 1 \leq s_{3} \leq \infty & s_{1} \rightarrow 2 \\
& & s_{2} \rightarrow 1 \\
s_{3} \rightarrow 1
\end{array}
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$
- We can seletc y as pivot column
- Ok, because $3>0$ and $\alpha(y) \leq \infty$
- Solve equation for $y: y=\frac{1}{3} s_{3}+\frac{1}{3} x$
- Replace $s_{3}=-1 x+3 y$ with $y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3}$
- Replace the new y with s_{3} in the other rows
- Compute new bounds:
$\star \alpha\left(s_{3}\right)=1$ (in this case, the lower bound)
\star Increase $\alpha(y)$ by $\alpha\left(\frac{1}{3} s_{1}+\frac{1}{3} s_{3}\right)=\frac{2}{3}+\frac{1}{3}=1$, so $\alpha(y)=1$

Example of Simplex (cont)

Tableau

$$
\begin{array}{ccc}
\text { Tableau } & \text { Bounds } & \text { Assigmnent } \\
x=\frac{2}{3} s_{1}-\frac{1}{3} s_{3} & 2 \leq s_{1} \leq \infty & x \rightarrow 1 \\
s_{2}=s_{1}-s_{3} & 0 \leq s_{2} \leq \infty & y \rightarrow 1 \\
y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3} & 1 \leq s_{3} \leq \infty & s_{1} \rightarrow 2 \\
& & s_{2} \rightarrow 1 \\
s_{3} \rightarrow 1
\end{array}
$$

- $\alpha\left(s_{3}\right)=0$, violates bound constraint $1 \leq s_{3}$
- We can seletc y as pivot column
- Ok, because $3>0$ and $\alpha(y) \leq \infty$
- Solve equation for $y: y=\frac{1}{3} s_{3}+\frac{1}{3} x$
- Replace $s_{3}=-1 x+3 y$ with $y=\frac{1}{3} s_{1}+\frac{1}{3} s_{3}$
- Replace the new y with s_{3} in the other rows
- Compute new bounds:
$\star \alpha\left(s_{3}\right)=1$ (in this case, the lower bound)
\star Increase $\alpha(y)$ by $\alpha\left(\frac{1}{3} s_{1}+\frac{1}{3} s_{3}\right)=\frac{2}{3}+\frac{1}{3}=1$, so $\alpha(y)=1$
\star Update $\alpha(x)=1$ and $\alpha\left(s_{2}\right)=1$

Simplex - some remarks

- Generalized simplex: n variables, m equations
- In practice: a sequence of pivot steps to find a feasible bound
- The algorithm runtime can be exponential (in the number of variables) in the worst case. However, good performance in practice
(1) Decision Procedures for the Theory of Linear Real and Integer Arithmetic - Linear Arithmetic Theories
- A decision procedure for LRA $(\mathcal{L A}(\mathbb{Q}))$
- A decision procedure for LIA $(\mathcal{L A}(\mathbb{Z}))$
- Remarks

A decision procedure for LIA $(\mathcal{L} A(\mathbb{Z}))$

- conjunction of inequalities of the form (over Integer numbers)

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \quad \bowtie=\{\geq, \leq\}
$$

A decision procedure for LIA $(\mathcal{L} A(\mathbb{Z}))$

- conjunction of inequalities of the form (over Integer numbers)

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \quad \bowtie=\{\geq, \leq\}
$$

- satisfiability for $\mathcal{L A}(\mathbb{Z})$ is NP-COMPLETE

A decision procedure for LIA $(\mathcal{L} A(\mathbb{Z}))$

- conjunction of inequalities of the form (over Integer numbers)

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \quad \bowtie=\{\geq, \leq\}
$$

- satisfiability for $\mathcal{L A}(\mathbb{Z})$ is NP-COMPLETE
- main idea: use simplex on a problem relaxation, then use branch and bound

A decision procedure for LIA $(\mathcal{L} A(\mathbb{Z}))$

- conjunction of inequalities of the form (over Integer numbers)

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \quad \bowtie=\{\geq, \leq\}
$$

- satisfiability for $\mathcal{L A}(\mathbb{Z})$ is NP-COMPLETE
- main idea: use simplex on a problem relaxation, then use branch and bound
- If the relaxation is unsatisfiable, then the original problem is unsatisfiable

A decision procedure for LIA $(\mathcal{L} A(\mathbb{Z}))$

- conjunction of inequalities of the form (over Integer numbers)

$$
\sum_{i}^{n} c_{i} \cdot x_{j} \bowtie b \quad \bowtie=\{\geq, \leq\}
$$

- satisfiability for $\mathcal{L A}(\mathbb{Z})$ is NP-COMPLETE
- main idea: use simplex on a problem relaxation, then use branch and bound
- If the relaxation is unsatisfiable, then the original problem is unsatisfiable
- If the relaxation is satisfiable:
\star Select a non-integral value r for a variable x_{i} found in the relaxation
\star Force the integral value $v \leq\lfloor r\rfloor$, and search for a new solution
* 2 nd branch: force the integral value $v \geq\lceil r\rceil$, and search for a new solution

Branch and Bound for LIA (using the LRA relaxation)

```
procedure Branch-and-bound-LIA(S)
    ISSAT, \(\alpha\) := simplex(relaxed(S))
    if \(\neg\) ISSAT then
        return unsatisfiable
    else
        if \(\alpha\) is integral then
        return satisfiable
        else
            select a variable \(x_{i}\) such that \(\alpha\left(x_{i}\right)=r\) is not integral
            floor := Branch-and-bound-LIA \((S \cup(v \leq\lfloor r\rfloor))\)
            ceil \(:=\) Branch-and-bound-LIA \((S \cup(v \geq\lceil r\rceil))\)
            return floor \(\vee\) ceil
```

(1) Decision Procedures for the Theory of Linear Real and Integer Arithmetic - Linear Arithmetic Theories

- A decision procedure for LRA (LA(Q))
- A decision procedure for LIA (LA(Z))
- Remarks

Satisfiability is not enough ...

The implementation of an efficient theory solver should also:

- be incremental: stack-based interface (assert, backtrack), adding and removing conjunctions (e.g., for \mathcal{T}-deduction and early pruning)
- Produce a small set of conflicts
- Correct under numerical errors (another difference with LP implementation):
- Use an infinite precision representation for numbers (i.e., no floating point!), eventually
- More implementation "tricks" to scale (e.g., use integers number, faster, in simplex first, and switch to rationals when needed)

To sum up

What did we see today?

- A decision procedure for $\mathcal{L A}(\mathbb{Q})$ (simplex algorithm)
- A decision procedure $\mathcal{L} A(\mathbb{Z})$

Next week: Application of SMT solvers to verification

References I

目
Bradley, A. R. and Manna, Z. (2007).
The calculus of computation - decision procedures with applications to verification.
Springer.
Dutertre, B. and De Moura, L. (2006).
A fast linear-arithmetic solver for dpll ($\mathrm{t} \mathrm{)}$.
In International Conference on Computer Aided Verification, pages 81-94. Springer.

[^0]: ${ }^{1}$ Main references:

 - The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)

[^1]: ${ }^{1}$ Main references:

 - The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)

