Efficient resolution of logical models ENSTA-IA303

Alexandre Chapoutot and Sergio Mover

ENSTA Paris

2020-2021

Lecture 4: A Decision Procedure for the Theory of Equality

Main goals for today

In class¹:

 $\bullet\,$ How to decide the $\mathcal T\text{-satisfiability}$ for quantifier-free formula in the Equality

¹Main references:

• The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)

Main goals for today

In class¹:

 \bullet How to decide the $\mathcal T\text{-satisfiability}$ for quantifier-free formula in the Equality In the tutorial:

• Implement the decision procedure

¹Main references:

• The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)

1 A Decision Procedure for the Theory of Equality

- T_E-satisfiability
- Deciding T_E via Congruence Closure
- An algorithm to computing congruence closure

 Base theory: in most cases we assume the equality predicate = to be part of any theory (i.e., interpreted as equality)
 Also called Theory of Equality and Uninterpreted Functions (EUF)

- Base theory: in most cases we assume the equality predicate = to be part of any theory (i.e., interpreted as equality)
 Also called Theory of Equality and Uninterpreted Functions (EUF)
- We use \mathcal{T}_E to *combine* different theories (i.e., exchanging equalities)

- Base theory: in most cases we assume the equality predicate = to be part of any theory (i.e., interpreted as equality)
 Also called Theory of Equality and Uninterpreted Functions (EUF)
- We use \mathcal{T}_E to *combine* different theories (i.e., exchanging equalities)
- We use T_E in the "layered" approach:
 - We can first check if a formula is satisfiable considering all the function symbols "uninterpreted"
 - ▶ If the formula is unsatisfiable with T_E , then the formula is unsatisfiable in the "original" theory.

Example from [Barrett et al., 2009]:

$$a*(f(b)+f(c))=d\wedge \neg (b*(f(a)+f(c))=d)\wedge a=b$$

Already unsatisfiable if we consider * and + as an uninterpreted function.

- Base theory: in most cases we assume the equality predicate = to be part of any theory (i.e., interpreted as equality)
 Also called Theory of Equality and Uninterpreted Functions (EUF)
- We use \mathcal{T}_E to *combine* different theories (i.e., exchanging equalities)
- We use T_E in the "layered" approach:
 - We can first check if a formula is satisfiable considering all the function symbols "uninterpreted"
 - If the formula is unsatisfiable with T_E , then the formula is unsatisfiable in the "original" theory.

Example from [Barrett et al., 2009]:

$$a*(f(b)+f(c))=d\wedge\neg(b*(f(a)+f(c))=d)\wedge a=b$$

Already unsatisfiable if we consider * and + as an uninterpreted function.

► *T_E* solver is "cheap", so we can run it before calling more expensive theory solvers.

The Theory of Equality functions \mathcal{T}_E is defined as:

• the signature $\Sigma_E := \{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$

- = is a binary predicate and is *interpreted* as the equality
- all the other function symbols in Σ_E are not interpreted

The Theory of Equality functions \mathcal{T}_E is defined as:

• the signature $\Sigma_{\textit{E}} := \{=, \textit{a}, \textit{b}, \textit{c}, \ldots, \textit{f}, \textit{g}, \textit{h}, \ldots, \textit{p}, \textit{q}, \textit{r}, \ldots\}$

- = is a binary predicate and is *interpreted* as the equality
- all the other function symbols in Σ_E are not interpreted
- the set of axioms \mathcal{A} :

[reflexivity] [symmetry] [transitivity]

The Theory of Equality functions \mathcal{T}_E is defined as:

• the signature $\Sigma_E := \{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$

- = is a binary predicate and is *interpreted* as the equality
- all the other function symbols in Σ_E are not interpreted
- the set of axioms \mathcal{A} :

$$\forall x.x = x$$
[reflexivity] $\forall x, y.x = y \rightarrow y = x$ [symmetry] $\forall x, y, z.((x = y \land y = z) \rightarrow x = z)$ [transitivity]Function and predicate congruence

★ For each $n \in \mathbb{N}$ and *n*-ary function symbol f:

$$\forall x_1, \ldots, x_n, y_1, \ldots, y_n. \left(\bigwedge_{i=1}^n x_i = x_i \right) \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$$

The Theory of Equality functions \mathcal{T}_E is defined as:

• the signature $\Sigma_E := \{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$

- = is a binary predicate and is *interpreted* as the equality
- all the other function symbols in Σ_E are not interpreted
- the set of axioms \mathcal{A} :

$$\forall x.x = x$$
[reflexivity] $\forall x, y.x = y \rightarrow y = x$ [symmetry] $\forall x, y, z.((x = y \land y = z) \rightarrow x = z)$ [transitivity]

9 Function and predicate congruence

★ For each $n \in \mathbb{N}$ and *n*-ary function symbol f:

$$\forall x_1, \ldots, x_n, y_1, \ldots, y_n. \left(\bigwedge_{i=1}^n x_i = x_i \right) \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$$

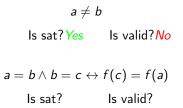
★ For each $n \in \mathbb{N}$ and *n*-ary predicate symbol *p*:

$$\forall x_1,\ldots,x_n,y_1,\ldots,y_n.\left(\bigwedge_{i=1}^n x_i=x_i\right) \rightarrow p(x_1,\ldots,x_n) \leftrightarrow p(y_1,\ldots,y_n)$$

 $a \neq b$ Is sat? Is valid?

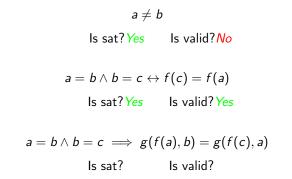
 $a \neq b$ Is sat? Yes Is valid?

 $a \neq b$ Is sat? Yes Is valid? No

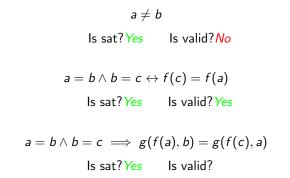


 $a \neq b$ Is sat? Yes Is valid? No $a = b \land b = c \leftrightarrow f(c) = f(a)$ Is sat? Yes Is valid?

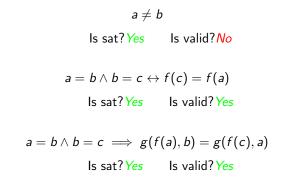
 $a \neq b$ Is sat? Yes Is valid? No $a = b \land b = c \leftrightarrow f(c) = f(a)$ Is sat? Yes Is valid? Yes



Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]



Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]



Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Our settings

- The problem we solve today: is a Σ_E -formula \mathcal{T}_E -satisfiable?
- We consider a conjunction of theory literals where atoms are equalities

$$x = y \wedge f(x) = y \wedge (\neg f(g(x, y)) = f(x))$$

We can enumerate such conjunctions for an arbitrary Σ_E -formula using the lazy approach.

Our settings

- The problem we solve today: is a Σ_E -formula \mathcal{T}_E -satisfiable?
- We consider a conjunction of theory literals where atoms are equalities

$$x = y \wedge f(x) = y \wedge (\neg f(g(x, y)) = f(x))$$

We can enumerate such conjunctions for an arbitrary Σ_E -formula using the lazy approach.

• Here we do not consider predicates. In general: replace predicates with functions to get an *equisatisfiable* formula

Example

$$p(x,y) \wedge q(f(y)) \wedge f(x) = y \implies f_p(x,y) = v_T \wedge f_q(f(y)) = v_T \wedge f(x) = y$$

 $v_{\mathcal{T}}$ is a fresh value, f_p , q_p are fresh function symbols. Intuitively, the transformation assumes that: $\forall x, y.p(x, y) \leftrightarrow f_p(x, y) = v_{\mathcal{T}}$ and $\forall x.q(x) \leftrightarrow f_q(x) = v_{\mathcal{T}}$

1 A Decision Procedure for the Theory of Equality

- *T_E*-satisfiability
- Deciding T_E via Congruence Closure
- An algorithm to computing congruence closure

$$\phi := f(f(f(a))) = a \land f(f(f(f(a))))) = a \land \neg f(a) = a$$

- From f(f(f(a))) = a:
 - ► Substitute f(f(f(a))) with a in f(f(f(f(a))))) = a
 - Infer new equality f(f(a)) = a

²Example 9.1 from [Bradley and Manna, 2007]

$$\phi := f(f(f(a))) = a \land f(f(f(f(a))))) = a \land \neg f(a) = a$$

- From f(f(f(a))) = a:
 - ► Substitute f(f(f(a))) with a in f(f(f(f(a))))) = a
 - Infer new equality f(f(a)) = a
- From f(f(a)) = a:
 - Substitute f(f(a)) with a in f(f(f(a))) = a
 - Infer new equality: f(a) = a

²Example 9.1 from [Bradley and Manna, 2007]

$$\phi := f(f(f(a))) = a \land f(f(f(f(a))))) = a \land \neg f(a) = a$$

- From f(f(f(a))) = a:
 - ► Substitute f(f(f(a))) with a in f(f(f(f(a))))) = a
 - Infer new equality f(f(a)) = a
- From f(f(a)) = a:
 - Substitute f(f(a)) with a in f(f(f(a))) = a
 - Infer new equality: f(a) = a

• We have both f(a) = a and $\neg f(a) = a$: contradiction. So, ϕ is unsatisfiable.

²Example 9.1 from [Bradley and Manna, 2007]

$$\phi := f(f(f(a))) = a \land f(f(f(f(a))))) = a \land \neg f(a) = a$$

- From f(f(f(a))) = a:
 - ► Substitute f(f(f(a))) with a in f(f(f(f(a))))) = a
 - Infer new equality f(f(a)) = a
- From f(f(a)) = a:
 - Substitute f(f(a)) with a in f(f(f(a))) = a
 - Infer new equality: f(a) = a
- We have both f(a) = a and $\neg f(a) = a$: contradiction. So, ϕ is unsatisfiable.

Use the equalities to infer new equalities, applying the T_E axioms, and then check for contradictions with the inequalities

²Example 9.1 from [Bradley and Manna, 2007]

$$\phi := [s_1 = t_1, \dots s_m = t_m, \neg (s_{m+1} = t_{m+1}), \dots \neg (s_n = t_n)]$$

$$\phi := [s_1 = t_1, \dots s_m = t_m, \neg (s_{m+1} = t_{m+1}), \dots \neg (s_n = t_n)]$$

- Apply the T_E axioms (relfexivity, symmetry, transitivity, and congruence) to the existing equalities, inferring a set of new equalities.
 - Since the possible terms in ϕ are finite, then also the number of inferred equalities are finite.
 - So, this enumeration terminates.

$$\phi := [s_1 = t_1, \dots s_m = t_m, \neg (s_{m+1} = t_{m+1}), \dots \neg (s_n = t_n)]$$

- Apply the T_E axioms (relfexivity, symmetry, transitivity, and congruence) to the existing equalities, inferring a set of new equalities.
 - Since the possible terms in ϕ are finite, then also the number of inferred equalities are finite.
 - So, this enumeration terminates.
- Por every inequality ¬s_i = t_i (i ∈ [m + 1, n]), check if s_i = t_i is in the set of inferred equalities.
 - If we find such $\neg s_i = t_i$ and $s_i = t_i$, then ϕ is unsatisfiable
 - Otherwise, ϕ is satisfiable

$$\phi := [s_1 = t_1, \dots s_m = t_m, \neg (s_{m+1} = t_{m+1}), \dots \neg (s_n = t_n)]$$

- Apply the T_E axioms (relfexivity, symmetry, transitivity, and congruence) to the existing equalities, inferring a set of new equalities.
 - Since the possible terms in \u03c6 are finite, then also the number of inferred equalities are finite.
 - So, this enumeration terminates.

This is called congruence closure

- Por every inequality ¬s_i = t_i (i ∈ [m + 1, n]), check if s_i = t_i is in the set of inferred equalities.
 - If we find such $\neg s_i = t_i$ and $s_i = t_i$, then ϕ is unsatisfiable
 - Otherwise, ϕ is satisfiable

Equivalence and Congruence Relations

• S is a set, and R is a *binary relation* over S

Equivalence and Congruence Relations

- S is a set, and R is a binary relation over S
- *R* is an *equivalence relation* if:
 - Reflexivity: $\forall s_1 \in S.(s_1, s_1) \in R$
 - Symmetry: $\forall s_1, s_2 \in S.(s_1, s_2) \in R$
 - ▶ Transitivity: $\forall s_1, s_2, s_3 \in S.((s_1, s_2) \in R \land (s_2, s_3) \in R) \rightarrow (s_1, s_3) \in R$

Equivalence and Congruence Relations

- S is a set, and R is a binary relation over S
- R is an equivalence relation if:
 - Reflexivity: $\forall s_1 \in S.(s_1, s_1) \in R$
 - Symmetry: $\forall s_1, s_2 \in S.(s_1, s_2) \in R$
 - ▶ Transitivity: $\forall s_1, s_2, s_3 \in S.((s_1, s_2) \in R \land (s_2, s_3) \in R) \rightarrow (s_1, s_3) \in R$
- *R* is a congruence relation if:
 - R is an equivalence relation, and
 - for every the *n*-ary functions *f*:

$$\forall s_1,\ldots,s_n,t_1,\ldots,t_n\in R. \bigwedge_{i\in[1,n]}(s_i,t_i)\in R\to (f(s_1,\ldots,s_n),f(t_1,\ldots,t_n))\in R$$

The T_E axioms express a congruence relation between terms

Equivalence and Congruence Classes

• $[s]_R$ is an equivalence (resp. congruence) class under the equivalence (resp. congruence) relation R:

$$[s]_R := \{s' \in S \mid (s,s') \in R\}$$

Exa

$$\begin{array}{ll} \text{ample:} & \phi := f(a,b) = a \land \neg (f(f(a,b),b) = a) \\ & S = \{ \text{set of sub-terms of } \phi \} = \{a,b,f(a,b),f(f(a,b),b) \} \\ & [a]_{=} := \{f(a,b),a,f(f(a,b),b) \} \end{array}$$

Equivalence and Congruence Classes

• [s]_R is an equivalence (resp. congruence) class under the equivalence (resp. congruence) relation R:

$$[s]_R := \{s' \in S \mid (s,s') \in R\}$$

Example:
$$\phi := f(a, b) = a \land \neg (f(f(a, b), b) = a)$$

 $S = \{ \text{set of sub-terms of } \phi \} = \{a, b, f(a, b), f(f(a, b), b) \}$
 $[a]_{=} := \{ f(a, b), a, f(f(a, b), b) \}$

• A partition P of the set S is $P \subseteq 2^S$ such that: • $\bigcup_{S' \in P} S' = S$ and $\forall S_1, S_2 \in P.(S_1 \neq s_2 \rightarrow S_1 \cap S_2 = \emptyset)$

Example: $\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$

Equivalence and Congruence Classes

• [s]_R is an equivalence (resp. congruence) class under the equivalence (resp. congruence) relation R:

$$[s]_R := \{s' \in S \mid (s,s') \in R\}$$

Example:
$$\phi := f(a, b) = a \land \neg (f(f(a, b), b) = a)$$

 $S = \{ \text{set of sub-terms of } \phi \} = \{a, b, f(a, b), f(f(a, b), b) \}$
 $[a]_{=} := \{ f(a, b), a, f(f(a, b), b) \}$

• A partition P of the set S is
$$P \subseteq 2^S$$
 such that:
• $\bigcup_{S' \in P} S' = S$ and $\forall S_1, S_2 \in P.(S_1 \neq s_2 \rightarrow S_1 \cap S_2 = \emptyset)$

Example: $\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$

• The *quotient* S/R is the partition of S formed by the equivalence classes of S under R:

$$S/R := \{[s]_R \mid s \in S\}$$

Example: $\{[a]_{=}, [b]_{=}\}$

• R_1 refines R_2 $(R_1 \leq R_1)$ if:

$$\forall s_1, s_2 \in S.(s_1, s_2) \in R_1 \rightarrow (s_1, s_2) \in R_2$$

• R_1 refines R_2 $(R_1 \leq R_1)$ if:

$$\forall s_1, s_2 \in S.(s_1, s_2) \in R_1 \rightarrow (s_1, s_2) \in R_2$$

- R^C is the congruence closure for the congruence relation R if
 - ► $R \leq R^{C}$
 - ▶ for all R' such that $R \leq R'$, we either have $R' = R^C$ or $R^C \leq R$. R^C is the "smallest" congruence relation.

• R_1 refines R_2 $(R_1 \leq R_1)$ if:

$$\forall s_1, s_2 \in S.(s_1, s_2) \in R_1 \rightarrow (s_1, s_2) \in R_2$$

- R^{C} is the congruence closure for the congruence relation R if
 - ► $R \leq R^{C}$
 - ▶ for all R' such that $R \leq R'$, we either have $R' = R^C$ or $R^C \leq R$. R^C is the "smallest" congruence relation.

Computing the congruence closure:

• Start with the finest congruence relation (every element in its own congruence class)

• R_1 refines R_2 $(R_1 \leq R_1)$ if:

$$\forall s_1, s_2 \in S.(s_1, s_2) \in R_1 \rightarrow (s_1, s_2) \in R_2$$

- R^{C} is the congruence closure for the congruence relation R if
 - ► $R \leq R^{C}$
 - ▶ for all R' such that $R \leq R'$, we either have $R' = R^C$ or $R^C \leq R$. R^C is the "smallest" congruence relation.

Computing the congruence closure:

- Start with the finest congruence relation (every element in its own congruence class)
- For each equality $s_i = t_i$, merge the congruence classes for $[s_i]_R$ and $[t_i]_R$:
 - First union the elements of $[s_i]_R$ and $[t_i]_R$, to define the new class $[s_i]_R$
 - Then, propagate the congruences that arise between the new pairs of elements in the union

\mathcal{T}_E -Satisfiability

$$\phi := [s_1 = t_1, \dots s_m = t_m, \neg (s_{m+1} = t_{m+1}), \dots \neg (s_n = t_n)]$$

- Construct the congruence closure of $\{s_1 = t_1, \ldots, s_m = t_m\}$, over the sub-terms of ϕ .
- If any of the atoms in the inequalities s_i = t_i, for i ∈ [m + 1, n], is such that s_i and t_i are in the same congruence class, then returns unsatisfiable
- Otherwise, return satisfiable

$$\phi := f(a, b) = a \land \neg f(f(a, b), b) = a$$

$$\phi := f(a,b) = a \land \neg f(f(a,b),b) = a$$

1. Finest partition of sub-terms:

 $\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$

$$\phi := f(a, b) = a \land \neg f(f(a, b), b) = a$$

1. Finest partition of sub-terms:

$$\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$$

2. From the equality f(a, b) = a, we merge $\{a\}$ and $\{f(a, b)\}$

 $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$

$$\phi := f(a,b) = a \land \neg f(f(a,b),b) = a$$

1. Finest partition of sub-terms:

$$\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$$

2. From the equality f(a, b) = a, we merge $\{a\}$ and $\{f(a, b)\}$

 $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$

3. Apply congruence - f(a, b) = f(f(a, b), b):

 $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$

This partition is the congruence closure.

$$\phi := f(a, b) = a \land \neg f(f(a, b), b) = a$$

1. Finest partition of sub-terms:

$$\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$$

2. From the equality f(a, b) = a, we merge $\{a\}$ and $\{f(a, b)\}$

 $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$

3. Apply congruence - f(a, b) = f(f(a, b), b):

 $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$

This partition is the congruence closure.

Is ϕ satisfiable? No, since ϕ requires $\neg f(f(a, b), b) = a$, but f(f(a, b), b) and a are in the same congruence class.

$$\phi := f^3(a) = a \wedge f(f(f^3(a))) = a \wedge \neg f(a) = a$$

$$\phi := f^3(a) = a \wedge f(f(f^3(a))) = a \wedge \neg f(a) = a$$

1. Finest partition of sub-terms (notation: $f^0(v) = v$ and $f^k = f(f^{k-1}(v))$):

 $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$

$$\phi := f^3(a) = a \wedge f(f(f^3(a))) = a \wedge \neg f(a) = a$$

1. Finest partition of sub-terms (notation: $f^0(v) = v$ and $f^k = f(f^{k-1}(v))$):

$$\{\{a\}, \{f(a)\}, \{f^{2}(a)\}, \{f^{3}(a)\}, \{f^{4}(a)\}, \{f^{5}(a)\}\}$$

2. From the equality $f^3(a) = a$, we merge $\{a\}$ and $f^3(a)$:

 $\{\{\mathbf{a}, \mathbf{f^3}(\mathbf{a})\}, \{f(\mathbf{a})\}, \{f^2(\mathbf{a})\}, \{f^4(\mathbf{a})\}, \{f^5(\mathbf{a})\}\}$

$$\phi := f^3(a) = a \wedge f(f(f^3(a))) = a \wedge \neg f(a) = a$$

1. Finest partition of sub-terms (notation: $f^0(v) = v$ and $f^k = f(f^{k-1}(v))$):

$$\{\{a\},\{f(a)\},\{f^{2}(a)\},\{f^{3}(a)\},\{f^{4}(a)\},\{f^{5}(a)\}\}$$

2. From the equality $f^{3}(a) = a$, we merge $\{a\}$ and $f^{3}(a)$:

$$\{\{a, f^{3}(a)\}, \{f(a)\}, \{f^{2}(a)\}, \{f^{4}(a)\}, \{f^{5}(a)\}\}$$

3. Apply congruence - $f(a) = f(f^{3}(a)) = f^{4}(a)$:

 $\{\{a, f^{3}(a)\}, \{\mathbf{f}(\mathbf{a}), \mathbf{f}^{4}(\mathbf{a})\}, \{f^{2}(a)\}, \{f^{5}(a)\}\}$

$$\phi := f^3(a) = a \wedge f(f(f^3(a))) = a \wedge \neg f(a) = a$$

1. Finest partition of sub-terms (notation: $f^0(v) = v$ and $f^k = f(f^{k-1}(v))$):

$$\{\{a\},\{f(a)\},\{f^{2}(a)\},\{f^{3}(a)\},\{f^{4}(a)\},\{f^{5}(a)\}\}$$

2. From the equality $f^{3}(a) = a$, we merge $\{a\}$ and $f^{3}(a)$:

 $\{\{\mathbf{a},\mathbf{f}^{3}(\mathbf{a})\},\{f(a)\},\{f^{2}(a)\},\{f^{4}(a)\},\{f^{5}(a)\}\}$

3. Apply congruence - $f(a) = f(f^3(a)) = f^4(a)$:

 $\{\{a, f^{3}(a)\}, \{\mathbf{f}(\mathbf{a}), \mathbf{f}^{4}(\mathbf{a})\}, \{f^{2}(a)\}, \{f^{5}(a)\}\}$

4. From congruence we have $f(f(a)) = f(f^4(a)) = f^5(a)$:

 $\{\{a, f^{3}(a)\}, \{f(a), f^{4}(a)\}, \{f^{2}(a), f^{5}(a)\}\}$

$$\phi := f^3(a) = a \wedge f(f(f^3(a))) = a \wedge \neg f(a) = a$$

1. Finest partition of sub-terms (notation: $f^0(v) = v$ and $f^k = f(f^{k-1}(v))$):

$$\{\{a\},\{f(a)\},\{f^{2}(a)\},\{f^{3}(a)\},\{f^{4}(a)\},\{f^{5}(a)\}\}$$

2. From the equality $f^{3}(a) = a$, we merge $\{a\}$ and $f^{3}(a)$:

 $\{\{a, f^{3}(a)\}, \{f(a)\}, \{f^{2}(a)\}, \{f^{4}(a)\}, \{f^{5}(a)\}\}$

3. Apply congruence - $f(a) = f(f^{3}(a)) = f^{4}(a)$:

 $\{\{a, f^{3}(a)\}, \{\mathbf{f}(\mathbf{a}), \mathbf{f}^{4}(\mathbf{a})\}, \{f^{2}(a)\}, \{f^{5}(a)\}\}$

4. From congruence we have $f(f(a)) = f(f^4(a)) = f^5(a)$:

 $\{\{a, f^{3}(a)\}, \{f(a), f^{4}(a)\}, \{f^{2}(a), f^{5}(a)\}\}$

5. From the equality $f^5(a) = a$:

 $\{\{\mathbf{a},\mathbf{f^2(a)},\mathbf{f^3(a)},\mathbf{f^5(a)}\}\},\{f(a),f^4(a)\}\}$

$$\phi := f^3(a) = a \wedge f(f(f^3(a))) = a \wedge \neg f(a) = a$$

1. Finest partition of sub-terms (notation: $f^0(v) = v$ and $f^k = f(f^{k-1}(v))$):

$$\{\{a\},\{f(a)\},\{f^{2}(a)\},\{f^{3}(a)\},\{f^{4}(a)\},\{f^{5}(a)\}\}$$

2. From the equality $f^{3}(a) = a$, we merge $\{a\}$ and $f^{3}(a)$:

 $\{\{a, f^{3}(a)\}, \{f(a)\}, \{f^{2}(a)\}, \{f^{4}(a)\}, \{f^{5}(a)\}\}$

3. Apply congruence - $f(a) = f(f^{3}(a)) = f^{4}(a)$:

 $\{\{a, f^{3}(a)\}, \{\mathbf{f}(\mathbf{a}), \mathbf{f}^{4}(\mathbf{a})\}, \{f^{2}(a)\}, \{f^{5}(a)\}\}$

4. From congruence we have $f(f(a)) = f(f^4(a)) = f^5(a)$:

 $\{\{a, f^{3}(a)\}, \{f(a), f^{4}(a)\}, \{f^{2}(a), f^{5}(a)\}\}$

5. From the equality $f^5(a) = a$:

 $\{\{\mathbf{a},\mathbf{f^2(a)},\mathbf{f^3(a)},\mathbf{f^5(a)}\}\},\{f(a),f^4(a)\}\}$

6. Apply congruence - $f(f^{2}(a) = f(f^{3}(a)) = f^{4}a$:

 $\{\{a,f(a),f^2(a),f^3(a),f^4(a),f^5(a)\}\}$

$$\phi := f^3(a) = a \wedge f(f(f^3(a))) = a \wedge \neg f(a) = a$$

We have the congruence closure:

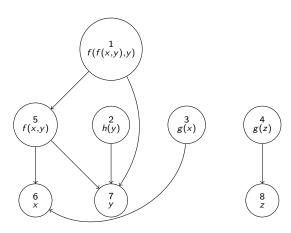
$$\{\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\}\}$$

We have $\neg f(a) = a$, but a and f(a) are in the same congruence class, so ϕ is unsatisfiable!

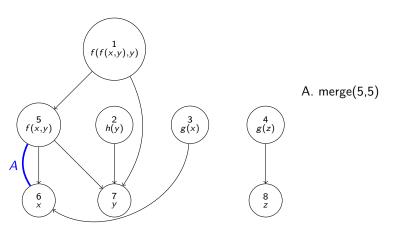
1 A Decision Procedure for the Theory of Equality

- *T_E*-satisfiability
- Deciding T_E via Congruence Closure
- An algorithm to computing congruence closure

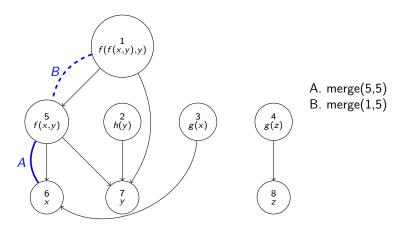
$$\phi := f(x, y) = x \land h(y) = g(x) \land f(f(x, y), y) = z \land \neg g(x) = g(z)$$



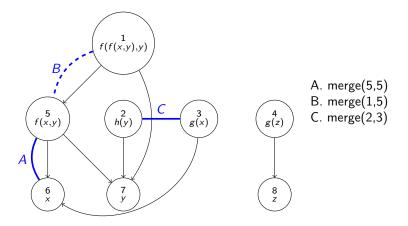
$$\phi := f(x, y) = x \land h(y) = g(x) \land f(f(x, y), y) = z \land \neg g(x) = g(z)$$



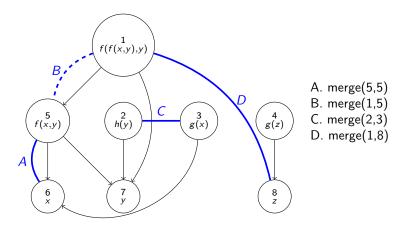
$$\phi := f(x, y) = x \land h(y) = g(x) \land f(f(x, y), y) = z \land \neg g(x) = g(z)$$



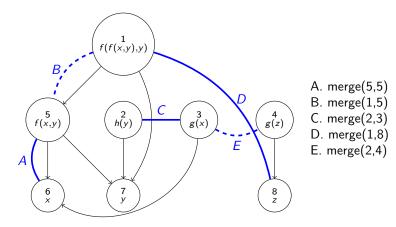
$$\phi := f(x, y) = x \land h(y) = g(x) \land f(f(x, y), y) = z \land \neg g(x) = g(z)$$



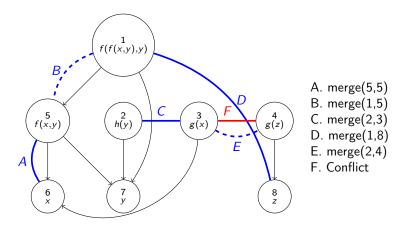
$$\phi := f(x, y) = x \land h(y) = g(x) \land f(f(x, y), y) = z \land \neg g(x) = g(z)$$



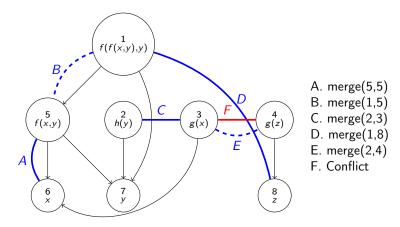
$$\phi := f(x,y) = x \land h(y) = g(x) \land f(f(x,y),y) = z \land \neg g(x) = g(z)$$



$$\phi := f(x, y) = x \land h(y) = g(x) \land f(f(x, y), y) = z \land \neg g(x) = g(z)$$



$$\phi := f(x, y) = x \land h(y) = g(x) \land f(f(x, y), y) = z \land \neg g(x) = g(z)$$

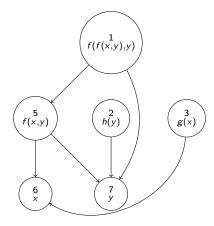


This is what you will implement in the tutorial

Chapoutot and Mover (ENSTA Paris)

Efficient resolution of logical models

A DAG data structure congruence closure



```
Node {
   id : integer;
   // id of the class representative
   find : integer;
   // name of the node
   name : string;
   // ids of the children
   args : list of integers;
   // ids of the class parents
   parents : list of integers;
}
```

```
Node for f(x, y)
```

```
Node {
    id = 5
    find = 5
    name : f;
    args : [6,7];
    parents : [1];
}
```

UNION/FIND functions

```
procedure NODE(i)
```

```
procedure FIND(i)
n = NODE(i)
if n.find = i then
return i
else
return FIND(n.find)
```

```
procedure UNION(i1,i2)

n1 = NODE(i1)

n2 = NODE(i2)

n1.find = n2.find

n2.parents =

n1.parents \cup n2.parents
```

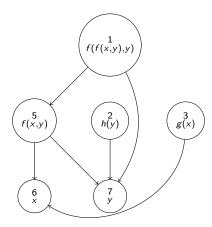
```
n1.parents = []
```

Returns the node that has the id i

Returns the id of the equivalence class for the node i.

Computes the union of i1 and i2

UNION/FIND example



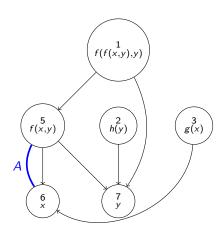
```
Node {
    id = 5
    find = 5
    name : f;
    args : [6,7];
    parents : [1];
    }
}
Node {
    id = 6
    find = 6
    name : x;
    args : [];
    parents : [5];
}
```

```
UNION(6,5)
```

```
Node {
    Node {
    id = 5
        id = 6
    find = 6
    name : f;
    args : [6,7];
    parents : [];
    parents : [];
    }
}
```

FIND(5) now returns node 6

UNION/FIND example



```
Node {
                 Node {
 id = 5
                  id = 6
                 find = 6
 find = 5
 name : f; name : x;
 args : [6,7];
                args : [];
                 parents : [5];
 parents : [1];
```

```
UNION(6,5)
```

ን

```
Node {
                  Node {
 id = 5
                   id = 6
 find = 6
                 find = 6
 name : f;
                 name : x;
 args : [6,7];
                 args : [];
                  parents : [5,1];
 parents : [];
}
                  3
```

FIND(5) now returns node 6

CONGRUENT function

Returns true if the node in i1 and in i2 are congruent

```
procedure CONGRUENT(i1,i2)

n1 = NODE(i1)

n2 = NODE(i2)

if n1.name \neq n2.name then

return False

else if len(n1.args) \neq len(n2.args) then

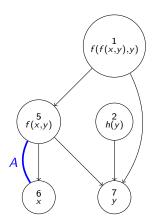
return False

else if len(n1.args) \neq len(n2.args) then

return \forall i \in \{1, \dots, len(n1.args)\}.

FIND(n1.args[i]) = FIND(n2.args[i])
```

CONGRUENT example



```
- len(n1.args) == len(n2.args)

FIND(c) = c = FIND(c)
```

$$- FIND(6) == 6 == FIND(5)$$

- FIND(7) == 7 == FIND(7)

So node 1 and 5 are congruent.

MERGE function

Merge the congruent classes of the node i1 and node i2

```
procedure MERGE(i1,i2)

if FIND(i1) \neq FIND(i2) then

P1 = NODE(FIND(i1)).parents

P2 = NODE(FIND(i2)).parents

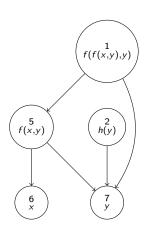
UNION(i1, i2)

for t1,t2 \in P<sub>1</sub> \times P<sub>2</sub> do

if FIND(t1) \neq FIND(t2) and CONGRUENT(t1,t2) then

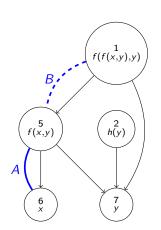
MERGE(t1,t2)
```

MERGE example



id = 5 find = 5 name : f; args : [6,7];	id = 6	args : [5,7];	
2	5	2	
Execution of MERGE(5,6) - FIND(5) != FIND(6) - P1 = [1] - P2 = [5] - UNION(5,6) - example we saw earlier - P1 x P2 = [(1,5)] - FIND(1) != FIND(5) - CONGRUENT(1,5)			
=> So we recu	rsively merge 1 a in the same congr	-	

MERGE example



<pre>id = 5 find = 5 name : f; args : [6,7];</pre>	-	args : [5,7];	
5	1	1	
<pre>Execution of MERGE(5,6) - FIND(5) != FIND(6) - P1 = [1] - P2 = [5] - UNION(5,6) - example we saw earlier - P1 x P2 = [(1,5)] - FIND(1) != FIND(5) - CONGRUENT(1,5) => So we recursively merge 1 and 5: MERGE(1,5) => 1,5,6 are in the same congruence class</pre>			

Revisiting the decision procedure using the union-find algorithm

$$\phi := [s_1 = t_1, \dots s_m = t_m, \neg (s_{m+1} = t_{m+1}), \dots \neg (s_n = t_n)]$$

- Construct the DAG G
- **③** For all $(s_i, t_i) \in [1, m]$ call MERGE (s_i, t_i) (in practice the id of s_i and t_i)
- If for any inequalities $(s_i, t_i) \in [m+1, n]$:
 - $FIND(s_i) = FIND(t_i)$, then return unsatisfiable
- Otherwise return satisfiable.

Revisiting the decision procedure using the union-find algorithm

$$\phi := [s_1 = t_1, \dots s_m = t_m, \neg (s_{m+1} = t_{m+1}), \dots \neg (s_n = t_n)]$$

- Construct the DAG G
- **③** For all $(s_i, t_i) \in [1, m]$ call MERGE (s_i, t_i) (in practice the id of s_i and t_i)
- If for any inequalities $(s_i, t_i) \in [m+1, n]$:
 - $FIND(s_i) = FIND(t_i)$, then return unsatisfiable
- Otherwise return satisfiable.

Properties:

- The algorithm is sound and complete for quantifier-free conjunctive Σ_E -formulas.
- This algorithm runs in time O(e²) for O(n) merges
 More efficient algorithms exists that run in O(e log e) for O(n) merges (e.g., see [Detlefs et al., 2005])

To sum up

What did we see today?

- We can decide the T_E -satisfiability of a conjunctive formula ϕ computing the congruence closure:
 - We use a graph (UNION/FIND data structures) to represent and merge congruence classes
 - \blacktriangleright We obtain the congruence classes from the equalities in ϕ
 - \blacktriangleright Once we ave the congruence classes, we check for inconsistencies with the inequalities of ϕ
- The computation is efficient (there are some optimization that can run in polynomial time (O(n log n)))

Next week: how to decide consistency for the theory of linear arithmetic

References I

Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C. (2009). Satisfiability modulo theories.

In Biere, A., Heule, M., van Maaren, H., and Walsh, T., editors, *Handbook of Satisfiability*, volume 185 of *Frontiers in Artificial Intelligence and Applications*, pages 825–885. IOS Press.

Bradley, A. R. and Manna, Z. (2007).

The calculus of computation - decision procedures with applications to verification.

Springer.

Detlefs, D., Nelson, G., and Saxe, J. B. (2005). Simplify: a theorem prover for program checking. J. ACM, 52(3):365–473.