
Efficient resolution of logical models
ENSTA-IA303

Alexandre Chapoutot and Sergio Mover

ENSTA Paris

2020-2021

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 1 / 30



Lecture 4: A Decision Procedure for the
Theory of Equality
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Main goals for today

In class1:
How to decide the T -satisfiability for quantifier-free formula in the Equality

In the tutorial:
Implement the decision procedure

1Main references:

The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)
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1 A Decision Procedure for the Theory of Equality
TE -satisfiability
Deciding TE via Congruence Closure
An algorithm to computing congruence closure
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Why the Theory of Equality TE?

Base theory: in most cases we assume the equality predicate = to be part of
any theory (i.e., interpreted as equality)
Also called Theory of Equality and Uninterpreted Functions (EUF)

We use TE to combine different theories (i.e., exchanging equalities)
We use TE in the “layered” approach:

I We can first check if a formula is satisfiable considering all the function
symbols “uninterpreted”

I If the formula is unsatisfiable with TE , then the formula is unsatisfiable in the
“original” theory.

Example from [Barrett et al., 2009]:

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Already unsatisfiable if we consider ∗ and + as an uninterpreted function.

I TE solver is “cheap”, so we can run it before calling more expensive theory
solvers.
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Theory of Equality

The Theory of Equality functions TE is defined as:
the signature ΣE := {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}

I = is a binary predicate and is interpreted as the equality
I all the other function symbols in ΣE are not interpreted

the set of axioms A:
1 ∀x .x = x [reflexivity]
2 ∀x , y .x = y → y = x [symmetry]
3 ∀x , y , z .((x = y ∧ y = z)→ x = z) [transitivity]

4 Function and predicate congruence
F For each n ∈ N and n-ary function symbol f :

∀x1, . . . , xn, y1, . . . , yn.
( n∧

i=1

xi = xj

)
→ f (x1, . . . , xn) = f (y1, . . . , yn)

F For each n ∈ N and n-ary predicate symbol p:

∀x1, . . . , xn, y1, . . . , yn.
( n∧

i=1

xi = xj

)
→ p(x1, . . . , xn) ↔ p(y1, . . . , yn)
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Some concrete examples

a 6= b

Is sat?

Yes

Is valid?

No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?

Yes

Is valid?

Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?

Yes

Is valid?

Yes

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]
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Our settings

The problem we solve today: is a ΣE -formula TE -satisfiable?
We consider a conjunction of theory literals where atoms are equalities

x = y ∧ f (x) = y ∧ (¬f (g(x , y)) = f (x))

We can enumerate such conjunctions for an arbitrary ΣE -formula using the
lazy approach.

Here we do not consider predicates.
In general: replace predicates with functions to get an equisatisfiable formula

Example

p(x , y) ∧ q(f (y)) ∧ f (x) = y =⇒ fp(x , y) = vT ∧ fq(f (y)) = vT ∧ f (x) = y

vT is a fresh value, fp, qp are fresh function symbols. Intuitively, the
transformation assumes that:
∀x , y .p(x , y)↔ fp(x , y) = vT and ∀x .q(x)↔ fq(x) = vT
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1 A Decision Procedure for the Theory of Equality
TE -satisfiability
Deciding TE via Congruence Closure
An algorithm to computing congruence closure
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A first intuition about deciding TE formulas2

φ := f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ ¬f (a) = a

From f (f (f (a))) = a:
I Substitute f (f (f (a))) with a in f (f (f (f (f (a))))) = a
I Infer new equality f (f (a)) = a

From f (f (a)) = a:
I Substitute f (f (a)) with a in f (f (f (a))) = a
I Infer new equality: f (a) = a

We have both f (a) = a and ¬f (a) = a: contradiction. So, φ is unsatisfiable.

Use the equalities to infer new equalities, applying the TE axioms, and then check
for contradictions with the inequalities

2Example 9.1 from [Bradley and Manna, 2007]
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Decision procedure for TE

φ := [s1 = t1, . . . sm = tm,¬(sm+1 = tm+1), . . .¬(sn = tn)]

1 Apply the TE axioms (relfexivity, symmetry, transitivity, and congruence) to
the existing equalities, inferring a set of new equalities.

I Since the possible terms in φ are finite, then also the number of inferred
equalities are finite.

I So, this enumeration terminates.

This is called congruence closure

2 For every inequality ¬si = ti (i ∈ [m + 1, n]), check if si = ti is in the set of
inferred equalities.

I If we find such ¬si = ti and si = ti , then φ is unsatisfiable
I Otherwise, φ is satisfiable
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Equivalence and Congruence Relations

S is a set, and R is a binary relation over S

R is an equivalence relation if:
I Reflexivity: ∀s1 ∈ S .(s1, s1) ∈ R
I Symmetry: ∀s1, s2 ∈ S .(s1, s2) ∈ R
I Transitivity: ∀s1, s2, s3 ∈ S .((s1, s2) ∈ R ∧ (s2, s3) ∈ R)→ (s1, s3) ∈ R

R is a congruence relation if:
I R is an equivalence relation, and
I for every the n-ary functions f :

∀s1, . . . , sn, t1, . . . , tn ∈ R.
∧

i∈[1,n]

(si , ti ) ∈ R → (f (s1, . . . , sn), f (t1, . . . , tn)) ∈ R

The TE axioms express a congruence relation between terms
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Equivalence and Congruence Classes
[s]R is an equivalence (resp. congruence) class under the equivalence (resp.
congruence) relation R:

[s]R := {s ′ ∈ S | (s, s ′) ∈ R}

Example: φ := f (a, b) = a ∧ ¬(f (f (a, b), b) = a)

S = {set of sub-terms of φ} = {a, b, f (a, b), f (f (a, b), b)}
[a]= := {f (a, b), a, f (f (a, b), b)}

A partition P of the set S is P ⊆ 2S such that:
I

⋃
S′∈P S ′ = S and ∀S1,S2 ∈ P.(S1 6= s2 → S1 ∩ S2 = ∅)

Example: {{a}, {b}, {f (a, b)}, {f (f (a, b), b)}}
The quotient S/R is the partition of S formed by the equivalence classes of S
under R:

S/R := {[s]R | s ∈ S}

Example: {[a]=, [b]=}
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Example: φ := f (a, b) = a ∧ ¬(f (f (a, b), b) = a)

S = {set of sub-terms of φ} = {a, b, f (a, b), f (f (a, b), b)}
[a]= := {f (a, b), a, f (f (a, b), b)}

A partition P of the set S is P ⊆ 2S such that:
I

⋃
S′∈P S ′ = S and ∀S1, S2 ∈ P.(S1 6= s2 → S1 ∩ S2 = ∅)

Example: {{a}, {b}, {f (a, b)}, {f (f (a, b), b)}}

The quotient S/R is the partition of S formed by the equivalence classes of S
under R:

S/R := {[s]R | s ∈ S}

Example: {[a]=, [b]=}
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Congruence Closure

R1 refines R2 (R1 � R1) if:

∀s1, s2 ∈ S .(s1, s2) ∈ R1 → (s1, s2) ∈ R2

RC is the congruence closure for the congruence relation R if
I R � RC

I for all R ′ such that R � R ′, we either have R ′ = RC or RC � R.
RC is the “smallest” congruence relation.

Computing the congruence closure:
Start with the finest congruence relation (every element in its own
congruence class)
For each equality si = ti , merge the congruence classes for [si ]R and [ti ]R :

I First union the elements of [si ]R and [ti ]R , to define the new class [si ]R
I Then, propagate the congruences that arise between the new pairs of elements

in the union
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TE -Satisfiability

φ := [s1 = t1, . . . sm = tm,¬(sm+1 = tm+1), . . .¬(sn = tn)]

1 Construct the congruence closure of {s1 = t1, . . . sm = tm}, over the
sub-terms of φ.

2 If any of the atoms in the inequalities si = ti , for i ∈ [m + 1, n], is such that
si and ti are in the same congruence class, then returns unsatisfiable

3 Otherwise, return satisfiable
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Example - congruence closure computation

φ := f (a, b) = a ∧ ¬f (f (a, b), b) = a

1. Finest partition of sub-terms:

{{a}, {b}, {f (a, b)}, {f (f (a, b), b)}}

2. From the equality f (a, b) = a, we merge {a} and {f (a, b)}

{{a, f(a,b)}, {b}, {f (f (a, b), b)}}

3. Apply congruence - f (a, b) = f (f (a, b), b):

{{a, f(a,b), f(f(a,b),b)}, {b}}

This partition is the congruence closure.

Is φ satisfiable? No, since φ requires ¬f (f (a, b), b) = a, but f (f (a, b), b) and a
are in the same congruence class.
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Example - congruence closure computation (2)

φ := f 3(a) = a ∧ f (f (f 3(a))) = a ∧ ¬f (a) = a

1. Finest partition of sub-terms (notation: f 0(v) = v and f k = f (f k−1(v))):

{{a}, {f (a)}, {f 2(a)}, {f 3(a)}, {f 4(a)}, {f 5(a)}}

2. From the equality f 3(a) = a, we merge {a} and f 3(a):

{{a, f3(a)}, {f (a)}, {f 2(a)}, {f 4(a)}, {f 5(a)}}

3. Apply congruence - f (a) = f (f 3(a)) = f 4(a):

{{a, f 3(a)}, {f(a), f4(a)}, {f 2(a)}, {f 5(a)}}

4. From congruence we have f (f (a)) = f (f 4(a)) = f 5(a):

{{a, f 3(a)}, {f (a), f 4(a)}, {f2(a), f5(a)}}

5. From the equality f 5(a) = a:

{{a, f2(a), f3(a), f5(a)}}, {f (a), f 4(a)}}

6. Apply congruence - f (f 2(a) = f (f 3(a)) = f 4a:

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}}
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Example - congruence closure computation (2)

φ := f 3(a) = a ∧ f (f (f 3(a))) = a ∧ ¬f (a) = a

We have the congruence closure:

{{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}}

We have ¬f (a) = a, but a and f (a) are in the same congruence class, so φ is
unsatisfiable!
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1 A Decision Procedure for the Theory of Equality
TE -satisfiability
Deciding TE via Congruence Closure
An algorithm to computing congruence closure
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Congruence Closure via DAG

φ := f (x , y) = x ∧ h(y) = g(x) ∧ f (f (x , y), y) = z ∧ ¬g(x) = g(z)

1
f (f (x,y),y)

2
h(y)

3
g(x)

4
g(z)

5
f (x,y)

6
x

7
y

8
z

A. merge(5,5)
B. merge(1,5)
C. merge(2,3)
D. merge(1,8)
E. merge(2,4)
F. Conflict

This is what you will implement in the tutorial
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A DAG data structure congruence closure

1
f (f (x,y),y)

2
h(y)

3
g(x)

5
f (x,y)

6
x

7
y

Node {
id : integer;
// id of the class representative
find : integer;
// name of the node
name : string;
// ids of the children
args : list of integers;
// ids of the class parents
parents : list of integers;

}

Node for f (x , y)
Node {

id = 5
find = 5
name : f;
args : [6,7];
parents : [1];

}
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UNION/FIND functions

procedure NODE(i) Returns the node that has the id i

procedure FIND(i)
n = NODE(i)
if n.find = i then

return i
else

return FIND(n.find)

Returns the id of the equivalence class
for the node i.

procedure UNION(i1,i2)
n1 = NODE(i1)
n2 = NODE(i2)
n1.find = n2.find
n2.parents =
n1.parents ∪ n2.parents

n1.parents = []

Computes the union of i1 and i2
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UNION/FIND example

1
f (f (x,y),y)

2
h(y)

3
g(x)

5
f (x,y)

6
x

7
y

Node {
id = 5
find = 5
name : f;
args : [6,7];
parents : [1];

}

Node {
id = 6
find = 6
name : x;
args : [];
parents : [5];

}

UNION(6,5)

Node {
id = 5
find = 6
name : f;
args : [6,7];
parents : [];

}

Node {
id = 6
find = 6
name : x;
args : [];
parents : [5,1];

}

FIND(5) now returns node 6
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2
h(y)

3
g(x)

5
f (x,y)

6
x

7
y

A

Node {
id = 5
find = 5
name : f;
args : [6,7];
parents : [1];

}

Node {
id = 6
find = 6
name : x;
args : [];
parents : [5];

}

UNION(6,5)

Node {
id = 5
find = 6
name : f;
args : [6,7];
parents : [];

}
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find = 6
name : x;
args : [];
parents : [5,1];

}
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CONGRUENT function

Returns true if the node in i1 and in i2 are congruent

procedure CONGRUENT(i1,i2)
n1 = NODE(i1)
n2 = NODE(i2)
if n1.name 6= n2.name then

return False
else if len(n1.args) 6= len(n2.args) then

return False
else if len(n1.args) 6= len(n2.args) then

return ∀i ∈ {1, . . . , len(n1.args)}.
FIND(n1.args[i]) = FIND(n2.args[i])
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CONGRUENT example

1
f (f (x,y),y)

2
h(y)

5
f (x,y)

6
x

7
y

A

n5 := {
id = 5
find = 6
name : f;
args : [6,7];
parents : [1];

}

n6 := {
id = 6
find = 6
name : x;
args : [];
parents : [5,1];

}

n1 := {
id = 1
find = 1
name : f;
args : [5,7];
parents : [];

}

Execution of CONGRUENT(1,5)
- n1 = NODE(1)
- n5 = NODE(5)
- n1.name == f == n5.name
- len(n1.args) == len(n2.args)

- FIND(6) == 6 == FIND(5)
- FIND(7) == 7 == FIND(7)

So node 1 and 5 are congruent.
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MERGE function

Merge the congruent classes of the node i1 and node i2

procedure MERGE(i1,i2)
if FIND(i1) 6= FIND(i2) then
P1 = NODE(FIND(i1)).parents
P2 = NODE(FIND(i2)).parents
UNION(i1, i2)
for t1,t2 ∈ P1 × P2 do

if FIND(t1) 6= FIND(t2) and CONGRUENT(t1,t2) then
MERGE(t1,t2)
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MERGE example

1
f (f (x,y),y)

2
h(y)

5
f (x,y)

6
x

7
y

n5 := {
id = 5
find = 5
name : f;
args : [6,7];
parents : [1];

}

n6 := {
id = 6
find = 6
name : x;
args : [];
parents : [5];

}

n1 := {
id = 1
find = 1
name : f;
args : [5,7];
parents : [];

}

Execution of MERGE(5,6)
- FIND(5) != FIND(6)
- P1 = [1]
- P2 = [5]
- UNION(5,6) - example we saw earlier
- P1 x P2 = [(1,5)]

- FIND(1) != FIND(5)
- CONGRUENT(1,5)
=> So we recursively merge 1 and 5: MERGE(1,5)
=> 1,5,6 are in the same congruence class
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Revisiting the decision procedure using the union-find
algorithm

φ := [s1 = t1, . . . sm = tm,¬(sm+1 = tm+1), . . .¬(sn = tn)]

1 Construct the DAG G

2 For all (si , ti ) ∈ [1,m] call MERGE( si , ti ) – (in practice the id of si and ti )
3 If for any inequalities (si , ti ) ∈ [m + 1, n]:

I FIND(si ) = FIND(ti ), then return unsatisfiable
4 Otherwise return satisfiable.

Properties:
The algorithm is sound and complete for quantifier-free conjunctive
ΣE -formulas.
This algorithm runs in time O(e2) for O(n) merges
More efficient algorithms exists that run in O(e log e) for O(n) merges (e.g.,
see [Detlefs et al., 2005])
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To sum up

What did we see today?
We can decide the TE -satisfiability of a conjunctive formula φ computing the
congruence closure:

I We use a graph (UNION/FIND data structures) to represent and merge
congruence classes

I We obtain the congruence classes from the equalities in φ
I Once we ave the congruence classes, we check for inconsistencies with the

inequalities of φ

The computation is efficient (there are some optimization that can run in
polynomial time (O(n log n)))

Next week: how to decide consistency for the theory of linear arithmetic
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