Efficient resolution of logical models ENSTA-IA303

Alexandre Chapoutot and Sergio Mover

ENSTA Paris
2020-2021

Lecture 4: A Decision Procedure for the Theory of Equality

Main goals for today

In class ${ }^{1}$:

- How to decide the \mathcal{T}-satisfiability for quantifier-free formula in the Equality

[^0]
Main goals for today

In class ${ }^{1}$:

- How to decide the \mathcal{T}-satisfiability for quantifier-free formula in the Equality In the tutorial:
- Implement the decision procedure

[^1](1) A Decision Procedure for the Theory of Equality

- T_{E}-satisfiability
- Deciding T_{E} via Congruence Closure
- An algorithm to computing congruence closure

Why the Theory of Equality \mathcal{T}_{E} ?

- Base theory: in most cases we assume the equality predicate $=$ to be part of any theory (i.e., interpreted as equality)
Also called Theory of Equality and Uninterpreted Functions (EUF)

Why the Theory of Equality \mathcal{T}_{E} ?

- Base theory: in most cases we assume the equality predicate $=$ to be part of any theory (i.e., interpreted as equality)
Also called Theory of Equality and Uninterpreted Functions (EUF)
- We use \mathcal{T}_{E} to combine different theories (i.e., exchanging equalities)

Why the Theory of Equality \mathcal{T}_{E} ?

- Base theory: in most cases we assume the equality predicate $=$ to be part of any theory (i.e., interpreted as equality)
Also called Theory of Equality and Uninterpreted Functions (EUF)
- We use \mathcal{T}_{E} to combine different theories (i.e., exchanging equalities)
- We use T_{E} in the "layered" approach:
- We can first check if a formula is satisfiable considering all the function symbols "uninterpreted"
- If the formula is unsatisfiable with T_{E}, then the formula is unsatisfiable in the "original" theory.
Example from [Barrett et al., 2009]:

$$
a *(f(b)+f(c))=d \wedge \neg(b *(f(a)+f(c))=d) \wedge a=b
$$

Already unsatisfiable if we consider $*$ and + as an uninterpreted function.

Why the Theory of Equality \mathcal{T}_{E} ?

- Base theory: in most cases we assume the equality predicate $=$ to be part of any theory (i.e., interpreted as equality)
Also called Theory of Equality and Uninterpreted Functions (EUF)
- We use \mathcal{T}_{E} to combine different theories (i.e., exchanging equalities)
- We use T_{E} in the "layered" approach:
- We can first check if a formula is satisfiable considering all the function symbols "uninterpreted"
- If the formula is unsatisfiable with T_{E}, then the formula is unsatisfiable in the "original" theory.
Example from [Barrett et al., 2009]:

$$
a *(f(b)+f(c))=d \wedge \neg(b *(f(a)+f(c))=d) \wedge a=b
$$

Already unsatisfiable if we consider $*$ and + as an uninterpreted function.

- T_{E} solver is "cheap", so we can run it before calling more expensive theory solvers.

Theory of Equality

The Theory of Equality functions \mathcal{T}_{E} is defined as:

- the signature $\Sigma_{E}:=\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$
- = is a binary predicate and is interpreted as the equality
- all the other function symbols in Σ_{E} are not interpreted

Theory of Equality

The Theory of Equality functions \mathcal{T}_{E} is defined as:

- the signature $\Sigma_{E}:=\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$
- = is a binary predicate and is interpreted as the equality
- all the other function symbols in Σ_{E} are not interpreted
- the set of axioms \mathcal{A} :
(1) $\forall x \cdot x=x$
(2) $\forall x, y \cdot x=y \rightarrow y=x$
(3) $\forall x, y, z \cdot((x=y \wedge y=z) \rightarrow x=z)$
[reflexivity]
[symmetry] [transitivity]

Theory of Equality

The Theory of Equality functions \mathcal{T}_{E} is defined as:

- the signature $\Sigma_{E}:=\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$
- = is a binary predicate and is interpreted as the equality
- all the other function symbols in Σ_{E} are not interpreted
- the set of axioms \mathcal{A} :
(1) $\forall x \cdot x=x$
(2) $\forall x, y \cdot x=y \rightarrow y=x$
(3) $\forall x, y, z \cdot((x=y \wedge y=z) \rightarrow x=z)$
(4) Function and predicate congruence
\star For each $n \in \mathbb{N}$ and n-ary function symbol f :

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} .\left(\bigwedge_{i=1}^{n} x_{i}=x_{j}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Theory of Equality

The Theory of Equality functions \mathcal{T}_{E} is defined as:

- the signature $\Sigma_{E}:=\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$
- = is a binary predicate and is interpreted as the equality
- all the other function symbols in Σ_{E} are not interpreted
- the set of axioms \mathcal{A} :
(1) $\forall x \cdot x=x$
(2) $\forall x, y \cdot x=y \rightarrow y=x$
(3) $\forall x, y, z .((x=y \wedge y=z) \rightarrow x=z)$
(4) Function and predicate congruence
\star For each $n \in \mathbb{N}$ and n-ary function symbol f :

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \cdot\left(\bigwedge_{i=1}^{n} x_{i}=x_{j}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

* For each $n \in \mathbb{N}$ and n-ary predicate symbol p :

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \cdot\left(\bigwedge_{i=1}^{n} x_{i}=x_{j}\right) \rightarrow p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)
$$

Some concrete examples

$$
\text { Is sat? } \quad a \neq b
$$

Some concrete examples

$$
\begin{aligned}
& \qquad a \neq b \\
& \text { Is sat? Yes Is valid? }
\end{aligned}
$$

Some concrete examples

$$
\begin{aligned}
& \qquad a \neq b \\
& \text { Is sat?Yes Is valid?No }
\end{aligned}
$$

Some concrete examples

$$
\begin{gathered}
a \neq b \\
\text { Is sat?Yes Is valid?No } \\
a=b \wedge b=c \leftrightarrow f(c)=f(a) \\
\text { Is sat? } \quad \text { Is valid? }
\end{gathered}
$$

Some concrete examples

$$
a \neq b
$$

$$
\begin{gathered}
\text { Is sat?Yes Is valid?No } \\
a=b \wedge b=c \leftrightarrow f(c)=f(a) \\
\text { Is sat? Yes Is valid? }
\end{gathered}
$$

Some concrete examples

$$
a \neq b
$$

Is sat?Yes Is valid?No

$$
\begin{gathered}
a=b \wedge b=c \leftrightarrow f(c)=f(a) \\
\text { Is sat?Yes } \quad \text { Is valid?Yes }
\end{gathered}
$$

Some concrete examples

$$
\begin{gathered}
a \neq b \\
\text { Is sat? Yes Is valid?No } \\
a=b \wedge b=c \leftrightarrow f(c)=f(a) \\
\text { Is sat? Yes Is valid?Yes } \\
a=b \wedge b=c \Longrightarrow g(f(a), b)=g(f(c), a) \\
\text { Is sat? } \quad \text { Is valid? }
\end{gathered}
$$

Some concrete examples

$$
\begin{gathered}
a \neq b \\
\text { Is sat? Yes } \quad \text { Is valid?No } \\
a=b \wedge b=c \leftrightarrow f(c)=f(a) \\
\text { Is sat?Yes } \quad \text { Is valid?Yes } \\
a=b \wedge b=c \Longrightarrow g(f(a), b)=g(f(c), a) \\
\text { Is sat?Yes } \quad \text { Is valid? }
\end{gathered}
$$

Some concrete examples

$$
\begin{gathered}
a \neq b \\
\text { Is sat?Yes } \quad \text { Is valid?No } \\
a=b \wedge b=c \leftrightarrow f(c)=f(a) \\
\text { Is sat?Yes } \quad \text { Is valid?Yes } \\
a=b \wedge b=c \Longrightarrow g(f(a), b)=g(f(c), a) \\
\text { Is sat?Yes } \quad \text { Is valid?Yes }
\end{gathered}
$$

Our settings

- The problem we solve today: is a Σ_{E}-formula \mathcal{T}_{E}-satisfiable?
- We consider a conjunction of theory literals where atoms are equalities

$$
x=y \wedge f(x)=y \wedge(\neg f(g(x, y))=f(x))
$$

We can enumerate such conjunctions for an arbitrary Σ_{E}-formula using the lazy approach.

Our settings

- The problem we solve today: is a Σ_{E}-formula \mathcal{T}_{E}-satisfiable?
- We consider a conjunction of theory literals where atoms are equalities

$$
x=y \wedge f(x)=y \wedge(\neg f(g(x, y))=f(x))
$$

We can enumerate such conjunctions for an arbitrary Σ_{E}-formula using the lazy approach.

- Here we do not consider predicates.

In general: replace predicates with functions to get an equisatisfiable formula

Example

$p(x, y) \wedge q(f(y)) \wedge f(x)=y \quad \Longrightarrow \quad f_{p}(x, y)=v_{\mathcal{T}} \wedge f_{q}(f(y))=v_{\mathcal{T}} \wedge f(x)=y$
$v_{\mathcal{T}}$ is a fresh value, f_{p}, q_{p} are fresh function symbols. Intuitively, the transformation assumes that:
$\forall x, y . p(x, y) \leftrightarrow f_{p}(x, y)=v_{\mathcal{T}}$ and $\forall x . q(x) \leftrightarrow f_{q}(x)=v_{\mathcal{T}}$
(1) A Decision Procedure for the Theory of Equality

- $T_{E-s a t i s f i a b i l i t y ~}$
- Deciding T_{E} via Congruence Closure
- An algorithm to computing congruence closure

A first intuition about deciding T_{E} formulas ${ }^{2}$

$$
\phi:=f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge \neg f(a)=a
$$

- From $f(f(f(a)))=a$:
- Substitute $f(f(f(a)))$ with a in $f(f(f(f(f(a)))))=a$
- Infer new equality $f(f(a))=a$

A first intuition about deciding T_{E} formulas ${ }^{2}$

$$
\phi:=f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge \neg f(a)=a
$$

- From $f(f(f(a)))=a$:
- Substitute $f(f(f(a)))$ with a in $f(f(f(f(f(a)))))=a$
- Infer new equality $f(f(a))=a$
- From $f(f(a))=a$:
- Substitute $f(f(a))$ with a in $f(f(f(a)))=a$
- Infer new equality: $f(a)=a$

A first intuition about deciding T_{E} formulas ${ }^{2}$

$$
\phi:=f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge \neg f(a)=a
$$

- From $f(f(f(a)))=a$:
- Substitute $f(f(f(a)))$ with a in $f(f(f(f(f(a)))))=a$
- Infer new equality $f(f(a))=a$
- From $f(f(a))=a$:
- Substitute $f(f(a))$ with a in $f(f(f(a)))=a$
- Infer new equality: $f(a)=a$
- We have both $f(a)=a$ and $\neg f(a)=a$: contradiction. So, ϕ is unsatisfiable.

A first intuition about deciding T_{E} formulas ${ }^{2}$

$$
\phi:=f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge \neg f(a)=a
$$

- From $f(f(f(a)))=a$:
- Substitute $f(f(f(a)))$ with a in $f(f(f(f(f(a)))))=a$
- Infer new equality $f(f(a))=a$
- From $f(f(a))=a$:
- Substitute $f(f(a))$ with a in $f(f(f(a)))=a$
- Infer new equality: $f(a)=a$
- We have both $f(a)=a$ and $\neg f(a)=a$: contradiction. So, ϕ is unsatisfiable.

Use the equalities to infer new equalities, applying the T_{E} axioms, and then check for contradictions with the inequalities
${ }^{2}$ Example 9.1 from [Bradley and Manna, 2007]

Decision procedure for T_{E}

$$
\phi:=\left[s_{1}=t_{1}, \ldots s_{m}=t_{m}, \neg\left(s_{m+1}=t_{m+1}\right), \ldots \neg\left(s_{n}=t_{n}\right)\right]
$$

Decision procedure for T_{E}

$$
\phi:=\left[s_{1}=t_{1}, \ldots s_{m}=t_{m}, \neg\left(s_{m+1}=t_{m+1}\right), \ldots \neg\left(s_{n}=t_{n}\right)\right]
$$

(1) Apply the T_{E} axioms (relfexivity, symmetry, transitivity, and congruence) to the existing equalities, inferring a set of new equalities.

- Since the possible terms in ϕ are finite, then also the number of inferred equalities are finite.
- So, this enumeration terminates.

Decision procedure for T_{E}

$$
\phi:=\left[s_{1}=t_{1}, \ldots s_{m}=t_{m}, \neg\left(s_{m+1}=t_{m+1}\right), \ldots \neg\left(s_{n}=t_{n}\right)\right]
$$

(1) Apply the T_{E} axioms (relfexivity, symmetry, transitivity, and congruence) to the existing equalities, inferring a set of new equalities.

- Since the possible terms in ϕ are finite, then also the number of inferred equalities are finite.
- So, this enumeration terminates.
(2) For every inequality $\neg s_{i}=t_{i}(i \in[m+1, n])$, check if $s_{i}=t_{i}$ is in the set of inferred equalities.
- If we find such $\neg s_{i}=t_{i}$ and $s_{i}=t_{i}$, then ϕ is unsatisfiable
- Otherwise, ϕ is satisfiable

Decision procedure for T_{E}

$$
\phi:=\left[s_{1}=t_{1}, \ldots s_{m}=t_{m}, \neg\left(s_{m+1}=t_{m+1}\right), \ldots \neg\left(s_{n}=t_{n}\right)\right]
$$

(1) Apply the T_{E} axioms (relfexivity, symmetry, transitivity, and congruence) to the existing equalities, inferring a set of new equalities.

- Since the possible terms in ϕ are finite, then also the number of inferred equalities are finite.
- So, this enumeration terminates.

This is called congruence closure
(2) For every inequality $\neg s_{i}=t_{i}(i \in[m+1, n])$, check if $s_{i}=t_{i}$ is in the set of inferred equalities.

- If we find such $\neg s_{i}=t_{i}$ and $s_{i}=t_{i}$, then ϕ is unsatisfiable
- Otherwise, ϕ is satisfiable

Equivalence and Congruence Relations

- S is a set, and R is a binary relation over S

Equivalence and Congruence Relations

- S is a set, and R is a binary relation over S
- R is an equivalence relation if:
- Reflexivity: $\forall s_{1} \in S .\left(s_{1}, s_{1}\right) \in R$
- Symmetry: $\forall s_{1}, s_{2} \in S .\left(s_{1}, s_{2}\right) \in R$
- Transitivity: $\forall s_{1}, s_{2}, s_{3} \in S .\left(\left(s_{1}, s_{2}\right) \in R \wedge\left(s_{2}, s_{3}\right) \in R\right) \rightarrow\left(s_{1}, s_{3}\right) \in R$

Equivalence and Congruence Relations

- S is a set, and R is a binary relation over S
- R is an equivalence relation if:
- Reflexivity: $\forall s_{1} \in S .\left(s_{1}, s_{1}\right) \in R$
- Symmetry: $\forall s_{1}, s_{2} \in S .\left(s_{1}, s_{2}\right) \in R$
- Transitivity: $\forall s_{1}, s_{2}, s_{3} \in S .\left(\left(s_{1}, s_{2}\right) \in R \wedge\left(s_{2}, s_{3}\right) \in R\right) \rightarrow\left(s_{1}, s_{3}\right) \in R$
- R is a congruence relation if:
- R is an equivalence relation, and
- for every the n-ary functions f :

$$
\forall s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n} \in R . \bigwedge_{i \in[1, n]}\left(s_{i}, t_{i}\right) \in R \rightarrow\left(f\left(s_{1}, \ldots, s_{n}\right), f\left(t_{1}, \ldots, t_{n}\right)\right) \in R
$$

The T_{E} axioms express a congruence relation between terms

Equivalence and Congruence Classes

- $[s]_{R}$ is an equivalence (resp. congruence) class under the equivalence (resp. congruence) relation R :

$$
[s]_{R}:=\left\{s^{\prime} \in S \mid\left(s, s^{\prime}\right) \in R\right\}
$$

Example: $\quad \phi:=f(a, b)=a \wedge \neg(f(f(a, b), b)=a)$

$$
\begin{aligned}
& S=\{\text { set of sub-terms of } \phi\}=\{a, b, f(a, b), f(f(a, b), b)\} \\
& {[a]_{=}:=\{f(a, b), a, f(f(a, b), b)\}}
\end{aligned}
$$

Equivalence and Congruence Classes

- $[s]_{R}$ is an equivalence (resp. congruence) class under the equivalence (resp. congruence) relation R :

$$
[s]_{R}:=\left\{s^{\prime} \in S \mid\left(s, s^{\prime}\right) \in R\right\}
$$

Example: $\quad \phi:=f(a, b)=a \wedge \neg(f(f(a, b), b)=a)$

$$
\begin{aligned}
& S=\{\text { set of sub-terms of } \phi\}=\{a, b, f(a, b), f(f(a, b), b)\} \\
& {[a]_{=}:=\{f(a, b), a, f(f(a, b), b)\}}
\end{aligned}
$$

- A partition P of the set S is $P \subseteq 2^{S}$ such that:
- $\bigcup_{S^{\prime} \in P} S^{\prime}=S$ and $\forall S_{1}, S_{2} \in P .\left(S_{1} \neq s_{2} \rightarrow S_{1} \cap S_{2}=\emptyset\right)$

Example: $\quad\{\{a\},\{b\},\{f(a, b)\},\{f(f(a, b), b)\}\}$

Equivalence and Congruence Classes

- $[s]_{R}$ is an equivalence (resp. congruence) class under the equivalence (resp. congruence) relation R :

$$
[s]_{R}:=\left\{s^{\prime} \in S \mid\left(s, s^{\prime}\right) \in R\right\}
$$

Example: $\quad \phi:=f(a, b)=a \wedge \neg(f(f(a, b), b)=a)$

$$
\begin{aligned}
& S=\{\text { set of sub-terms of } \phi\}=\{a, b, f(a, b), f(f(a, b), b)\} \\
& {[a]_{=}:=\{f(a, b), a, f(f(a, b), b)\}}
\end{aligned}
$$

- A partition P of the set S is $P \subseteq 2^{S}$ such that:
- $\bigcup_{S^{\prime} \in P} S^{\prime}=S$ and $\forall S_{1}, S_{2} \in P .\left(S_{1} \neq s_{2} \rightarrow S_{1} \cap S_{2}=\emptyset\right)$

Example: $\quad\{\{a\},\{b\},\{f(a, b)\},\{f(f(a, b), b)\}\}$

- The quotient S / R is the partition of S formed by the equivalence classes of S under R :

$$
S / R:=\left\{[s]_{R} \mid s \in S\right\}
$$

Example: $\quad\left\{[a]_{=},[b]_{=}\right\}$

Congruence Closure

- R_{1} refines $R_{2}\left(R_{1} \preceq R_{1}\right)$ if:

$$
\forall s_{1}, s_{2} \in S .\left(s_{1}, s_{2}\right) \in R_{1} \rightarrow\left(s_{1}, s_{2}\right) \in R_{2}
$$

Congruence Closure

- R_{1} refines $R_{2}\left(R_{1} \preceq R_{1}\right)$ if:

$$
\forall s_{1}, s_{2} \in S .\left(s_{1}, s_{2}\right) \in R_{1} \rightarrow\left(s_{1}, s_{2}\right) \in R_{2}
$$

- R^{C} is the congruence closure for the congruence relation R if
- $R \preceq R^{C}$
- for all R^{\prime} such that $R \preceq R^{\prime}$, we either have $R^{\prime}=R^{C}$ or $R^{C} \preceq R$. R^{C} is the "smallest" congruence relation.

Congruence Closure

- R_{1} refines $R_{2}\left(R_{1} \preceq R_{1}\right)$ if:

$$
\forall s_{1}, s_{2} \in S .\left(s_{1}, s_{2}\right) \in R_{1} \rightarrow\left(s_{1}, s_{2}\right) \in R_{2}
$$

- R^{C} is the congruence closure for the congruence relation R if
- $R \preceq R^{C}$
- for all R^{\prime} such that $R \preceq R^{\prime}$, we either have $R^{\prime}=R^{C}$ or $R^{C} \preceq R$. R^{C} is the "smallest" congruence relation.

Computing the congruence closure:

- Start with the finest congruence relation (every element in its own congruence class)

Congruence Closure

- R_{1} refines $R_{2}\left(R_{1} \preceq R_{1}\right)$ if:

$$
\forall s_{1}, s_{2} \in S .\left(s_{1}, s_{2}\right) \in R_{1} \rightarrow\left(s_{1}, s_{2}\right) \in R_{2}
$$

- R^{C} is the congruence closure for the congruence relation R if
- $R \preceq R^{C}$
- for all R^{\prime} such that $R \preceq R^{\prime}$, we either have $R^{\prime}=R^{C}$ or $R^{C} \preceq R$. R^{C} is the "smallest" congruence relation.

Computing the congruence closure:

- Start with the finest congruence relation (every element in its own congruence class)
- For each equality $s_{i}=t_{i}$, merge the congruence classes for $\left[s_{i}\right]_{R}$ and $\left[t_{i}\right]_{R}$:
- First union the elements of $\left[s_{i}\right]_{R}$ and $\left[t_{i}\right]_{R}$, to define the new class $\left[s_{i}\right]_{R}$
- Then, propagate the congruences that arise between the new pairs of elements in the union

\mathcal{T}_{E}-Satisfiability

$$
\phi:=\left[s_{1}=t_{1}, \ldots s_{m}=t_{m}, \neg\left(s_{m+1}=t_{m+1}\right), \ldots \neg\left(s_{n}=t_{n}\right)\right]
$$

(1) Construct the congruence closure of $\left\{s_{1}=t_{1}, \ldots s_{m}=t_{m}\right\}$, over the sub-terms of ϕ.
(c) If any of the atoms in the inequalities $s_{i}=t_{i}$, for $i \in[m+1, n]$, is such that s_{i} and t_{i} are in the same congruence class, then returns unsatisfiable

- Otherwise, return satisfiable

Example - congruence closure computation

$$
\phi:=f(a, b)=a \wedge \neg f(f(a, b), b)=a
$$

Example - congruence closure computation

$$
\phi:=f(a, b)=a \wedge \neg f(f(a, b), b)=a
$$

1. Finest partition of sub-terms:

$$
\{\{a\},\{b\},\{f(a, b)\},\{f(f(a, b), b)\}\}
$$

Example - congruence closure computation

$$
\phi:=f(a, b)=a \wedge \neg f(f(a, b), b)=a
$$

1. Finest partition of sub-terms:

$$
\{\{a\},\{b\},\{f(a, b)\},\{f(f(a, b), b)\}\}
$$

2. From the equality $f(a, b)=a$, we merge $\{a\}$ and $\{f(a, b)\}$

$$
\{\{\mathbf{a}, \mathbf{f}(\mathbf{a}, \mathbf{b})\},\{b\},\{f(f(a, b), b)\}\}
$$

Example - congruence closure computation

$$
\phi:=f(a, b)=a \wedge \neg f(f(a, b), b)=a
$$

1. Finest partition of sub-terms:

$$
\{\{a\},\{b\},\{f(a, b)\},\{f(f(a, b), b)\}\}
$$

2. From the equality $f(a, b)=a$, we merge $\{a\}$ and $\{f(a, b)\}$

$$
\{\{\mathbf{a}, \mathbf{f}(\mathbf{a}, \mathbf{b})\},\{b\},\{f(f(a, b), b)\}\}
$$

3. Apply congruence $-f(a, b)=f(f(a, b), b)$:

$$
\{\{\mathbf{a}, \mathbf{f}(\mathbf{a}, \mathbf{b}), \mathbf{f}(\mathbf{f}(\mathbf{a}, \mathbf{b}), \mathbf{b})\},\{b\}\}
$$

This partition is the congruence closure.

Example - congruence closure computation

$$
\phi:=f(a, b)=a \wedge \neg f(f(a, b), b)=a
$$

1. Finest partition of sub-terms:

$$
\{\{a\},\{b\},\{f(a, b)\},\{f(f(a, b), b)\}\}
$$

2. From the equality $f(a, b)=a$, we merge $\{a\}$ and $\{f(a, b)\}$

$$
\{\{\mathbf{a}, \mathbf{f}(\mathbf{a}, \mathbf{b})\},\{b\},\{f(f(a, b), b)\}\}
$$

3. Apply congruence $-f(a, b)=f(f(a, b), b)$:

$$
\{\{\mathbf{a}, \mathbf{f}(\mathbf{a}, \mathbf{b}), \mathbf{f}(\mathbf{f}(\mathbf{a}, \mathbf{b}), \mathbf{b})\},\{b\}\}
$$

This partition is the congruence closure.
Is ϕ satisfiable? No, since ϕ requires $\neg f(f(a, b), b)=a$, but $f(f(a, b), b)$ and a are in the same congruence class.

Example - congruence closure computation (2)

$$
\phi:=f^{3}(a)=a \wedge f\left(f\left(f^{3}(a)\right)\right)=a \wedge \neg f(a)=a
$$

Example - congruence closure computation (2)

$$
\phi:=f^{3}(a)=a \wedge f\left(f\left(f^{3}(a)\right)\right)=a \wedge \neg f(a)=a
$$

1. Finest partition of sub-terms (notation: $f^{0}(v)=v$ and $f^{k}=f\left(f^{k-1}(v)\right)$):

$$
\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

Example - congruence closure computation (2)

$$
\phi:=f^{3}(a)=a \wedge f\left(f\left(f^{3}(a)\right)\right)=a \wedge \neg f(a)=a
$$

1. Finest partition of sub-terms (notation: $f^{0}(v)=v$ and $f^{k}=f\left(f^{k-1}(v)\right)$):

$$
\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

2. From the equality $f^{3}(a)=a$, we merge $\{a\}$ and $f^{3}(a)$:

$$
\left\{\left\{\mathbf{a}, \mathbf{f}^{3}(\mathbf{a})\right\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

Example - congruence closure computation (2)

$$
\phi:=f^{3}(a)=a \wedge f\left(f\left(f^{3}(a)\right)\right)=a \wedge \neg f(a)=a
$$

1. Finest partition of sub-terms (notation: $f^{0}(v)=v$ and $f^{k}=f\left(f^{k-1}(v)\right)$):

$$
\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

2. From the equality $f^{3}(a)=a$, we merge $\{a\}$ and $f^{3}(a)$:

$$
\left\{\left\{\mathbf{a}, \mathbf{f}^{3}(\mathbf{a})\right\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

3. Apply congruence $-f(a)=f\left(f^{3}(a)\right)=f^{4}(a)$:

$$
\left\{\left\{a, f^{3}(a)\right\},\left\{\mathbf{f}(\mathbf{a}), \mathbf{f}^{4}(\mathbf{a})\right\},\left\{f^{2}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

Example - congruence closure computation (2)

$$
\phi:=f^{3}(a)=a \wedge f\left(f\left(f^{3}(a)\right)\right)=a \wedge \neg f(a)=a
$$

1. Finest partition of sub-terms (notation: $f^{0}(v)=v$ and $f^{k}=f\left(f^{k-1}(v)\right)$):

$$
\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

2. From the equality $f^{3}(a)=a$, we merge $\{a\}$ and $f^{3}(a)$:

$$
\left\{\left\{\mathbf{a}, \mathbf{f}^{3}(\mathbf{a})\right\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

3. Apply congruence $-f(a)=f\left(f^{3}(a)\right)=f^{4}(a)$:

$$
\left\{\left\{a, f^{3}(a)\right\},\left\{\mathbf{f}(\mathbf{a}), \mathbf{f}^{4}(\mathbf{a})\right\},\left\{f^{2}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

4. From congruence we have $f(f(a))=f\left(f^{4}(a)\right)=f^{5}(a)$:

$$
\left\{\left\{a, f^{3}(a)\right\},\left\{f(a), f^{4}(a)\right\},\left\{\mathbf{f}^{2}(\mathbf{a}), \mathbf{f}^{5}(\mathbf{a})\right\}\right\}
$$

Example - congruence closure computation (2)

$$
\phi:=f^{3}(a)=a \wedge f\left(f\left(f^{3}(a)\right)\right)=a \wedge \neg f(a)=a
$$

1. Finest partition of sub-terms (notation: $f^{0}(v)=v$ and $f^{k}=f\left(f^{k-1}(v)\right)$):

$$
\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

2. From the equality $f^{3}(a)=a$, we merge $\{a\}$ and $f^{3}(a)$:

$$
\left\{\left\{\mathbf{a}, \mathbf{f}^{3}(\mathbf{a})\right\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

3. Apply congruence $-f(a)=f\left(f^{3}(a)\right)=f^{4}(a)$:

$$
\left\{\left\{a, f^{3}(a)\right\},\left\{\mathbf{f}(\mathbf{a}), \mathbf{f}^{4}(\mathbf{a})\right\},\left\{f^{2}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

4. From congruence we have $f(f(a))=f\left(f^{4}(a)\right)=f^{5}(a)$:

$$
\left\{\left\{a, f^{3}(a)\right\},\left\{f(a), f^{4}(a)\right\},\left\{\mathbf{f}^{2}(\mathbf{a}), \mathbf{f}^{5}(\mathbf{a})\right\}\right\}
$$

5. From the equality $f^{5}(a)=a$:

$$
\left.\left\{\left\{\mathbf{a}, \mathbf{f}^{2}(\mathbf{a}), \mathbf{f}^{3}(\mathbf{a}), \mathbf{f}^{5}(\mathbf{a})\right\}\right\},\left\{f(a), f^{4}(a)\right\}\right\}
$$

Example - congruence closure computation (2)

$$
\phi:=f^{3}(a)=a \wedge f\left(f\left(f^{3}(a)\right)\right)=a \wedge \neg f(a)=a
$$

1. Finest partition of sub-terms (notation: $f^{0}(v)=v$ and $f^{k}=f\left(f^{k-1}(v)\right)$):

$$
\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

2. From the equality $f^{3}(a)=a$, we merge $\{a\}$ and $f^{3}(a)$:

$$
\left\{\left\{\mathbf{a}, \mathbf{f}^{3}(\mathbf{a})\right\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

3. Apply congruence $-f(a)=f\left(f^{3}(a)\right)=f^{4}(a)$:

$$
\left\{\left\{a, f^{3}(a)\right\},\left\{\mathbf{f}(\mathbf{a}), \mathbf{f}^{4}(\mathbf{a})\right\},\left\{f^{2}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

4. From congruence we have $f(f(a))=f\left(f^{4}(a)\right)=f^{5}(a)$:

$$
\left\{\left\{a, f^{3}(a)\right\},\left\{f(a), f^{4}(a)\right\},\left\{\mathbf{f}^{2}(\mathbf{a}), \mathbf{f}^{5}(\mathbf{a})\right\}\right\}
$$

5. From the equality $f^{5}(a)=a$:

$$
\left.\left\{\left\{\mathbf{a}, \mathbf{f}^{2}(\mathbf{a}), \mathbf{f}^{3}(\mathbf{a}), \mathbf{f}^{5}(\mathbf{a})\right\}\right\},\left\{f(a), f^{4}(a)\right\}\right\}
$$

6. Apply congruence $-f\left(f^{2}(a)=f\left(f^{3}(a)\right)=f^{4} a\right.$:

$$
\left\{\left\{\mathbf{a}, \mathbf{f}(\mathbf{a}), \mathbf{f}^{2}(\mathbf{a}), \mathbf{f}^{\mathbf{3}}(\mathbf{a}), \mathbf{f}^{4}(\mathbf{a}), \mathbf{f}^{\mathbf{5}}(\mathbf{a})\right\}\right\}
$$

Example - congruence closure computation (2)

$$
\phi:=f^{3}(a)=a \wedge f\left(f\left(f^{3}(a)\right)\right)=a \wedge \neg f(a)=a
$$

We have the congruence closure:

$$
\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\}
$$

We have $\neg f(a)=a$, but a and $f(a)$ are in the same congruence class, so ϕ is unsatisfiable!
(1) A Decision Procedure for the Theory of Equality

- T_{E}-satisfiability
- Deciding T_{E} via Congruence Closure
- An algorithm to computing congruence closure

Congruence Closure via DAG

$$
\phi:=f(x, y)=x \wedge h(y)=g(x) \wedge f(f(x, y), y)=z \wedge \neg g(x)=g(z)
$$

Congruence Closure via DAG

$$
\phi:=f(x, y)=x \wedge h(y)=g(x) \wedge f(f(x, y), y)=z \wedge \neg g(x)=g(z)
$$

A. merge $(5,5)$

Congruence Closure via DAG

$$
\phi:=f(x, y)=x \wedge h(y)=g(x) \wedge f(f(x, y), y)=z \wedge \neg g(x)=g(z)
$$

A. merge $(5,5)$
B. merge $(1,5)$

Congruence Closure via DAG

$$
\phi:=f(x, y)=x \wedge h(y)=g(x) \wedge f(f(x, y), y)=z \wedge \neg g(x)=g(z)
$$

A. merge $(5,5)$
B. merge $(1,5)$
C. merge $(2,3)$

Congruence Closure via DAG

$$
\phi:=f(x, y)=x \wedge h(y)=g(x) \wedge f(f(x, y), y)=z \wedge \neg g(x)=g(z)
$$

A. merge(5,5)
B. merge $(1,5)$
C. merge $(2,3)$
D. merge $(1,8)$

Congruence Closure via DAG

$$
\phi:=f(x, y)=x \wedge h(y)=g(x) \wedge f(f(x, y), y)=z \wedge \neg g(x)=g(z)
$$

A. merge(5,5)
B. merge $(1,5)$
C. merge(2,3)
D. merge $(1,8)$
E. merge $(2,4)$

Congruence Closure via DAG

$$
\phi:=f(x, y)=x \wedge h(y)=g(x) \wedge f(f(x, y), y)=z \wedge \neg g(x)=g(z)
$$

A. merge(5,5)
B. merge $(1,5)$
C. merge(2,3)
D. merge $(1,8)$
E. merge(2,4)
F. Conflict

Congruence Closure via DAG

$$
\phi:=f(x, y)=x \wedge h(y)=g(x) \wedge f(f(x, y), y)=z \wedge \neg g(x)=g(z)
$$

A. merge(5,5)
B. merge $(1,5)$
C. merge(2,3)
D. merge $(1,8)$
E. merge $(2,4)$
F. Conflict

This is what you will implement in the tutorial

A DAG data structure congruence closure

```
Node \{
    id : integer;
    // id of the class representative
    find : integer;
    // name of the node
    name : string;
    // ids of the children
    args : list of integers;
    // ids of the class parents
    parents : list of integers;
Node for \(f(x, y)\)
Node \{
    id \(=5\)
    find \(=5\)
    name : f;
    args : [6,7];
    parents : [1];
\}
```


UNION/FIND functions

procedure NODE(i)

```
procedure FIND(i)
    n = NODE(i)
    if n.find = i then
        return i
    else
        return FIND(n.find)
```

procedure UNION(i1,i2)
n1 $=$ NODE(i1)
$\mathrm{n} 2=\operatorname{NODE}(\mathrm{i} 2)$
$n 1$.find $=n 2$.find
n2. parents $=$
n1. parents $\cup \mathrm{n} 2$. parents
n1. parents $=[]$

Returns the node that has the id i

Returns the id of the equivalence class for the node i.

Computes the union of i1 and i2

UNION/FIND example

```
Node {
    id = 5
    find = 5
    name : f;
    args : [6,7];
    parents : [1];
}
UNION (6,5)
Node {
```

$$
\text { id }=5
$$

$$
\text { find }=5
$$

name : f;

$$
\text { args : }[6,7]
$$

parents : [1];

$$
\}
$$

$$
\text { UNION }(6,5)
$$

```
Node {
```

Node {
id = 5
id = 5
find = 6
find = 6
name : f;
name : f;
args : [6,7];
args : [6,7];
parents : [];
parents : [];
}

```
}
```

FIND(5) now returns node 6

UNION/FIND example


```
Node {
    id = 5
    find = 5
    name : f;
    args : [6,7];
    parents : [1];
}
UNION (6,5)
Node {
    id = 5
    find = 6
    name : f;
    args : [6,7];
    parents : [];
}
Node \{
```

```
Node {
    id = 6
    find = 6
    name : x;
    args : [];
    parents : [5];
}
```

Node \{
id $=6$
find $=6$
name : x;
args : [];
parents : [5,1];
\}

FIND(5) now returns node 6

CONGRUENT function

Returns true if the node in i1 and in i2 are congruent

```
procedure CONGRUENT(i1,i2)
    n1 = NODE(i1)
    n2 = NODE(i2)
    if n1.name }\not=\textrm{n}2\mathrm{ . name then
        return False
    else if len(n1.args) }=\mathrm{ len(n2.args) then
        return False
    else if len(n1.args) }=\mathrm{ len(n2.args) then
        return }\foralli\in{1,\ldots,len(n1.args)}
            FIND(n1.args[i]) = FIND(n2.args[i])
```


CONGRUENT example


```
n5 := {
    id = 5
    find = 6
    name : f;
    args : [6,7];
    parents : [1];
}
n6 := {
    id = 6
    find = 6
    name : x;
    args : [];
    n1 := {
        id = 1
    find = 1
    name : f;
} parents : [5,1];
    args : [5,7];
    parents : [];
Execution of CONGRUENT \((1,5)\)
\(-\mathrm{n} 1=\operatorname{NODE}(1)\)
- n5 = \(\operatorname{NODE(5)}\)
- n1. name == f == n5.name
- len(n1.args) == len(n2.args)
- FIND(6) == 6 == FIND(5)
- \(\operatorname{FIND}(7)==7==\operatorname{FIND}(7)\)
```

So node 1 and 5 are congruent.

MERGE function

Merge the congruent classes of the node i1 and node i2

```
procedure MERGE(i1,i2)
    if \(\operatorname{FIND}(\mathrm{i} 1) \neq \mathrm{FIND}(\mathrm{i} 2)\) then
        P1 \(=\operatorname{NODE}(\) FIND(i1)). parents
        P2 \(=\operatorname{NODE}(\) FIND(i2)). parents
        UNION(i1, i2)
        for \(\mathrm{t} 1, \mathrm{t} 2 \in P_{1} \times P_{2}\) do
            if \(\operatorname{FIND}(\mathrm{t} 1) \neq \mathrm{FIND}(\mathrm{t} 2)\) and CONGRUENT(t1,t2) then
                MERGE(t1,t2)
```


MERGE example

MERGE example


```
```

n5 := \{ n6 := \{ n1 := \{

```
```

n5 := \{ n6 := \{ n1 := \{
id $=5$
id $=5$
find $=5$
find $=5$
name : f;
name : f;
args : [6,7];
args : [6,7];
parents : [1];
parents : [1];
id $=6$
id $=6$
find $=6$
find $=6$
name : x;
name : x;
find $=1$
find $=1$
name : f;
name : f;
args : []; args : [5,7];
args : []; args : [5,7];
parents : [5]; parents : [];
parents : [5]; parents : [];
\}
\}
id $=1$

```
    id \(=1\)
```

```
Execution of \(\operatorname{MERGE}(5,6)\)
```

Execution of $\operatorname{MERGE}(5,6)$
- FIND(5) != FIND(6)
- FIND(5) != FIND(6)
- P 1 = [1]
- P 1 = [1]
- P2 = [5]
- P2 = [5]
- $\operatorname{UNION}(5,6)$ - example we saw earlier
- $\operatorname{UNION}(5,6)$ - example we saw earlier
- P1 x P2 = [(1,5)]
- P1 x P2 = [(1,5)]
- FIND(1) != FIND(5)
- FIND(1) != FIND(5)
- CONGRUENT $(1,5)$
- CONGRUENT $(1,5)$
=> So we recursively merge 1 and 5: $\operatorname{MERGE}(1,5)$
=> So we recursively merge 1 and 5: $\operatorname{MERGE}(1,5)$
=> 1,5,6 are in the same congruence class

```
    => 1,5,6 are in the same congruence class
```

Revisiting the decision procedure using the union-find algorithm

$$
\phi:=\left[s_{1}=t_{1}, \ldots s_{m}=t_{m}, \neg\left(s_{m+1}=t_{m+1}\right), \ldots \neg\left(s_{n}=t_{n}\right)\right]
$$

(1) Construct the DAG G
(2) For all $\left(s_{i}, t_{i}\right) \in[1, m]$ call $\operatorname{MERGE}\left(s_{i}, t_{i}\right)$ - (in practice the id of s_{i} and $\left.t_{i}\right)$
(3) If for any inequalities $\left(s_{i}, t_{i}\right) \in[m+1, n]$:

- $\operatorname{FIND}\left(s_{i}\right)=\operatorname{FIND}\left(t_{i}\right)$, then return unsatisfiable
(9) Otherwise return satisfiable.

Revisiting the decision procedure using the union-find algorithm

$$
\phi:=\left[s_{1}=t_{1}, \ldots s_{m}=t_{m}, \neg\left(s_{m+1}=t_{m+1}\right), \ldots \neg\left(s_{n}=t_{n}\right)\right]
$$

(1) Construct the DAG G
(2) For all $\left(s_{i}, t_{i}\right) \in[1, m]$ call $\operatorname{MERGE}\left(s_{i}, t_{i}\right)$ - (in practice the id of s_{i} and $\left.t_{i}\right)$
(3) If for any inequalities $\left(s_{i}, t_{i}\right) \in[m+1, n]$:

- $\operatorname{FIND}\left(s_{i}\right)=\operatorname{FIND}\left(t_{i}\right)$, then return unsatisfiable
(9) Otherwise return satisfiable.

Properties:

- The algorithm is sound and complete for quantifier-free conjunctive Σ_{E}-formulas.
- This algorithm runs in time $O\left(e^{2}\right)$ for $O(n)$ merges

More efficient algorithms exists that run in $O(e \log e)$ for $O(n)$ merges (e.g., see [Detlefs et al., 2005])

To sum up

What did we see today?

- We can decide the \mathcal{T}_{E}-satisfiability of a conjunctive formula ϕ computing the congruence closure:
- We use a graph (UNION/FIND data structures) to represent and merge congruence classes
- We obtain the congruence classes from the equalities in ϕ
- Once we ave the congruence classes, we check for inconsistencies with the inequalities of ϕ
- The computation is efficient (there are some optimization that can run in polynomial time $(O(n \log n))$)
Next week: how to decide consistency for the theory of linear arithmetic

References I

Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C. (2009). Satisfiability modulo theories.
In Biere, A., Heule, M., van Maaren, H., and Walsh, T., editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages 825-885. IOS Press.
围 Bradley, A. R. and Manna, Z. (2007).
The calculus of computation - decision procedures with applications to verification.
Springer.
Detlefs, D., Nelson, G., and Saxe, J. B. (2005). Simplify: a theorem prover for program checking. J. ACM, 52(3):365-473.

[^0]: ${ }^{1}$ Main references:

 - The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)

[^1]: ${ }^{1}$ Main references:

 - The Calculus of Computation [Bradley and Manna, 2007], Chapter 9 (Section 9.1, 9.2, 9.3)

