
Efficient resolution of logical models
ENSTA-IA303

Alexandre Chapoutot and Sergio Mover

ENSTA Paris

2020-2021

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 1 / 44

About the “second part” of IA303
Contact information:

via email: sergio.mover <at> lix.polytechnique.fr
“on-demand” office hours: Friday from 2pm to 3pm
Get in touch also if you are interested in research in:

I Formal methods (formal verification, decision procedures, . . .)
I Artificial intelligence (mainly related to the use logics, symbolic AI, planning,

. . .)
I Cyber-Physical systems (e.g., hybrid systems, . . .)

In the next 4 classes:
Introduction to Satisfiability Modulo Theories (SMT) (week 4, today)
How some theory solvers works: EUF (week 5) and LRA/LIA (week 6)
Some applications of SMT in formal verification (week 7)

Main take-away points:
SMT is a powerful and mature tool, with wide applications
How to formalize a problem in SMT and use an SMT solver
How an SMT solver works and why is it efficient (despite the problem
complexity)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 2 / 44

About the “second part” of IA303
Contact information:

via email: sergio.mover <at> lix.polytechnique.fr
“on-demand” office hours: Friday from 2pm to 3pm
Get in touch also if you are interested in research in:

I Formal methods (formal verification, decision procedures, . . .)
I Artificial intelligence (mainly related to the use logics, symbolic AI, planning,

. . .)
I Cyber-Physical systems (e.g., hybrid systems, . . .)

In the next 4 classes:
Introduction to Satisfiability Modulo Theories (SMT) (week 4, today)
How some theory solvers works: EUF (week 5) and LRA/LIA (week 6)
Some applications of SMT in formal verification (week 7)

Main take-away points:
SMT is a powerful and mature tool, with wide applications
How to formalize a problem in SMT and use an SMT solver
How an SMT solver works and why is it efficient (despite the problem
complexity)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 2 / 44

About the “second part” of IA303
Contact information:

via email: sergio.mover <at> lix.polytechnique.fr
“on-demand” office hours: Friday from 2pm to 3pm
Get in touch also if you are interested in research in:

I Formal methods (formal verification, decision procedures, . . .)
I Artificial intelligence (mainly related to the use logics, symbolic AI, planning,

. . .)
I Cyber-Physical systems (e.g., hybrid systems, . . .)

In the next 4 classes:
Introduction to Satisfiability Modulo Theories (SMT) (week 4, today)
How some theory solvers works: EUF (week 5) and LRA/LIA (week 6)
Some applications of SMT in formal verification (week 7)

Main take-away points:
SMT is a powerful and mature tool, with wide applications
How to formalize a problem in SMT and use an SMT solver
How an SMT solver works and why is it efficient (despite the problem
complexity)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 2 / 44

Lecture 4: Satisfiability Modulo Theories
and DPLL(T)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 3 / 44

Main goals for today
In class1:

Why and where do we use Satisfiability Modulo Theories (SMT)?
What is SMT precisely?
How can we efficiently decide the SMT problem?

In the tutorial:
How do you use an SMT solver?
How do you formalize a problem (i.e., encode) as an SMT problem?
How can you write a program that uses an SMT solver?
How can you automate the encoding generation for a class of problems?

1Main references:

The Calculus of Computation [Bradley and Manna, 2007], Chapter 2 (First-Order Logic)
and Chapter 3 (First-Order Theories)

Satisfiability Modulo Theories [Barrett et al., 2009]

Lazy Satisfiability Modulo Theories [Sebastiani, 2007]

Satisfiability modulo theories: introduction and applications [de Moura and Bjørner, 2011]
- CACM article, good first reading!

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 4 / 44

Main goals for today
In class1:

Why and where do we use Satisfiability Modulo Theories (SMT)?
What is SMT precisely?
How can we efficiently decide the SMT problem?

In the tutorial:
How do you use an SMT solver?
How do you formalize a problem (i.e., encode) as an SMT problem?
How can you write a program that uses an SMT solver?
How can you automate the encoding generation for a class of problems?

1Main references:

The Calculus of Computation [Bradley and Manna, 2007], Chapter 2 (First-Order Logic)
and Chapter 3 (First-Order Theories)

Satisfiability Modulo Theories [Barrett et al., 2009]

Lazy Satisfiability Modulo Theories [Sebastiani, 2007]

Satisfiability modulo theories: introduction and applications [de Moura and Bjørner, 2011]
- CACM article, good first reading!

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 4 / 44

1 Satisfiability Modulo Theories and DPLL(T)
Why SMT?
The SMT problem

First-Order logic - Language and Semantic
SMT - Language and Semantic

Decision procedures for the SMT Problem
Lazy approach - the offline schema
Lazy approach - the online approach (DPPL(T))

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 5 / 44

SMT in a nutshell - informal intuition

Extend of the propositional satisfiability problem to represent specific
domains. For example, real numbers:

(x − y ≥ 0 ∨ x < 0) ∧ y > 0

There are more theories: bitvectors, rational and integers linear arithmetic ,
uninterpreted functions, arrays, strings, separation logics, floating point
arithmetic, . . .
SMT is an expressive language.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 6 / 44

What problems can we solve with SMT?
We use SMT to express different have constraints satisfaction problems for several
applications:

Formal Verification for software, hardware, cyber-physical systems, protocols,
neural networks (e.g., [Henzinger et al., 2004, McMillan and Padon, 2020,
Dutertre et al., 2018, Cimatti et al., 2016, Cimatti et al., 2015])

Static program analysis (e.g.,
[Filliâtre and Paskevich, 2013, Barnett et al., 2005, Leino, 2010])
Test-case generation (e.g., [Godefroid et al., 2012, Godefroid et al., 2005])
Automatic program repair (e.g., [Mechtaev et al., 2016])
Automatic program synthesis (e.g., [Jha et al., 2010])
Planning (e.g.,
[Wolfman and Weld, 1999, Cashmore et al., 2020, Cimatti et al., 2018])
. . .

Active area of research!
With applications in formal methods, programming languages, software

engineering, AI, . . .

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 7 / 44

What problems can we solve with SMT?
We use SMT to express different have constraints satisfaction problems for several
applications:

Formal Verification for software, hardware, cyber-physical systems, protocols,
neural networks (e.g., [Henzinger et al., 2004, McMillan and Padon, 2020,
Dutertre et al., 2018, Cimatti et al., 2016, Cimatti et al., 2015])
Static program analysis (e.g.,
[Filliâtre and Paskevich, 2013, Barnett et al., 2005, Leino, 2010])

Test-case generation (e.g., [Godefroid et al., 2012, Godefroid et al., 2005])
Automatic program repair (e.g., [Mechtaev et al., 2016])
Automatic program synthesis (e.g., [Jha et al., 2010])
Planning (e.g.,
[Wolfman and Weld, 1999, Cashmore et al., 2020, Cimatti et al., 2018])
. . .

Active area of research!
With applications in formal methods, programming languages, software

engineering, AI, . . .

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 7 / 44

What problems can we solve with SMT?
We use SMT to express different have constraints satisfaction problems for several
applications:

Formal Verification for software, hardware, cyber-physical systems, protocols,
neural networks (e.g., [Henzinger et al., 2004, McMillan and Padon, 2020,
Dutertre et al., 2018, Cimatti et al., 2016, Cimatti et al., 2015])
Static program analysis (e.g.,
[Filliâtre and Paskevich, 2013, Barnett et al., 2005, Leino, 2010])
Test-case generation (e.g., [Godefroid et al., 2012, Godefroid et al., 2005])

Automatic program repair (e.g., [Mechtaev et al., 2016])
Automatic program synthesis (e.g., [Jha et al., 2010])
Planning (e.g.,
[Wolfman and Weld, 1999, Cashmore et al., 2020, Cimatti et al., 2018])
. . .

Active area of research!
With applications in formal methods, programming languages, software

engineering, AI, . . .

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 7 / 44

What problems can we solve with SMT?
We use SMT to express different have constraints satisfaction problems for several
applications:

Formal Verification for software, hardware, cyber-physical systems, protocols,
neural networks (e.g., [Henzinger et al., 2004, McMillan and Padon, 2020,
Dutertre et al., 2018, Cimatti et al., 2016, Cimatti et al., 2015])
Static program analysis (e.g.,
[Filliâtre and Paskevich, 2013, Barnett et al., 2005, Leino, 2010])
Test-case generation (e.g., [Godefroid et al., 2012, Godefroid et al., 2005])
Automatic program repair (e.g., [Mechtaev et al., 2016])

Automatic program synthesis (e.g., [Jha et al., 2010])
Planning (e.g.,
[Wolfman and Weld, 1999, Cashmore et al., 2020, Cimatti et al., 2018])
. . .

Active area of research!
With applications in formal methods, programming languages, software

engineering, AI, . . .

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 7 / 44

What problems can we solve with SMT?
We use SMT to express different have constraints satisfaction problems for several
applications:

Formal Verification for software, hardware, cyber-physical systems, protocols,
neural networks (e.g., [Henzinger et al., 2004, McMillan and Padon, 2020,
Dutertre et al., 2018, Cimatti et al., 2016, Cimatti et al., 2015])
Static program analysis (e.g.,
[Filliâtre and Paskevich, 2013, Barnett et al., 2005, Leino, 2010])
Test-case generation (e.g., [Godefroid et al., 2012, Godefroid et al., 2005])
Automatic program repair (e.g., [Mechtaev et al., 2016])
Automatic program synthesis (e.g., [Jha et al., 2010])

Planning (e.g.,
[Wolfman and Weld, 1999, Cashmore et al., 2020, Cimatti et al., 2018])
. . .

Active area of research!
With applications in formal methods, programming languages, software

engineering, AI, . . .

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 7 / 44

What problems can we solve with SMT?
We use SMT to express different have constraints satisfaction problems for several
applications:

Formal Verification for software, hardware, cyber-physical systems, protocols,
neural networks (e.g., [Henzinger et al., 2004, McMillan and Padon, 2020,
Dutertre et al., 2018, Cimatti et al., 2016, Cimatti et al., 2015])
Static program analysis (e.g.,
[Filliâtre and Paskevich, 2013, Barnett et al., 2005, Leino, 2010])
Test-case generation (e.g., [Godefroid et al., 2012, Godefroid et al., 2005])
Automatic program repair (e.g., [Mechtaev et al., 2016])
Automatic program synthesis (e.g., [Jha et al., 2010])
Planning (e.g.,
[Wolfman and Weld, 1999, Cashmore et al., 2020, Cimatti et al., 2018])
. . .

Active area of research!
With applications in formal methods, programming languages, software

engineering, AI, . . .

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 7 / 44

Software verification
f l o a t weighted_sum (uns igned i n t x ,

uns igned i n t y) {
uns igned i n t i ;
f l o a t sum ;

i f (y > x) { // swap x and y
x = x^y ; y = y^x ; x = x^y ;

}

sum = 0 ;
f o r (i = 0 ; i <= (x−y)−1; ++i) {

f l o a t tmp ;
tmp = ((i + 1)) / (x − y) ;
sum = sum + tmp ;

}

r e t u r n sum ;
}

Compute
∑|x−y |

i=1

(
i

|x−y |
)

Is the implementation correct?

What if x = 5, y = 3?

1.0 instead of 1.5

What if x = y?

Infinite loop!

Need automatic tool to verify
that (x − y)− 1 >= 0

Software verification uses SMT to faithfully model the program semantic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 8 / 44

Software verification
f l o a t weighted_sum (uns igned i n t x ,

uns igned i n t y) {
uns igned i n t i ;
f l o a t sum ;

i f (y > x) { // swap x and y
x = x^y ; y = y^x ; x = x^y ;

}

sum = 0 ;
f o r (i = 0 ; i <= (x−y)−1; ++i) {

f l o a t tmp ;
tmp = ((i + 1)) / (x − y) ;
sum = sum + tmp ;

}

r e t u r n sum ;
}

Compute
∑|x−y |

i=1

(
i

|x−y |
)

Is the implementation correct?
What if x = 5, y = 3?

1.0 instead of 1.5
What if x = y?

Infinite loop!

Need automatic tool to verify
that (x − y)− 1 >= 0

Software verification uses SMT to faithfully model the program semantic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 8 / 44

Software verification
f l o a t weighted_sum (uns igned i n t x ,

uns igned i n t y) {
uns igned i n t i ;
f l o a t sum ;

i f (y > x) { // swap x and y
x = x^y ; y = y^x ; x = x^y ;

}

sum = 0 ;
f o r (i = 0 ; i <= (x−y)−1; ++i) {

f l o a t tmp ;
tmp = ((i + 1)) / (x − y) ;
sum = sum + tmp ;

}

r e t u r n sum ;
}

Compute
∑|x−y |

i=1

(
i

|x−y |
)

Is the implementation correct?
What if x = 5, y = 3?
1.0 instead of 1.5

What if x = y?

Infinite loop!

Need automatic tool to verify
that (x − y)− 1 >= 0

Software verification uses SMT to faithfully model the program semantic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 8 / 44

Software verification
f l o a t weighted_sum (uns igned i n t x ,

uns igned i n t y) {
uns igned i n t i ;
f l o a t sum ;

i f (y > x) { // swap x and y
x = x^y ; y = y^x ; x = x^y ;

}

sum = 0 ;
f o r (i = 0 ; i <= (x−y)−1; ++i) {

f l o a t tmp ;
tmp = ((i + 1)) / (x − y) ;
sum = sum + tmp ;

}

r e t u r n sum ;
}

Compute
∑|x−y |

i=1

(
i

|x−y |
)

Is the implementation correct?
What if x = 5, y = 3?
1.0 instead of 1.5
What if x = y?

Infinite loop!
Need automatic tool to verify
that (x − y)− 1 >= 0

Software verification uses SMT to faithfully model the program semantic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 8 / 44

Software verification
f l o a t weighted_sum (uns igned i n t x ,

uns igned i n t y) {
uns igned i n t i ;
f l o a t sum ;

i f (y > x) { // swap x and y
x = x^y ; y = y^x ; x = x^y ;

}

sum = 0 ;
f o r (i = 0 ; i <= (x−y)−1; ++i) {

f l o a t tmp ;
tmp = ((i + 1)) / (x − y) ;
sum = sum + tmp ;

}

r e t u r n sum ;
}

Compute
∑|x−y |

i=1

(
i

|x−y |
)

Is the implementation correct?
What if x = 5, y = 3?
1.0 instead of 1.5
What if x = y?
Infinite loop!

Need automatic tool to verify
that (x − y)− 1 >= 0

Software verification uses SMT to faithfully model the program semantic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 8 / 44

Software verification
f l o a t weighted_sum (uns igned i n t x ,

uns igned i n t y) {
uns igned i n t i ;
f l o a t sum ;

i f (y > x) { // swap x and y
x = x^y ; y = y^x ; x = x^y ;

}

sum = 0 ;
f o r (i = 0 ; i <= (x−y)−1; ++i) {

f l o a t tmp ;
tmp = ((i + 1)) / (x − y) ;
sum = sum + tmp ;

}

r e t u r n sum ;
}

Compute
∑|x−y |

i=1

(
i

|x−y |
)

Is the implementation correct?
What if x = 5, y = 3?
1.0 instead of 1.5
What if x = y?
Infinite loop!

Need automatic tool to verify
that (x − y)− 1 >= 0

Software verification uses SMT to faithfully model the program semantic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 8 / 44

Software verification
f l o a t weighted_sum (uns igned i n t x ,

uns igned i n t y) {
uns igned i n t i ;
f l o a t sum ;

i f (y > x) { // swap x and y
x = x^y ; y = y^x ; x = x^y ;

}

sum = 0 ;
f o r (i = 0 ; i <= (x−y)−1; ++i) {

f l o a t tmp ;
tmp = ((i + 1)) / (x − y) ;
sum = sum + tmp ;

}

r e t u r n sum ;
}

Compute
∑|x−y |

i=1

(
i

|x−y |
)

Is the implementation correct?
What if x = 5, y = 3?
1.0 instead of 1.5
What if x = y?
Infinite loop!

Need automatic tool to verify
that (x − y)− 1 >= 0

Software verification uses SMT to faithfully model the program semantic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 8 / 44

1 Satisfiability Modulo Theories and DPLL(T)
Why SMT?
The SMT problem

First-Order logic - Language and Semantic
SMT - Language and Semantic

Decision procedures for the SMT Problem
Lazy approach - the offline schema
Lazy approach - the online approach (DPPL(T))

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 9 / 44

1 Satisfiability Modulo Theories and DPLL(T)
Why SMT?
The SMT problem

First-Order logic - Language and Semantic
SMT - Language and Semantic

Decision procedures for the SMT Problem
Lazy approach - the offline schema
Lazy approach - the online approach (DPPL(T))

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 10 / 44

First-Order Logic
Extends Propositional Logic with predicates,functions, and quantifiers to reason

about infinite domains.

Syntax
A term t is either:

A constant a, b, c , . . . , 0, 1, . . .

(or a 0-ary function)

A variable x , y , z , . . .
An n-ary function f (t1, . . . , fn)

An n-ary predicate p is p(t1, . . . , pn)

0-ary predicates are Propositional variables (denoted with P,Q, . . .)
An atom a is either true >, false ⊥, or a predicate p.
A FOL formula φ is either:

an atom a
¬ψ, with ψ a FOL formula
ψ1 ∧ ψ2, with ψ1 and ψ2 FOL formulas.
Other operators: ψ1 ∨ ψ2 := ¬(¬ψ1 ∧ ¬ψ2), ψ1 → ψ2 := ¬ψ1 ∨ ψ2

∃x .ψ, with x a variable and ψ a FOL formula
∀x .φ, with x a variable and ψ a FOL formula

We will “almost always” avoid quantifiers

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 11 / 44

First-Order Logic
Extends Propositional Logic with predicates,functions, and quantifiers to reason

about infinite domains.

Syntax
A term t is either:

A constant a, b, c , . . . , 0, 1, . . . (or a 0-ary function)
A variable x , y , z , . . .
An n-ary function f (t1, . . . , fn)

An n-ary predicate p is p(t1, . . . , pn)

0-ary predicates are Propositional variables (denoted with P,Q, . . .)
An atom a is either true >, false ⊥, or a predicate p.
A FOL formula φ is either:

an atom a
¬ψ, with ψ a FOL formula
ψ1 ∧ ψ2, with ψ1 and ψ2 FOL formulas.
Other operators: ψ1 ∨ ψ2 := ¬(¬ψ1 ∧ ¬ψ2), ψ1 → ψ2 := ¬ψ1 ∨ ψ2

∃x .ψ, with x a variable and ψ a FOL formula
∀x .φ, with x a variable and ψ a FOL formula

We will “almost always” avoid quantifiers

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 11 / 44

First-Order Logic
Extends Propositional Logic with predicates,functions, and quantifiers to reason

about infinite domains.

Syntax
A term t is either:

A constant a, b, c , . . . , 0, 1, . . . (or a 0-ary function)
A variable x , y , z , . . .
An n-ary function f (t1, . . . , fn)

An n-ary predicate p is p(t1, . . . , pn)

0-ary predicates are Propositional variables (denoted with P,Q, . . .)

An atom a is either true >, false ⊥, or a predicate p.
A FOL formula φ is either:

an atom a
¬ψ, with ψ a FOL formula
ψ1 ∧ ψ2, with ψ1 and ψ2 FOL formulas.
Other operators: ψ1 ∨ ψ2 := ¬(¬ψ1 ∧ ¬ψ2), ψ1 → ψ2 := ¬ψ1 ∨ ψ2

∃x .ψ, with x a variable and ψ a FOL formula
∀x .φ, with x a variable and ψ a FOL formula

We will “almost always” avoid quantifiers

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 11 / 44

First-Order Logic
Extends Propositional Logic with predicates,functions, and quantifiers to reason

about infinite domains.

Syntax
A term t is either:

A constant a, b, c , . . . , 0, 1, . . . (or a 0-ary function)
A variable x , y , z , . . .
An n-ary function f (t1, . . . , fn)

An n-ary predicate p is p(t1, . . . , pn)

0-ary predicates are Propositional variables (denoted with P,Q, . . .)
An atom a is either true >, false ⊥, or a predicate p.

A FOL formula φ is either:
an atom a
¬ψ, with ψ a FOL formula
ψ1 ∧ ψ2, with ψ1 and ψ2 FOL formulas.
Other operators: ψ1 ∨ ψ2 := ¬(¬ψ1 ∧ ¬ψ2), ψ1 → ψ2 := ¬ψ1 ∨ ψ2

∃x .ψ, with x a variable and ψ a FOL formula
∀x .φ, with x a variable and ψ a FOL formula

We will “almost always” avoid quantifiers

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 11 / 44

First-Order Logic
Extends Propositional Logic with predicates,functions, and quantifiers to reason

about infinite domains.

Syntax
A term t is either:

A constant a, b, c , . . . , 0, 1, . . . (or a 0-ary function)
A variable x , y , z , . . .
An n-ary function f (t1, . . . , fn)

An n-ary predicate p is p(t1, . . . , pn)

0-ary predicates are Propositional variables (denoted with P,Q, . . .)
An atom a is either true >, false ⊥, or a predicate p.
A FOL formula φ is either:

an atom a
¬ψ, with ψ a FOL formula
ψ1 ∧ ψ2, with ψ1 and ψ2 FOL formulas.
Other operators: ψ1 ∨ ψ2 := ¬(¬ψ1 ∧ ¬ψ2), ψ1 → ψ2 := ¬ψ1 ∨ ψ2

∃x .ψ, with x a variable and ψ a FOL formula
∀x .φ, with x a variable and ψ a FOL formula

We will “almost always” avoid quantifiers

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 11 / 44

First-Order Logic
Extends Propositional Logic with predicates,functions, and quantifiers to reason

about infinite domains.

Syntax
A term t is either:

A constant a, b, c , . . . , 0, 1, . . . (or a 0-ary function)
A variable x , y , z , . . .
An n-ary function f (t1, . . . , fn)

An n-ary predicate p is p(t1, . . . , pn)

0-ary predicates are Propositional variables (denoted with P,Q, . . .)
An atom a is either true >, false ⊥, or a predicate p.
A FOL formula φ is either:

an atom a
¬ψ, with ψ a FOL formula
ψ1 ∧ ψ2, with ψ1 and ψ2 FOL formulas.
Other operators: ψ1 ∨ ψ2 := ¬(¬ψ1 ∧ ¬ψ2), ψ1 → ψ2 := ¬ψ1 ∨ ψ2

∃x .ψ, with x a variable and ψ a FOL formula
∀x .φ, with x a variable and ψ a FOL formula
We will “almost always” avoid quantifiers

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 11 / 44

First-Order Logic - Some examples of syntax

Terms:
I 1, a, b are constants
I x , y , z are variables
I f (x), g(x , z), and g(f (x), y) are functions

Predicates
I p(a, b), p(a, f (x)), q(x , y)

FOL formulas
I p(a, b)
I ¬p(a, b)
I (p(a, b) ∧ q(x , y))
I ∀x .x = y ∧ f (x , y)
I ∀x .∃y .(x = y → f (x) = f (y))

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 12 / 44

First-Order Logic - Some examples of syntax

Terms:
I 1, a, b are constants
I x , y , z are variables
I f (x), g(x , z), and g(f (x), y) are functions

Predicates
I p(a, b), p(a, f (x)), q(x , y)

FOL formulas
I p(a, b)
I ¬p(a, b)
I (p(a, b) ∧ q(x , y))
I ∀x .x = y ∧ f (x , y)
I ∀x .∃y .(x = y → f (x) = f (y))

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 12 / 44

First-Order Logic - Some examples of syntax

Terms:
I 1, a, b are constants
I x , y , z are variables
I f (x), g(x , z), and g(f (x), y) are functions

Predicates
I p(a, b), p(a, f (x)), q(x , y)

FOL formulas
I p(a, b)
I ¬p(a, b)
I (p(a, b) ∧ q(x , y))
I ∀x .x = y ∧ f (x , y)
I ∀x .∃y .(x = y → f (x) = f (y))

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 12 / 44

First-Order Logic - Semantic

While Propositional Logic evaluates over true and false, in FOL we have domains
and assignments .

A FOL Interpretation I is the pair I = (DI , αI):

DI is the domain of I: it’s a non-empty set of elements (e.g., values,
objects, . . .)
αI is an assignment that maps constants, functions, and predicates to
elements, functions, and predicates of DI :

αI(x) := xI xI ∈ DI
αI(f) := fI fI : Dn

I → DI
Note that constants are 0-ary functions!αI(p) := pI pI : Dn

I → {true, false}

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 13 / 44

First-Order Logic - Semantic

While Propositional Logic evaluates over true and false, in FOL we have domains
and assignments .

A FOL Interpretation I is the pair I = (DI , αI):
DI is the domain of I: it’s a non-empty set of elements (e.g., values,
objects, . . .)

αI is an assignment that maps constants, functions, and predicates to
elements, functions, and predicates of DI :

αI(x) := xI xI ∈ DI
αI(f) := fI fI : Dn

I → DI
Note that constants are 0-ary functions!αI(p) := pI pI : Dn

I → {true, false}

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 13 / 44

First-Order Logic - Semantic

While Propositional Logic evaluates over true and false, in FOL we have domains
and assignments .

A FOL Interpretation I is the pair I = (DI , αI):
DI is the domain of I: it’s a non-empty set of elements (e.g., values,
objects, . . .)
αI is an assignment that maps constants, functions, and predicates to
elements, functions, and predicates of DI :

αI(x) := xI xI ∈ DI
αI(f) := fI fI : Dn

I → DI
Note that constants are 0-ary functions!αI(p) := pI pI : Dn

I → {true, false}

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 13 / 44

First-Order Logic - an example of interpretation

Consider the FOL formula 2: x + y > z → y > z − x

A possible intepretation over the interger numbers Z
I DI = Z = {. . . ,−2,−1, 0, 1, 2, . . .}
I the function +, − are assigned to the the plus and minus function in Z (i.e.,

+Z,−Z)
I the predicates > is assigned to >Z
I x , y , z are 0-ary functions of integer type
I αI := {x 7→ 13, y 7→ 2, z 7→ 4, > 7→>Z,+ 7→ +Z,− 7→ −Z, . . .}

2Example 2.7 from [Bradley and Manna, 2007]
Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 14 / 44

First-Order Logic - Semantic

When does an interpretation I = (DI , αI) satisfies a FOL formula φ, I |= φ?

I |= > and I 6|= ⊥
we evaluate a term t with αI(t), recursively:

I for a variable x αI(x), αI(a)
I αI(f (t1, . . . , tn)) = αI(f)(αI(t1), . . . , αI(tn))
I αI(p(t1, . . . , tn)) = αI(p)(αI(t1), . . . , αI(tn))

I |= p(t1, . . . , tn) iff αI(p)(αI(t1), . . . , αI(tn)) is true.
I |= ¬φ iff I 6|= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

I |= ∃x .ψ, if there is some a ∈ DI , (DI , αI [x 7→ a]) |= ψ

I |= ∀x .φ, if for all a ∈ DI , (DI , αI [x 7→ a]) |= ψ.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 15 / 44

First-Order Logic - Semantic

When does an interpretation I = (DI , αI) satisfies a FOL formula φ, I |= φ?
I |= > and I 6|= ⊥

we evaluate a term t with αI(t), recursively:
I for a variable x αI(x), αI(a)
I αI(f (t1, . . . , tn)) = αI(f)(αI(t1), . . . , αI(tn))
I αI(p(t1, . . . , tn)) = αI(p)(αI(t1), . . . , αI(tn))

I |= p(t1, . . . , tn) iff αI(p)(αI(t1), . . . , αI(tn)) is true.
I |= ¬φ iff I 6|= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

I |= ∃x .ψ, if there is some a ∈ DI , (DI , αI [x 7→ a]) |= ψ

I |= ∀x .φ, if for all a ∈ DI , (DI , αI [x 7→ a]) |= ψ.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 15 / 44

First-Order Logic - Semantic

When does an interpretation I = (DI , αI) satisfies a FOL formula φ, I |= φ?
I |= > and I 6|= ⊥
we evaluate a term t with αI(t), recursively:

I for a variable x αI(x), αI(a)
I αI(f (t1, . . . , tn)) = αI(f)(αI(t1), . . . , αI(tn))
I αI(p(t1, . . . , tn)) = αI(p)(αI(t1), . . . , αI(tn))

I |= p(t1, . . . , tn) iff αI(p)(αI(t1), . . . , αI(tn)) is true.
I |= ¬φ iff I 6|= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

I |= ∃x .ψ, if there is some a ∈ DI , (DI , αI [x 7→ a]) |= ψ

I |= ∀x .φ, if for all a ∈ DI , (DI , αI [x 7→ a]) |= ψ.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 15 / 44

First-Order Logic - Semantic

When does an interpretation I = (DI , αI) satisfies a FOL formula φ, I |= φ?
I |= > and I 6|= ⊥
we evaluate a term t with αI(t), recursively:

I for a variable x αI(x), αI(a)
I αI(f (t1, . . . , tn)) = αI(f)(αI(t1), . . . , αI(tn))
I αI(p(t1, . . . , tn)) = αI(p)(αI(t1), . . . , αI(tn))

I |= p(t1, . . . , tn) iff αI(p)(αI(t1), . . . , αI(tn)) is true.

I |= ¬φ iff I 6|= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

I |= ∃x .ψ, if there is some a ∈ DI , (DI , αI [x 7→ a]) |= ψ

I |= ∀x .φ, if for all a ∈ DI , (DI , αI [x 7→ a]) |= ψ.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 15 / 44

First-Order Logic - Semantic

When does an interpretation I = (DI , αI) satisfies a FOL formula φ, I |= φ?
I |= > and I 6|= ⊥
we evaluate a term t with αI(t), recursively:

I for a variable x αI(x), αI(a)
I αI(f (t1, . . . , tn)) = αI(f)(αI(t1), . . . , αI(tn))
I αI(p(t1, . . . , tn)) = αI(p)(αI(t1), . . . , αI(tn))

I |= p(t1, . . . , tn) iff αI(p)(αI(t1), . . . , αI(tn)) is true.
I |= ¬φ iff I 6|= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

I |= ∃x .ψ, if there is some a ∈ DI , (DI , αI [x 7→ a]) |= ψ

I |= ∀x .φ, if for all a ∈ DI , (DI , αI [x 7→ a]) |= ψ.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 15 / 44

First-Order Logic - Semantic

When does an interpretation I = (DI , αI) satisfies a FOL formula φ, I |= φ?
I |= > and I 6|= ⊥
we evaluate a term t with αI(t), recursively:

I for a variable x αI(x), αI(a)
I αI(f (t1, . . . , tn)) = αI(f)(αI(t1), . . . , αI(tn))
I αI(p(t1, . . . , tn)) = αI(p)(αI(t1), . . . , αI(tn))

I |= p(t1, . . . , tn) iff αI(p)(αI(t1), . . . , αI(tn)) is true.
I |= ¬φ iff I 6|= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

I |= ∃x .ψ, if there is some a ∈ DI , (DI , αI [x 7→ a]) |= ψ

I |= ∀x .φ, if for all a ∈ DI , (DI , αI [x 7→ a]) |= ψ.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 15 / 44

First-Order Logic - Semantic

When does an interpretation I = (DI , αI) satisfies a FOL formula φ, I |= φ?
I |= > and I 6|= ⊥
we evaluate a term t with αI(t), recursively:

I for a variable x αI(x), αI(a)
I αI(f (t1, . . . , tn)) = αI(f)(αI(t1), . . . , αI(tn))
I αI(p(t1, . . . , tn)) = αI(p)(αI(t1), . . . , αI(tn))

I |= p(t1, . . . , tn) iff αI(p)(αI(t1), . . . , αI(tn)) is true.
I |= ¬φ iff I 6|= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

I |= ∃x .ψ, if there is some a ∈ DI , (DI , αI [x 7→ a]) |= ψ

I |= ∀x .φ, if for all a ∈ DI , (DI , αI [x 7→ a]) |= ψ.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 15 / 44

First-Order Logic - Semantic (Example)

formula 3 φ := x + y > z → y > z − x

interpretation I = (Z, αI):

αI := {x 7→ 13, y 7→ 2, z 7→ 4, >7→>Z,+ 7→ +Z,− 7→ −Z, . . .}

the truth value of φ under I is:
1 I |= x + y > 0 since I[x + y > 0] = 13Z +Z 42Z >Z 1Z
2 I |= y > z − x since I[y > z − x] = 42Z >Z 1Z −Z 13Z
3 I |= φ by 1,2, and the semantic of →

3Example 2.8 from [Bradley and Manna, 2007]
Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 16 / 44

First-Order Logic - Satisfiability and Validity

A FOL formula φ is:
satisfiable iff there exists and interpretation I such that I |= φ

valid iff for all interpretations I, I |= φ

Decidability results (see [Bradley and Manna, 2007]):
validity is semi-decidable: if φ is valid, then there exists a procedure that
eventually terminates and says yes
satisfiability is undecidable.

So, what can we do?

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 17 / 44

First-Order Logic - Satisfiability and Validity

A FOL formula φ is:
satisfiable iff there exists and interpretation I such that I |= φ

valid iff for all interpretations I, I |= φ

Decidability results (see [Bradley and Manna, 2007]):
validity is semi-decidable: if φ is valid, then there exists a procedure that
eventually terminates and says yes
satisfiability is undecidable.

So, what can we do?

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 17 / 44

Restricting the domains and interpretations of FOL

In a lot of cases we know the domains and operations appearing in the formulas.
For example:

planning with resources: integer or real numbers
numerical programs manipulating memory: arrays and integer numbers
microcode (of CPUs): bounded-length bit vectors
html web sanitizers: strings
. . .

If we restrict FOL to such domains and operations the satisfiability problem
becomes decidable.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 18 / 44

Restricting the domains and interpretations of FOL

In a lot of cases we know the domains and operations appearing in the formulas.
For example:

planning with resources: integer or real numbers
numerical programs manipulating memory: arrays and integer numbers
microcode (of CPUs): bounded-length bit vectors
html web sanitizers: strings
. . .

If we restrict FOL to such domains and operations first-order theories the
satisfiability problem becomes decidable.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 18 / 44

Restricting the domains and interpretations of FOL

In a lot of cases we know the domains and operations appearing in the formulas.
For example:

planning with resources: integer or real numbers
numerical programs manipulating memory: arrays and integer numbers
microcode (of CPUs): bounded-length bit vectors
html web sanitizers: strings
. . .

If we restrict FOL to such domains and operations first-order theories the
satisfiability problem for quantifier-free formulas becomes decidable.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 18 / 44

1 Satisfiability Modulo Theories and DPLL(T)
Why SMT?
The SMT problem

First-Order logic - Language and Semantic
SMT - Language and Semantic

Decision procedures for the SMT Problem
Lazy approach - the offline schema
Lazy approach - the online approach (DPPL(T))

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 19 / 44

First-Order Theories - Definition
Theory T
A theory T is defined with:

a signature Σ: set of constants, functions, predicates
a set of axioms A: set of closed FOL formulas (i.e., no free variables)
containing constants, functions, predicates from Σ

An Σ-formula φ is built only using constants, functions, predicates from Σ

Validity and Satisfiability
A Σ-formula φ is valid in the theory T (T -valid, written as |=T φ), if:

for all the interpretations I such that I satisfies all the axioms of T (i.e.,
I |=T A, for every axiom A ∈ A - this is called a T -interpretation)
I also satisfy φ (I |=T φ)

A Σ-formula φ is satisfiable in the theory T (T -satisfiable) if there exists a
T -interpretation such that I |=T φ

An example please!

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 20 / 44

First-Order Theories - Definition
Theory T
A theory T is defined with:

a signature Σ: set of constants, functions, predicates
a set of axioms A: set of closed FOL formulas (i.e., no free variables)
containing constants, functions, predicates from Σ

An Σ-formula φ is built only using constants, functions, predicates from Σ

Validity and Satisfiability
A Σ-formula φ is valid in the theory T (T -valid, written as |=T φ), if:

for all the interpretations I such that I satisfies all the axioms of T (i.e.,
I |=T A, for every axiom A ∈ A - this is called a T -interpretation)
I also satisfy φ (I |=T φ)

A Σ-formula φ is satisfiable in the theory T (T -satisfiable) if there exists a
T -interpretation such that I |=T φ

An example please!

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 20 / 44

First-Order Theories - Definition
Theory T
A theory T is defined with:

a signature Σ: set of constants, functions, predicates
a set of axioms A: set of closed FOL formulas (i.e., no free variables)
containing constants, functions, predicates from Σ

An Σ-formula φ is built only using constants, functions, predicates from Σ

Validity and Satisfiability
A Σ-formula φ is valid in the theory T (T -valid, written as |=T φ), if:

for all the interpretations I such that I satisfies all the axioms of T (i.e.,
I |=T A, for every axiom A ∈ A - this is called a T -interpretation)
I also satisfy φ (I |=T φ)

A Σ-formula φ is satisfiable in the theory T (T -satisfiable) if there exists a
T -interpretation such that I |=T φ

An example please!

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 20 / 44

Equalities and Uninterpreted functions

The Theory of Equalities and Uninterpreted functions TE is defined as:
the signature ΣE := {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}

I = is a binary predicate and is interpreted as the equality
I all the other function symbols in ΣE are not interpreted

the set of axioms A:
1 ∀x .x = x [reflexivity]
2 ∀x , y .x = y → y = x [symmetry]
3 ∀x , y , z .((x = y ∧ y = z)→ x = z) [transitivity]

4 Function and predicate congruence
F For each n ∈ N and n-ary function symbol f :

∀x1, . . . , xn, y1, . . . , yn.

(n∧
i=1

xi = xj

)
→ f (x1, . . . , xn) = f (y1, . . . , yn)

F For each n ∈ N and n-ary predicate symbol p:

∀x1, . . . , xn, y1, . . . , yn.

(n∧
i=1

xi = xj

)
→ p(x1, . . . , xn)↔ p(y1, . . . , yn)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 21 / 44

Equalities and Uninterpreted functions

The Theory of Equalities and Uninterpreted functions TE is defined as:
the signature ΣE := {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}

I = is a binary predicate and is interpreted as the equality
I all the other function symbols in ΣE are not interpreted

the set of axioms A:
1 ∀x .x = x [reflexivity]
2 ∀x , y .x = y → y = x [symmetry]
3 ∀x , y , z .((x = y ∧ y = z)→ x = z) [transitivity]

4 Function and predicate congruence
F For each n ∈ N and n-ary function symbol f :

∀x1, . . . , xn, y1, . . . , yn.

(n∧
i=1

xi = xj

)
→ f (x1, . . . , xn) = f (y1, . . . , yn)

F For each n ∈ N and n-ary predicate symbol p:

∀x1, . . . , xn, y1, . . . , yn.

(n∧
i=1

xi = xj

)
→ p(x1, . . . , xn)↔ p(y1, . . . , yn)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 21 / 44

Equalities and Uninterpreted functions

The Theory of Equalities and Uninterpreted functions TE is defined as:
the signature ΣE := {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}

I = is a binary predicate and is interpreted as the equality
I all the other function symbols in ΣE are not interpreted

the set of axioms A:
1 ∀x .x = x [reflexivity]
2 ∀x , y .x = y → y = x [symmetry]
3 ∀x , y , z .((x = y ∧ y = z)→ x = z) [transitivity]
4 Function and predicate congruence

F For each n ∈ N and n-ary function symbol f :

∀x1, . . . , xn, y1, . . . , yn.

(n∧
i=1

xi = xj

)
→ f (x1, . . . , xn) = f (y1, . . . , yn)

F For each n ∈ N and n-ary predicate symbol p:

∀x1, . . . , xn, y1, . . . , yn.

(n∧
i=1

xi = xj

)
→ p(x1, . . . , xn)↔ p(y1, . . . , yn)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 21 / 44

Equalities and Uninterpreted functions

The Theory of Equalities and Uninterpreted functions TE is defined as:
the signature ΣE := {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}

I = is a binary predicate and is interpreted as the equality
I all the other function symbols in ΣE are not interpreted

the set of axioms A:
1 ∀x .x = x [reflexivity]
2 ∀x , y .x = y → y = x [symmetry]
3 ∀x , y , z .((x = y ∧ y = z)→ x = z) [transitivity]
4 Function and predicate congruence

F For each n ∈ N and n-ary function symbol f :

∀x1, . . . , xn, y1, . . . , yn.

(n∧
i=1

xi = xj

)
→ f (x1, . . . , xn) = f (y1, . . . , yn)

F For each n ∈ N and n-ary predicate symbol p:

∀x1, . . . , xn, y1, . . . , yn.

(n∧
i=1

xi = xj

)
→ p(x1, . . . , xn)↔ p(y1, . . . , yn)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 21 / 44

Some concrete examples

a 6= b

Is sat?

Yes

Is valid?

No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?

Yes

Is valid?

Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?

Yes

Is valid?

Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?

No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?

Yes

Is valid?

Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?

Yes

Is valid?

Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?

Yes

Is valid?

Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?

Yes

Is valid?

Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?

Yes

Is valid?

Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?

Yes

Is valid?

Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?

Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?

Yes

Is valid?

Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?

Yes

Is valid?

Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?

Yes

Is valid?

Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?Yes Is valid?

Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?Yes Is valid?Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?Yes Is valid?Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?Yes Is valid?Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?No Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?Yes Is valid?Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?No Is valid?No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?Yes Is valid?Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?No Is valid?No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some concrete examples

a 6= b

Is sat?Yes Is valid?No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?Yes Is valid?Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?Yes Is valid?Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?No Is valid?No

Is the satisfiability of EUF-formulas decidable? More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 22 / 44

Some theories of interest I

Linear rational and Integer Arithmetic (LRA and LIA) - (week 3)

(x + y < 3 ∧ y > 2)→ x < 1

Used to model arithmetic (note that constraints are linear!)
Difference logic

(a− b ≤ 3 ∧ c − a ≤ 2) ∨ b − c ≤ 10

Used to model arithmetic (note the restrictions, only difference of 2
constants, no strict inequalities)
Reals (i.e., polynomial inequalities over the reals)

a2 + 3ab + c ≤ 3 ∨ a− b ≤ 2

Model geometric problems, problems in engineering, . . .

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 23 / 44

Some theories of interest II
Arrays

¬((write(a, i , v1) ∧ j = i + 1)→ (read(a, i) < read(a, j , v)))

Model unbounded memory in programs
Bit-Vectors - a bit-vector x[n] is a vector of bits of length n

x32[15 : 0] = y[16][7 : 0] :: y[16][15 : 8]

Model hardware operations and low-level software
Strings

y = “a′′ · x ∧ x = z · “b′′)→ y = “a′′ · w · “b′′

Model string constraints, for example for testing or security

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 24 / 44

Satisfiability Modulo Theory Problem

SMT Problem
The problem of deciding the satisfiability of quantifier-free formulas expressed in
some decidable first order theory T

Some remarks:
Usually quantifier-free formulas, but SMT solver can deal with quantifiers
(semi-decidable or focus on decidable subsets, like Effectively Propositional
Logic)
Also consider formulas obtained combining multiple theories, e.g.,
T1 ∪ T2 ∪ . . . ∪ Tn

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 25 / 44

1 Satisfiability Modulo Theories and DPLL(T)
Why SMT?
The SMT problem

First-Order logic - Language and Semantic
SMT - Language and Semantic

Decision procedures for the SMT Problem
Lazy approach - the offline schema
Lazy approach - the online approach (DPPL(T))

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 26 / 44

1 Satisfiability Modulo Theories and DPLL(T)
Why SMT?
The SMT problem

First-Order logic - Language and Semantic
SMT - Language and Semantic

Decision procedures for the SMT Problem
Lazy approach - the offline schema
Lazy approach - the online approach (DPPL(T))

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 27 / 44

How can we decide the SMT problem?
Assumption from here onwards:

φ is a quantifier-free formula
φ is in conjunctive normal form (CNF)

How can we decide the satisfiability of a ΣT -formula φ?

φ := (x > 3 ∨ x + y = 0) ∧ (y < 0 ∨ x < 3)

We can see φ as a Propositional formula (i.e., interpreting each theory
predicate as a Boolean predicate)

(P1 ∨ P2) ∧ (P3 ∨ P4)

We can enumerate all the µb Propositional models of (P1 ∨ P2) ∧ (P3 ∨ P4)

µb := {P1 7→ true,P2 7→ false,P3 7→ true,P4 7→ false}

For each model µb, we can check if the conjunction is consistent in the
theory T :

x > 3 ∧ ¬x + y = 0 ∧ y < 0 ∧ ¬x < 3
It’s satisfiable: µ := {x 7→ 4, y 7→ 0}

This is the lazy approach to SMT (e.g., see [Sebastiani, 2007])

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 28 / 44

How can we decide the SMT problem?
Assumption from here onwards:

φ is a quantifier-free formula
φ is in conjunctive normal form (CNF)

How can we decide the satisfiability of a ΣT -formula φ?

φ := (x > 3 ∨ x + y = 0) ∧ (y < 0 ∨ x < 3)

We can see φ as a Propositional formula (i.e., interpreting each theory
predicate as a Boolean predicate)

(P1 ∨ P2) ∧ (P3 ∨ P4)

We can enumerate all the µb Propositional models of (P1 ∨ P2) ∧ (P3 ∨ P4)

µb := {P1 7→ true,P2 7→ false,P3 7→ true,P4 7→ false}

For each model µb, we can check if the conjunction is consistent in the
theory T :

x > 3 ∧ ¬x + y = 0 ∧ y < 0 ∧ ¬x < 3
It’s satisfiable: µ := {x 7→ 4, y 7→ 0}

This is the lazy approach to SMT (e.g., see [Sebastiani, 2007])

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 28 / 44

How can we decide the SMT problem?
Assumption from here onwards:

φ is a quantifier-free formula
φ is in conjunctive normal form (CNF)

How can we decide the satisfiability of a ΣT -formula φ?

φ := (x > 3 ∨ x + y = 0) ∧ (y < 0 ∨ x < 3)

We can see φ as a Propositional formula (i.e., interpreting each theory
predicate as a Boolean predicate)

(P1 ∨ P2) ∧ (P3 ∨ P4)

We can enumerate all the µb Propositional models of (P1 ∨ P2) ∧ (P3 ∨ P4)

µb := {P1 7→ true,P2 7→ false,P3 7→ true,P4 7→ false}

For each model µb, we can check if the conjunction is consistent in the
theory T :

x > 3 ∧ ¬x + y = 0 ∧ y < 0 ∧ ¬x < 3
It’s satisfiable: µ := {x 7→ 4, y 7→ 0}

This is the lazy approach to SMT (e.g., see [Sebastiani, 2007])

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 28 / 44

How can we decide the SMT problem?
Assumption from here onwards:

φ is a quantifier-free formula
φ is in conjunctive normal form (CNF)

How can we decide the satisfiability of a ΣT -formula φ?

φ := (x > 3 ∨ x + y = 0) ∧ (y < 0 ∨ x < 3)

We can see φ as a Propositional formula (i.e., interpreting each theory
predicate as a Boolean predicate)

(P1 ∨ P2) ∧ (P3 ∨ P4)

We can enumerate all the µb Propositional models of (P1 ∨ P2) ∧ (P3 ∨ P4)

µb := {P1 7→ true,P2 7→ false,P3 7→ true,P4 7→ false}

For each model µb, we can check if the conjunction is consistent in the
theory T :

x > 3 ∧ ¬x + y = 0 ∧ y < 0 ∧ ¬x < 3
It’s satisfiable: µ := {x 7→ 4, y 7→ 0}

This is the lazy approach to SMT (e.g., see [Sebastiani, 2007])

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 28 / 44

How can we decide the SMT problem?
Assumption from here onwards:

φ is a quantifier-free formula
φ is in conjunctive normal form (CNF)

How can we decide the satisfiability of a ΣT -formula φ?

φ := (x > 3 ∨ x + y = 0) ∧ (y < 0 ∨ x < 3)

We can see φ as a Propositional formula (i.e., interpreting each theory
predicate as a Boolean predicate)

(P1 ∨ P2) ∧ (P3 ∨ P4)

We can enumerate all the µb Propositional models of (P1 ∨ P2) ∧ (P3 ∨ P4)

µb := {P1 7→ true,P2 7→ false,P3 7→ true,P4 7→ false}

For each model µb, we can check if the conjunction is consistent in the
theory T :

x > 3 ∧ ¬x + y = 0 ∧ y < 0 ∧ ¬x < 3
It’s satisfiable: µ := {x 7→ 4, y 7→ 0}

This is the lazy approach to SMT (e.g., see [Sebastiani, 2007])

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 28 / 44

Offline lazy approach to SMT solving

procedure T -DPLL-offline(φ)
φb := TOB(φ)
while true do
res, µb := DPLL(φb)
if res = true then
µ := TOT (µb)
res := T consistent(µ)
if res = true then

return SAT
else
φb := φb ∧ ¬µb

else
return UNSAT

Boolean reasoning: delegates the
enumeration to the DPLL (or CDCL
solver)
Theory reasoning: check consistency of
T -literals (simpler problem) with a
dedicated T -solver
Boolean reasoning: add a blocking clause
µb to avoid to “visit” the same Boolean
model

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 29 / 44

Offline lazy approach to SMT solving

procedure T -DPLL-offline(φ)
φb := TOB(φ)
while true do
res, µb := DPLL(φb)
if res = true then
µ := TOT (µb)
res := T consistent(µ)
if res = true then

return SAT
else
φb := φb ∧ ¬µb

else
return UNSAT

Boolean reasoning: delegates the
enumeration to the DPLL (or CDCL
solver)

Theory reasoning: check consistency of
T -literals (simpler problem) with a
dedicated T -solver
Boolean reasoning: add a blocking clause
µb to avoid to “visit” the same Boolean
model

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 29 / 44

Offline lazy approach to SMT solving

procedure T -DPLL-offline(φ)
φb := TOB(φ)
while true do
res, µb := DPLL(φb)
if res = true then
µ := TOT (µb)
res := T consistent(µ)
if res = true then

return SAT
else
φb := φb ∧ ¬µb

else
return UNSAT

Boolean reasoning: delegates the
enumeration to the DPLL (or CDCL
solver)
Theory reasoning: check consistency of
T -literals (simpler problem) with a
dedicated T -solver

Boolean reasoning: add a blocking clause
µb to avoid to “visit” the same Boolean
model

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 29 / 44

Offline lazy approach to SMT solving

procedure T -DPLL-offline(φ)
φb := TOB(φ)
while true do
res, µb := DPLL(φb)
if res = true then
µ := TOT (µb)
res := T consistent(µ)
if res = true then

return SAT
else
φb := φb ∧ ¬µb

else
return UNSAT

Boolean reasoning: delegates the
enumeration to the DPLL (or CDCL
solver)
Theory reasoning: check consistency of
T -literals (simpler problem) with a
dedicated T -solver
Boolean reasoning: add a blocking clause
µb to avoid to “visit” the same Boolean
model

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 29 / 44

Drawbacks of the offline approach

The offline approach “loosely” integrates the CDCL solver and the theory solvers:

Restart the Boolean search from scratch after blocking a model µb

loose learned clauses, arbitrary “restart”
Only blocks a complete model µb “weak” pruning of the search space

I What is the effect on the backjumping of CDCL?
I What is the effect on learning clauses?

Check for T -consistency of full models µ could be unsatisfiable “earlier”
I Can we detect unsatisfiability due to theory “earlier” in the search?
I Can we generalize Boolean constraint Propagation to the theory T ?

Could we have a tighter integration of CDCL and the T -Solver?

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 30 / 44

Drawbacks of the offline approach

The offline approach “loosely” integrates the CDCL solver and the theory solvers:
Restart the Boolean search from scratch after blocking a model µb

loose learned clauses, arbitrary “restart”

Only blocks a complete model µb “weak” pruning of the search space
I What is the effect on the backjumping of CDCL?
I What is the effect on learning clauses?

Check for T -consistency of full models µ could be unsatisfiable “earlier”
I Can we detect unsatisfiability due to theory “earlier” in the search?
I Can we generalize Boolean constraint Propagation to the theory T ?

Could we have a tighter integration of CDCL and the T -Solver?

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 30 / 44

Drawbacks of the offline approach

The offline approach “loosely” integrates the CDCL solver and the theory solvers:
Restart the Boolean search from scratch after blocking a model µb

loose learned clauses, arbitrary “restart”
Only blocks a complete model µb “weak” pruning of the search space

I What is the effect on the backjumping of CDCL?
I What is the effect on learning clauses?

Check for T -consistency of full models µ could be unsatisfiable “earlier”
I Can we detect unsatisfiability due to theory “earlier” in the search?
I Can we generalize Boolean constraint Propagation to the theory T ?

Could we have a tighter integration of CDCL and the T -Solver?

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 30 / 44

Drawbacks of the offline approach

The offline approach “loosely” integrates the CDCL solver and the theory solvers:
Restart the Boolean search from scratch after blocking a model µb

loose learned clauses, arbitrary “restart”
Only blocks a complete model µb “weak” pruning of the search space

I What is the effect on the backjumping of CDCL?
I What is the effect on learning clauses?

Check for T -consistency of full models µ could be unsatisfiable “earlier”
I Can we detect unsatisfiability due to theory “earlier” in the search?
I Can we generalize Boolean constraint Propagation to the theory T ?

Could we have a tighter integration of CDCL and the T -Solver?

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 30 / 44

The online approach - DPLL(T)

procedure DPLL-T (φ)
May pre-process φ (e.g., propaga-

tion)
µ := ∅
φb := TOB(φ);µ

b = TOB(µ)
while true do
T − Decide(φb, µb)
while true do

res := T − Deduce(φb)
if res = true then
µ := TOT (µb)
return SAT

else if res = conflict then
lvl := T − Analyze(φb, µb)
if lvl = 0 then

return UNSAT
else
T −Backtrack(lvl , φb, µb)

Similar architecture to CDCL, but integrates the the-
ory reasoning:

decision: choose an unassigned literal l from
φb (similar to DPLL)

deduce: iteratively deduces a literal lb s.t.
φb ∧ µb |= lb

I In case, add l to µ and check the
consistency of µ (in the theory)

I Optimized with T -propagation and
early pruning.

analyze: detect the conflict clauses and
determines the decision level to backtrack to.

I Produces also a theory conflicts

backtrack: block the conflict clause and
bactracks to the level lvl (similar to DPLL)

I T -backjumping and T -learning

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 31 / 44

The online approach - DPLL(T)

procedure DPLL-T (φ)
May pre-process φ (e.g., propaga-

tion)
µ := ∅
φb := TOB(φ);µ

b = TOB(µ)
while true do
T − Decide(φb, µb)
while true do

res := T − Deduce(φb)
if res = true then
µ := TOT (µb)
return SAT

else if res = conflict then
lvl := T − Analyze(φb, µb)
if lvl = 0 then

return UNSAT
else
T −Backtrack(lvl , φb, µb)

Similar architecture to CDCL, but integrates the the-
ory reasoning:

decision: choose an unassigned literal l from
φb (similar to DPLL)

deduce: iteratively deduces a literal lb s.t.
φb ∧ µb |= lb

I In case, add l to µ and check the
consistency of µ (in the theory)

I Optimized with T -propagation and
early pruning.

analyze: detect the conflict clauses and
determines the decision level to backtrack to.

I Produces also a theory conflicts

backtrack: block the conflict clause and
bactracks to the level lvl (similar to DPLL)

I T -backjumping and T -learning

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 31 / 44

The online approach - DPLL(T)

procedure DPLL-T (φ)
May pre-process φ (e.g., propaga-

tion)
µ := ∅
φb := TOB(φ);µ

b = TOB(µ)
while true do
T − Decide(φb, µb)
while true do

res := T − Deduce(φb)
if res = true then
µ := TOT (µb)
return SAT

else if res = conflict then
lvl := T − Analyze(φb, µb)
if lvl = 0 then

return UNSAT
else
T −Backtrack(lvl , φb, µb)

Similar architecture to CDCL, but integrates the the-
ory reasoning:

decision: choose an unassigned literal l from
φb (similar to DPLL)

deduce: iteratively deduces a literal lb s.t.
φb ∧ µb |= lb

I In case, add l to µ and check the
consistency of µ (in the theory)

I Optimized with T -propagation and
early pruning.

analyze: detect the conflict clauses and
determines the decision level to backtrack to.

I Produces also a theory conflicts

backtrack: block the conflict clause and
bactracks to the level lvl (similar to DPLL)

I T -backjumping and T -learning

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 31 / 44

The online approach - DPLL(T)

procedure DPLL-T (φ)
May pre-process φ (e.g., propaga-

tion)
µ := ∅
φb := TOB(φ);µ

b = TOB(µ)
while true do
T − Decide(φb, µb)
while true do

res := T − Deduce(φb)
if res = true then
µ := TOT (µb)
return SAT

else if res = conflict then
lvl := T − Analyze(φb, µb)
if lvl = 0 then

return UNSAT
else
T −Backtrack(lvl , φb, µb)

Similar architecture to CDCL, but integrates the the-
ory reasoning:

decision: choose an unassigned literal l from
φb (similar to DPLL)

deduce: iteratively deduces a literal lb s.t.
φb ∧ µb |= lb

I In case, add l to µ and check the
consistency of µ (in the theory)

I Optimized with T -propagation and
early pruning.

analyze: detect the conflict clauses and
determines the decision level to backtrack to.

I Produces also a theory conflicts

backtrack: block the conflict clause and
bactracks to the level lvl (similar to DPLL)

I T -backjumping and T -learning

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 31 / 44

The online approach - DPLL(T)

procedure DPLL-T (φ)
May pre-process φ (e.g., propaga-

tion)
µ := ∅
φb := TOB(φ);µ

b = TOB(µ)
while true do
T − Decide(φb, µb)
while true do

res := T − Deduce(φb)
if res = true then
µ := TOT (µb)
return SAT

else if res = conflict then
lvl := T − Analyze(φb, µb)
if lvl = 0 then

return UNSAT
else
T −Backtrack(lvl , φb, µb)

Similar architecture to CDCL, but integrates the the-
ory reasoning:

decision: choose an unassigned literal l from
φb (similar to DPLL)

deduce: iteratively deduces a literal lb s.t.
φb ∧ µb |= lb

I In case, add l to µ and check the
consistency of µ (in the theory)

I Optimized with T -propagation and
early pruning.

analyze: detect the conflict clauses and
determines the decision level to backtrack to.

I Produces also a theory conflicts

backtrack: block the conflict clause and
bactracks to the level lvl (similar to DPLL)

I T -backjumping and T -learning

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 31 / 44

T -backjumping and T -learning

When we invoke the T -solver on an assignment µ, and µ is not consistent:
we would like to infer a small subset ν ⊆ µ such that ν is not consistent (i.e.,
ν is a conflict set)

a smaller ν can reduce more the search space

we can use ¬νb to guide the conflict analysis of CDCL
In practice, we can consider T -propagations (see later) as unit-propagation in
the implication graph.
¬νb can be learned as a conflict clause by the sat solver

Ideally, the T -solver should search for a minimal conflict set ν ⊆ µ
in practice, finding a minimal set ν is expensive
T -solvers compromise performance and size of the conflict set ν

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 32 / 44

T -backjumping and T -learning

When we invoke the T -solver on an assignment µ, and µ is not consistent:
we would like to infer a small subset ν ⊆ µ such that ν is not consistent (i.e.,
ν is a conflict set)

a smaller ν can reduce more the search space

we can use ¬νb to guide the conflict analysis of CDCL
In practice, we can consider T -propagations (see later) as unit-propagation in
the implication graph.

¬νb can be learned as a conflict clause by the sat solver

Ideally, the T -solver should search for a minimal conflict set ν ⊆ µ
in practice, finding a minimal set ν is expensive
T -solvers compromise performance and size of the conflict set ν

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 32 / 44

T -backjumping and T -learning

When we invoke the T -solver on an assignment µ, and µ is not consistent:
we would like to infer a small subset ν ⊆ µ such that ν is not consistent (i.e.,
ν is a conflict set)

a smaller ν can reduce more the search space

we can use ¬νb to guide the conflict analysis of CDCL
In practice, we can consider T -propagations (see later) as unit-propagation in
the implication graph.
¬νb can be learned as a conflict clause by the sat solver

Ideally, the T -solver should search for a minimal conflict set ν ⊆ µ
in practice, finding a minimal set ν is expensive
T -solvers compromise performance and size of the conflict set ν

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 32 / 44

T -Backjumping and T -Learning

Examples 4 over the theory of Linear Integer Arithmetic:

¬(2x2 − x3 > 2) ∨ A1 ¬B1 ∨ A1

¬A2 ∨ x1− x5 ≤ 1 ¬A2 ∨ B2

3x1 − 2x2 ≤ 3 ∨ A2 B3 ∨ A2

¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1 ¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ 3x1 − 2x2 ≤ 3 A1 ∨ B3

x2 − x4 ≤ 6 ∨ x5 = 5− 3x4 ∨ ¬A1 B6 ∨ B7 ∨ ¬A1

A1 ∨ x3 = 3x5 + 4 ∨ A2 A1 ∨ B8 ∨ A2

µb := ¬B5,B8,B6,¬B1,¬B3,A1,A2,B2

¬B5 ∧ B8 ∧ B2 is inconsistent in the theory.
We have a conflict clause B5 ∨ ¬B8 ∨ ¬B2

The solver backtracks removing all literals up to
{¬B5,B8}.

4Example 5.2 [Sebastiani, 2007]
Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 33 / 44

T -Backjumping and T -Learning

Examples 4 over the theory of Linear Integer Arithmetic:

¬(2x2 − x3 > 2) ∨ A1 ¬B1 ∨ A1

¬A2 ∨ x1− x5 ≤ 1 ¬A2 ∨ B2

3x1 − 2x2 ≤ 3 ∨ A2 B3 ∨ A2

¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1 ¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ 3x1 − 2x2 ≤ 3 A1 ∨ B3

x2 − x4 ≤ 6 ∨ x5 = 5− 3x4 ∨ ¬A1 B6 ∨ B7 ∨ ¬A1

A1 ∨ x3 = 3x5 + 4 ∨ A2 A1 ∨ B8 ∨ A2

µb := ¬B5,B8,B6,¬B1,¬B3,A1,A2,B2

¬B5 ∧ B8 ∧ B2 is inconsistent in the theory.
We have a conflict clause B5 ∨ ¬B8 ∨ ¬B2

The solver backtracks removing all literals up to
{¬B5,B8}.

4Example 5.2 [Sebastiani, 2007]
Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 33 / 44

T -Backjumping and T -Learning

Examples 4 over the theory of Linear Integer Arithmetic:

¬(2x2 − x3 > 2) ∨ A1 ¬B1 ∨ A1

¬A2 ∨ x1− x5 ≤ 1 ¬A2 ∨ B2

3x1 − 2x2 ≤ 3 ∨ A2 B3 ∨ A2

¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1 ¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ 3x1 − 2x2 ≤ 3 A1 ∨ B3

x2 − x4 ≤ 6 ∨ x5 = 5− 3x4 ∨ ¬A1 B6 ∨ B7 ∨ ¬A1

A1 ∨ x3 = 3x5 + 4 ∨ A2 A1 ∨ B8 ∨ A2

µb := ¬B5,B8,B6,¬B1,¬B3,A1,A2,B2

¬B5 ∧ B8 ∧ B2 is inconsistent in the theory.
We have a conflict clause B5 ∨ ¬B8 ∨ ¬B2

The solver backtracks removing all literals up to
{¬B5,B8}.

4Example 5.2 [Sebastiani, 2007]
Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 33 / 44

Early Pruning

Check the T -consistency of each partial assignment found by CDCL
Backtrack immediately if the assignment is not consitent
Main advantage: prunes the search space

Technical considerations:
Requires an incremental and backtrackable T -solver
Checking consistency for every decision is not cheap!
Heuristics, use incomplete but cheap consistency checks (e.g., simplex on
integer arithmetic)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 34 / 44

T -Propagation

Used in T − decide to deduce the value of unassigned literals:
I When the current (partial) assignment µ is satisfiable
I The T -solver can return a set ν of unassigned literals such that µ |=T ν
I T -Propagation can unit propagate the implied ν (similarly to Boolean

Constraint Propagation)

¬(2x2 − x3 > 2) ∨ A1 ¬B1 ∨ A1

¬A2 ∨ x1− x5 ≤ 1 ¬A2 ∨ B2

3x1 − 2x2 ≤ 3 ∨ A2 B3 ∨ A2

¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1 ¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ 3x1 − 2x2 ≤ 3 A1 ∨ B3

x2 − x4 ≤ 6 ∨ x5 = 5− 3x4 ∨ ¬A1 B6 ∨ B7 ∨ ¬A1

A1 ∨ x3 = 3x5 + 4 ∨ A2 A1 ∨ B8 ∨ A2

µb := ¬B5,B8,B6,¬B1

¬(3x1 − x3 ≤ 6) ∧ x3 = 3x5 + 4 ∧ x2 − x4 ≤
6 ∧ (2x2 − x3 > 2) |=T ¬(3x1 − 2x2 ≤ 3)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 35 / 44

T -Propagation

Used in T − decide to deduce the value of unassigned literals:
I When the current (partial) assignment µ is satisfiable
I The T -solver can return a set ν of unassigned literals such that µ |=T ν
I T -Propagation can unit propagate the implied ν (similarly to Boolean

Constraint Propagation)

¬(2x2 − x3 > 2) ∨ A1 ¬B1 ∨ A1

¬A2 ∨ x1− x5 ≤ 1 ¬A2 ∨ B2

3x1 − 2x2 ≤ 3 ∨ A2 B3 ∨ A2

¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1 ¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ 3x1 − 2x2 ≤ 3 A1 ∨ B3

x2 − x4 ≤ 6 ∨ x5 = 5− 3x4 ∨ ¬A1 B6 ∨ B7 ∨ ¬A1

A1 ∨ x3 = 3x5 + 4 ∨ A2 A1 ∨ B8 ∨ A2

µb := ¬B5,B8,B6,¬B1

¬(3x1 − x3 ≤ 6) ∧ x3 = 3x5 + 4 ∧ x2 − x4 ≤
6 ∧ (2x2 − x3 > 2) |=T ¬(3x1 − 2x2 ≤ 3)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 35 / 44

T -Propagation

Used in T − decide to deduce the value of unassigned literals:
I When the current (partial) assignment µ is satisfiable
I The T -solver can return a set ν of unassigned literals such that µ |=T ν
I T -Propagation can unit propagate the implied ν (similarly to Boolean

Constraint Propagation)

¬(2x2 − x3 > 2) ∨ A1 ¬B1 ∨ A1

¬A2 ∨ x1− x5 ≤ 1 ¬A2 ∨ B2

3x1 − 2x2 ≤ 3 ∨ A2 B3 ∨ A2

¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1 ¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ 3x1 − 2x2 ≤ 3 A1 ∨ B3

x2 − x4 ≤ 6 ∨ x5 = 5− 3x4 ∨ ¬A1 B6 ∨ B7 ∨ ¬A1

A1 ∨ x3 = 3x5 + 4 ∨ A2 A1 ∨ B8 ∨ A2

µb := ¬B5,B8,B6,¬B1

¬(3x1 − x3 ≤ 6) ∧ x3 = 3x5 + 4 ∧ x2 − x4 ≤
6 ∧ (2x2 − x3 > 2) |=T ¬(3x1 − 2x2 ≤ 3)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 35 / 44

Other Approaches to the SMT problem

The eager approach to SMT: convert the problem to a SAT problem
Used to decide formulas over the bit-vector theory.

Abstract DPLL: abstract formulation of DPLL as a transition system
Allow to reason about the properties of different variants of the algorith (e.g.,
correctness, completeness, termination)
Model-Constructing Satisfiability:

I Assignments (e.g., decisions) to theory variables, not just Propositional
i.e., no Boolean abstraction anymore, and no enumeration of the models of
the Boolean Abstraction.

I Decisions and explanations can be done for new atoms (obtained from
unsatisfiable proofs)

I Several implementation, efficient for Non-Linear Real Arithmetic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 36 / 44

Other Approaches to the SMT problem

The eager approach to SMT: convert the problem to a SAT problem
Used to decide formulas over the bit-vector theory.
Abstract DPLL: abstract formulation of DPLL as a transition system
Allow to reason about the properties of different variants of the algorith (e.g.,
correctness, completeness, termination)

Model-Constructing Satisfiability:
I Assignments (e.g., decisions) to theory variables, not just Propositional

i.e., no Boolean abstraction anymore, and no enumeration of the models of
the Boolean Abstraction.

I Decisions and explanations can be done for new atoms (obtained from
unsatisfiable proofs)

I Several implementation, efficient for Non-Linear Real Arithmetic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 36 / 44

Other Approaches to the SMT problem

The eager approach to SMT: convert the problem to a SAT problem
Used to decide formulas over the bit-vector theory.
Abstract DPLL: abstract formulation of DPLL as a transition system
Allow to reason about the properties of different variants of the algorith (e.g.,
correctness, completeness, termination)
Model-Constructing Satisfiability:

I Assignments (e.g., decisions) to theory variables, not just Propositional
i.e., no Boolean abstraction anymore, and no enumeration of the models of
the Boolean Abstraction.

I Decisions and explanations can be done for new atoms (obtained from
unsatisfiable proofs)

I Several implementation, efficient for Non-Linear Real Arithmetic

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 36 / 44

To sum up

What did we see today:
SMT is a fundamental tool in several area (e.g., verification, program
analysis, planning, . . .)
Satisfiability of (full) First Order logic is undecidable - so what can we do?
Theories allow us to have decision procedures - motivation to look at the
SMT problem
The lazy approach to SMT: best of both words (CDCL SAT solver) and
efficient theory solvers

Next week: how to decide consistency for the theory of Equalities and
Uninterpreted Functions

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 37 / 44

References I

Barnett, M., Chang, B. E., DeLine, R., Jacobs, B., and Leino, K. R. M.
(2005).
Boogie: A modular reusable verifier for object-oriented programs.
In de Boer, F. S., Bonsangue, M. M., Graf, S., and de Roever, W. P., editors,
Formal Methods for Components and Objects, 4th International Symposium,
FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised
Lectures, volume 4111 of Lecture Notes in Computer Science, pages 364–387.
Springer.

Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C. (2009).
Satisfiability modulo theories.
In Biere, A., Heule, M., van Maaren, H., and Walsh, T., editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 825–885. IOS Press.

Bradley, A. R. and Manna, Z. (2007).
The calculus of computation - decision procedures with applications to
verification.
Springer.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 38 / 44

References II

Cashmore, M., Magazzeni, D., and Zehtabi, P. (2020).
Planning for hybrid systems via satisfiability modulo theories.
J. Artif. Intell. Res., 67:235–283.

Cimatti, A., Do, M., Micheli, A., Roveri, M., and Smith, D. E. (2018).
Strong temporal planning with uncontrollable durations.
Artif. Intell., 256:1–34.

Cimatti, A., Griggio, A., Mover, S., and Tonetta, S. (2015).
Hycomp: An smt-based model checker for hybrid systems.
In Baier, C. and Tinelli, C., editors, Tools and Algorithms for the Construction
and Analysis of Systems - 21st International Conference, TACAS 2015, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume
9035 of Lecture Notes in Computer Science, pages 52–67. Springer.

Cimatti, A., Griggio, A., Mover, S., and Tonetta, S. (2016).
Infinite-state invariant checking with IC3 and predicate abstraction.
Formal Methods Syst. Des., 49(3):190–218.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 39 / 44

References III

de Moura, L. M. and Bjørner, N. (2011).
Satisfiability modulo theories: introduction and applications.
Commun. ACM, 54(9):69–77.

Dutertre, B., Jovanovic, D., and Navas, J. A. (2018).
Verification of fault-tolerant protocols with sally.
In Dutle, A., Muñoz, C. A., and Narkawicz, A., editors, NASA Formal
Methods - 10th International Symposium, NFM 2018, Newport News, VA,
USA, April 17-19, 2018, Proceedings, volume 10811 of Lecture Notes in
Computer Science, pages 113–120. Springer.

Filliâtre, J.-C. and Paskevich, A. (2013).
Why3 — where programs meet provers.
In Felleisen, M. and Gardner, P., editors, Proceedings of the 22nd European
Symposium on Programming, volume 7792 of Lecture Notes in Computer
Science, pages 125–128. Springer.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 40 / 44

References IV

Godefroid, P., Klarlund, N., and Sen, K. (2005).
DART: directed automated random testing.
In Sarkar, V. and Hall, M. W., editors, Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, pages 213–223. ACM.

Godefroid, P., Levin, M. Y., and Molnar, D. A. (2012).
SAGE: whitebox fuzzing for security testing.
Commun. ACM, 55(3):40–44.

Henzinger, T. A., Jhala, R., Majumdar, R., and McMillan, K. L. (2004).
Abstractions from proofs.
In Jones, N. D. and Leroy, X., editors, Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2004, Venice, Italy, January 14-16, 2004, pages 232–244. ACM.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 41 / 44

References V

Jha, S., Gulwani, S., Seshia, S. A., and Tiwari, A. (2010).
Oracle-guided component-based program synthesis.
In Kramer, J., Bishop, J., Devanbu, P. T., and Uchitel, S., editors,
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010,
pages 215–224. ACM.

Leino, K. R. M. (2010).
Dafny: An automatic program verifier for functional correctness.
In Clarke, E. M. and Voronkov, A., editors, Logic for Programming, Artificial
Intelligence, and Reasoning - 16th International Conference, LPAR-16, Dakar,
Senegal, April 25-May 1, 2010, Revised Selected Papers, volume 6355 of
Lecture Notes in Computer Science, pages 348–370. Springer.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 42 / 44

References VI

McMillan, K. L. and Padon, O. (2020).
Ivy: A multi-modal verification tool for distributed algorithms.
In Lahiri, S. K. and Wang, C., editors, Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer
Science, pages 190–202. Springer.

Mechtaev, S., Yi, J., and Roychoudhury, A. (2016).
Angelix: scalable multiline program patch synthesis via symbolic analysis.
In Dillon, L. K., Visser, W., and Williams, L. A., editors, Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016, pages 691–701. ACM.

Sebastiani, R. (2007).
Lazy satisability modulo theories.
J. Satisf. Boolean Model. Comput., 3(3-4):141–224.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 43 / 44

References VII

Wolfman, S. A. and Weld, D. S. (1999).
The LPSAT engine & its application to resource planning.
In Dean, T., editor, Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 -
August 6, 1999. 2 Volumes, 1450 pages, pages 310–317. Morgan Kaufmann.

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 44 / 44

	Satisfiability Modulo Theories and DPLL(T)
	Why SMT?
	The SMT problem
	Decision procedures for the SMT Problem

