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About the “second part” of IA303
Contact information:

via email: sergio.mover <at> lix.polytechnique.fr
“on-demand” office hours: Friday from 2pm to 3pm
Get in touch also if you are interested in research in:

I Formal methods (formal verification, decision procedures, . . . )
I Artificial intelligence (mainly related to the use logics, symbolic AI, planning,

. . . )
I Cyber-Physical systems (e.g., hybrid systems, . . . )

In the next 4 classes:
Introduction to Satisfiability Modulo Theories (SMT) (week 4, today)
How some theory solvers works: EUF (week 5) and LRA/LIA (week 6)
Some applications of SMT in formal verification (week 7)

Main take-away points:
SMT is a powerful and mature tool, with wide applications
How to formalize a problem in SMT and use an SMT solver
How an SMT solver works and why is it efficient (despite the problem
complexity)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 2 / 44



About the “second part” of IA303
Contact information:

via email: sergio.mover <at> lix.polytechnique.fr
“on-demand” office hours: Friday from 2pm to 3pm
Get in touch also if you are interested in research in:

I Formal methods (formal verification, decision procedures, . . . )
I Artificial intelligence (mainly related to the use logics, symbolic AI, planning,

. . . )
I Cyber-Physical systems (e.g., hybrid systems, . . . )

In the next 4 classes:
Introduction to Satisfiability Modulo Theories (SMT) (week 4, today)
How some theory solvers works: EUF (week 5) and LRA/LIA (week 6)
Some applications of SMT in formal verification (week 7)

Main take-away points:
SMT is a powerful and mature tool, with wide applications
How to formalize a problem in SMT and use an SMT solver
How an SMT solver works and why is it efficient (despite the problem
complexity)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 2 / 44



About the “second part” of IA303
Contact information:

via email: sergio.mover <at> lix.polytechnique.fr
“on-demand” office hours: Friday from 2pm to 3pm
Get in touch also if you are interested in research in:

I Formal methods (formal verification, decision procedures, . . . )
I Artificial intelligence (mainly related to the use logics, symbolic AI, planning,

. . . )
I Cyber-Physical systems (e.g., hybrid systems, . . . )

In the next 4 classes:
Introduction to Satisfiability Modulo Theories (SMT) (week 4, today)
How some theory solvers works: EUF (week 5) and LRA/LIA (week 6)
Some applications of SMT in formal verification (week 7)

Main take-away points:
SMT is a powerful and mature tool, with wide applications
How to formalize a problem in SMT and use an SMT solver
How an SMT solver works and why is it efficient (despite the problem
complexity)

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 2 / 44



Lecture 4: Satisfiability Modulo Theories
and DPLL(T )
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Main goals for today
In class1:

Why and where do we use Satisfiability Modulo Theories (SMT)?
What is SMT precisely?
How can we efficiently decide the SMT problem?

In the tutorial:
How do you use an SMT solver?
How do you formalize a problem (i.e., encode) as an SMT problem?
How can you write a program that uses an SMT solver?
How can you automate the encoding generation for a class of problems?

1Main references:

The Calculus of Computation [Bradley and Manna, 2007], Chapter 2 (First-Order Logic)
and Chapter 3 (First-Order Theories)

Satisfiability Modulo Theories [Barrett et al., 2009]

Lazy Satisfiability Modulo Theories [Sebastiani, 2007]

Satisfiability modulo theories: introduction and applications [de Moura and Bjørner, 2011]
- CACM article, good first reading!
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1 Satisfiability Modulo Theories and DPLL(T )
Why SMT?
The SMT problem

First-Order logic - Language and Semantic
SMT - Language and Semantic

Decision procedures for the SMT Problem
Lazy approach - the offline schema
Lazy approach - the online approach (DPPL(T ))
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SMT in a nutshell - informal intuition

Extend of the propositional satisfiability problem to represent specific
domains. For example, real numbers:

(x − y ≥ 0 ∨ x < 0) ∧ y > 0

There are more theories: bitvectors, rational and integers linear arithmetic ,
uninterpreted functions, arrays, strings, separation logics, floating point
arithmetic, . . .
SMT is an expressive language.
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What problems can we solve with SMT?
We use SMT to express different have constraints satisfaction problems for several
applications:

Formal Verification for software, hardware, cyber-physical systems, protocols,
neural networks (e.g., [Henzinger et al., 2004, McMillan and Padon, 2020,
Dutertre et al., 2018, Cimatti et al., 2016, Cimatti et al., 2015])

Static program analysis (e.g.,
[Filliâtre and Paskevich, 2013, Barnett et al., 2005, Leino, 2010])
Test-case generation (e.g., [Godefroid et al., 2012, Godefroid et al., 2005])
Automatic program repair (e.g., [Mechtaev et al., 2016])
Automatic program synthesis (e.g., [Jha et al., 2010])
Planning (e.g.,
[Wolfman and Weld, 1999, Cashmore et al., 2020, Cimatti et al., 2018])
. . .

Active area of research!
With applications in formal methods, programming languages, software

engineering, AI, . . .
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Software verification
f l o a t weighted_sum ( uns igned i n t x ,

uns igned i n t y ) {
uns igned i n t i ;
f l o a t sum ;

i f ( y > x ) { // swap x and y
x = x^y ; y = y^x ; x = x^y ;

}

sum = 0 ;
f o r ( i = 0 ; i <= ( x−y )−1; ++i ) {

f l o a t tmp ;
tmp = ( ( i + 1) ) / ( x − y ) ;
sum = sum + tmp ;

}

r e t u r n sum ;
}

Compute
∑|x−y |

i=1

(
i

|x−y |
)

Is the implementation correct?

What if x = 5, y = 3?

1.0 instead of 1.5

What if x = y?

Infinite loop!

Need automatic tool to verify
that (x − y)− 1 >= 0

Software verification uses SMT to faithfully model the program semantic
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First-Order Logic
Extends Propositional Logic with predicates,functions, and quantifiers to reason

about infinite domains.

Syntax
A term t is either:

A constant a, b, c , . . . , 0, 1, . . .

(or a 0-ary function)

A variable x , y , z , . . .
An n-ary function f (t1, . . . , fn)

An n-ary predicate p is p(t1, . . . , pn)

0-ary predicates are Propositional variables (denoted with P,Q, . . . )
An atom a is either true >, false ⊥, or a predicate p.
A FOL formula φ is either:

an atom a
¬ψ, with ψ a FOL formula
ψ1 ∧ ψ2, with ψ1 and ψ2 FOL formulas.
Other operators: ψ1 ∨ ψ2 := ¬(¬ψ1 ∧ ¬ψ2), ψ1 → ψ2 := ¬ψ1 ∨ ψ2

∃x .ψ, with x a variable and ψ a FOL formula
∀x .φ, with x a variable and ψ a FOL formula

We will “almost always” avoid quantifiers
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First-Order Logic - Some examples of syntax

Terms:
I 1, a, b are constants
I x , y , z are variables
I f (x), g(x , z), and g(f (x), y) are functions

Predicates
I p(a, b), p(a, f (x)), q(x , y)

FOL formulas
I p(a, b)
I ¬p(a, b)
I (p(a, b) ∧ q(x , y))
I ∀x .x = y ∧ f (x , y)
I ∀x .∃y .(x = y → f (x) = f (y))
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Predicates
I p(a, b), p(a, f (x)), q(x , y)

FOL formulas
I p(a, b)
I ¬p(a, b)
I (p(a, b) ∧ q(x , y))
I ∀x .x = y ∧ f (x , y)
I ∀x .∃y .(x = y → f (x) = f (y))
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First-Order Logic - Semantic

While Propositional Logic evaluates over true and false, in FOL we have domains
and assignments .

A FOL Interpretation I is the pair I = (DI , αI):

DI is the domain of I: it’s a non-empty set of elements (e.g., values,
objects, . . . )
αI is an assignment that maps constants, functions, and predicates to
elements, functions, and predicates of DI :

αI(x) := xI xI ∈ DI
αI(f ) := fI fI : Dn

I → DI
Note that constants are 0-ary functions!αI(p) := pI pI : Dn

I → {true, false}
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First-Order Logic - an example of interpretation

Consider the FOL formula 2: x + y > z → y > z − x

A possible intepretation over the interger numbers Z
I DI = Z = {. . . ,−2,−1, 0, 1, 2, . . .}
I the function +, − are assigned to the the plus and minus function in Z (i.e.,

+Z,−Z)
I the predicates > is assigned to >Z
I x , y , z are 0-ary functions of integer type
I αI := {x 7→ 13, y 7→ 2, z 7→ 4, > 7→>Z,+ 7→ +Z,− 7→ −Z, . . .}

2Example 2.7 from [Bradley and Manna, 2007]
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First-Order Logic - Semantic

When does an interpretation I = (DI , αI) satisfies a FOL formula φ, I |= φ?

I |= > and I 6|= ⊥
we evaluate a term t with αI(t), recursively:

I for a variable x αI(x), αI(a)
I αI(f (t1, . . . , tn)) = αI(f )(αI(t1), . . . , αI(tn))
I αI(p(t1, . . . , tn)) = αI(p)(αI(t1), . . . , αI(tn))

I |= p(t1, . . . , tn) iff αI(p)(αI(t1), . . . , αI(tn)) is true.
I |= ¬φ iff I 6|= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

I |= ∃x .ψ, if there is some a ∈ DI , (DI , αI [x 7→ a]) |= ψ

I |= ∀x .φ, if for all a ∈ DI , (DI , αI [x 7→ a]) |= ψ.
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First-Order Logic - Semantic (Example)

formula 3 φ := x + y > z → y > z − x

interpretation I = (Z, αI):

αI := {x 7→ 13, y 7→ 2, z 7→ 4, >7→>Z,+ 7→ +Z,− 7→ −Z, . . .}

the truth value of φ under I is:
1 I |= x + y > 0 since I[x + y > 0] = 13Z +Z 42Z >Z 1Z
2 I |= y > z − x since I[y > z − x ] = 42Z >Z 1Z −Z 13Z
3 I |= φ by 1,2, and the semantic of →

3Example 2.8 from [Bradley and Manna, 2007]
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First-Order Logic - Satisfiability and Validity

A FOL formula φ is:
satisfiable iff there exists and interpretation I such that I |= φ

valid iff for all interpretations I, I |= φ

Decidability results (see [Bradley and Manna, 2007]):
validity is semi-decidable: if φ is valid, then there exists a procedure that
eventually terminates and says yes
satisfiability is undecidable.

So, what can we do?
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Restricting the domains and interpretations of FOL

In a lot of cases we know the domains and operations appearing in the formulas.
For example:

planning with resources: integer or real numbers
numerical programs manipulating memory: arrays and integer numbers
microcode (of CPUs): bounded-length bit vectors
html web sanitizers: strings
. . .

If we restrict FOL to such domains and operations the satisfiability problem
becomes decidable.
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In a lot of cases we know the domains and operations appearing in the formulas.
For example:

planning with resources: integer or real numbers
numerical programs manipulating memory: arrays and integer numbers
microcode (of CPUs): bounded-length bit vectors
html web sanitizers: strings
. . .

If we restrict FOL to such domains and operations first-order theories the
satisfiability problem for quantifier-free formulas becomes decidable.
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1 Satisfiability Modulo Theories and DPLL(T )
Why SMT?
The SMT problem

First-Order logic - Language and Semantic
SMT - Language and Semantic

Decision procedures for the SMT Problem
Lazy approach - the offline schema
Lazy approach - the online approach (DPPL(T ))
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First-Order Theories - Definition
Theory T
A theory T is defined with:

a signature Σ: set of constants, functions, predicates
a set of axioms A: set of closed FOL formulas (i.e., no free variables)
containing constants, functions, predicates from Σ

An Σ-formula φ is built only using constants, functions, predicates from Σ

Validity and Satisfiability
A Σ-formula φ is valid in the theory T (T -valid, written as |=T φ), if:

for all the interpretations I such that I satisfies all the axioms of T (i.e.,
I |=T A, for every axiom A ∈ A - this is called a T -interpretation)
I also satisfy φ (I |=T φ)

A Σ-formula φ is satisfiable in the theory T (T -satisfiable) if there exists a
T -interpretation such that I |=T φ

An example please!
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Equalities and Uninterpreted functions

The Theory of Equalities and Uninterpreted functions TE is defined as:
the signature ΣE := {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}

I = is a binary predicate and is interpreted as the equality
I all the other function symbols in ΣE are not interpreted

the set of axioms A:
1 ∀x .x = x [reflexivity]
2 ∀x , y .x = y → y = x [symmetry]
3 ∀x , y , z .((x = y ∧ y = z)→ x = z) [transitivity]

4 Function and predicate congruence
F For each n ∈ N and n-ary function symbol f :

∀x1, . . . , xn, y1, . . . , yn.

( n∧
i=1

xi = xj

)
→ f (x1, . . . , xn) = f (y1, . . . , yn)

F For each n ∈ N and n-ary predicate symbol p:

∀x1, . . . , xn, y1, . . . , yn.

( n∧
i=1

xi = xj

)
→ p(x1, . . . , xn)↔ p(y1, . . . , yn)
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Some concrete examples

a 6= b

Is sat?

Yes

Is valid?

No

a = b ∧ b = c ↔ f (c) = f (a)

Is sat?

Yes

Is valid?

Yes

a = b ∧ b = c =⇒ g(f (a), b) = g(f (c), a)

Is sat?

Yes

Is valid?

Yes

a ∗ (f (b) + f (c)) = d ∧ ¬(b ∗ (f (a) + f (c)) = d) ∧ a = b

Hint: treat ∗ and + as an uninterpreted function.

Is sat?

No

Is valid?

No

Is the satisfiability of EUF-formulas decidable?

More next week!

Some examples are from [Bradley and Manna, 2007] and [Barrett et al., 2009]
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Some theories of interest I

Linear rational and Integer Arithmetic (LRA and LIA) - (week 3)

(x + y < 3 ∧ y > 2)→ x < 1

Used to model arithmetic (note that constraints are linear!)
Difference logic

(a− b ≤ 3 ∧ c − a ≤ 2) ∨ b − c ≤ 10

Used to model arithmetic (note the restrictions, only difference of 2
constants, no strict inequalities)
Reals (i.e., polynomial inequalities over the reals)

a2 + 3ab + c ≤ 3 ∨ a− b ≤ 2

Model geometric problems, problems in engineering, . . .
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Some theories of interest II
Arrays

¬((write(a, i , v1) ∧ j = i + 1)→ (read(a, i) < read(a, j , v)))

Model unbounded memory in programs
Bit-Vectors - a bit-vector x[n] is a vector of bits of length n

x32[15 : 0] = y[16][7 : 0] :: y[16][15 : 8]

Model hardware operations and low-level software
Strings

y = “a′′ · x ∧ x = z · “b′′)→ y = “a′′ · w · “b′′

Model string constraints, for example for testing or security
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Satisfiability Modulo Theory Problem

SMT Problem
The problem of deciding the satisfiability of quantifier-free formulas expressed in
some decidable first order theory T

Some remarks:
Usually quantifier-free formulas, but SMT solver can deal with quantifiers
(semi-decidable or focus on decidable subsets, like Effectively Propositional
Logic)
Also consider formulas obtained combining multiple theories, e.g.,
T1 ∪ T2 ∪ . . . ∪ Tn

Chapoutot and Mover (ENSTA Paris) Efficient resolution of logical models 2020-2021 25 / 44



1 Satisfiability Modulo Theories and DPLL(T )
Why SMT?
The SMT problem

First-Order logic - Language and Semantic
SMT - Language and Semantic

Decision procedures for the SMT Problem
Lazy approach - the offline schema
Lazy approach - the online approach (DPPL(T ))
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How can we decide the SMT problem?
Assumption from here onwards:

φ is a quantifier-free formula
φ is in conjunctive normal form (CNF)

How can we decide the satisfiability of a ΣT -formula φ?

φ := (x > 3 ∨ x + y = 0) ∧ (y < 0 ∨ x < 3)

We can see φ as a Propositional formula (i.e., interpreting each theory
predicate as a Boolean predicate)

(P1 ∨ P2) ∧ (P3 ∨ P4)

We can enumerate all the µb Propositional models of (P1 ∨ P2) ∧ (P3 ∨ P4)

µb := {P1 7→ true,P2 7→ false,P3 7→ true,P4 7→ false}

For each model µb, we can check if the conjunction is consistent in the
theory T :

x > 3 ∧ ¬x + y = 0 ∧ y < 0 ∧ ¬x < 3
It’s satisfiable: µ := {x 7→ 4, y 7→ 0}

This is the lazy approach to SMT (e.g., see [Sebastiani, 2007])
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Offline lazy approach to SMT solving

procedure T -DPLL-offline(φ)
φb := TOB(φ)
while true do
res, µb := DPLL(φb)
if res = true then
µ := TOT (µb)
res := T consistent(µ)
if res = true then

return SAT
else
φb := φb ∧ ¬µb

else
return UNSAT

Boolean reasoning: delegates the
enumeration to the DPLL (or CDCL
solver)
Theory reasoning: check consistency of
T -literals (simpler problem) with a
dedicated T -solver
Boolean reasoning: add a blocking clause
µb to avoid to “visit” the same Boolean
model
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Drawbacks of the offline approach

The offline approach “loosely” integrates the CDCL solver and the theory solvers:

Restart the Boolean search from scratch after blocking a model µb

loose learned clauses, arbitrary “restart”
Only blocks a complete model µb “weak” pruning of the search space

I What is the effect on the backjumping of CDCL?
I What is the effect on learning clauses?

Check for T -consistency of full models µ could be unsatisfiable “earlier”
I Can we detect unsatisfiability due to theory “earlier” in the search?
I Can we generalize Boolean constraint Propagation to the theory T ?

Could we have a tighter integration of CDCL and the T -Solver?
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The online approach - DPLL(T )

procedure DPLL-T (φ)
May pre-process φ (e.g., propaga-

tion)
µ := ∅
φb := TOB(φ);µ

b = TOB(µ)
while true do
T − Decide(φb, µb)
while true do

res := T − Deduce(φb)
if res = true then
µ := TOT (µb)
return SAT

else if res = conflict then
lvl := T − Analyze(φb, µb)
if lvl = 0 then

return UNSAT
else
T −Backtrack(lvl , φb, µb)

Similar architecture to CDCL, but integrates the the-
ory reasoning:

decision: choose an unassigned literal l from
φb (similar to DPLL)

deduce: iteratively deduces a literal lb s.t.
φb ∧ µb |= lb

I In case, add l to µ and check the
consistency of µ (in the theory)

I Optimized with T -propagation and
early pruning.

analyze: detect the conflict clauses and
determines the decision level to backtrack to.

I Produces also a theory conflicts

backtrack: block the conflict clause and
bactracks to the level lvl (similar to DPLL)

I T -backjumping and T -learning
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T -backjumping and T -learning

When we invoke the T -solver on an assignment µ, and µ is not consistent:
we would like to infer a small subset ν ⊆ µ such that ν is not consistent (i.e.,
ν is a conflict set )

a smaller ν can reduce more the search space

we can use ¬νb to guide the conflict analysis of CDCL
In practice, we can consider T -propagations (see later) as unit-propagation in
the implication graph.
¬νb can be learned as a conflict clause by the sat solver

Ideally, the T -solver should search for a minimal conflict set ν ⊆ µ
in practice, finding a minimal set ν is expensive
T -solvers compromise performance and size of the conflict set ν
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T -Backjumping and T -Learning

Examples 4 over the theory of Linear Integer Arithmetic:

¬(2x2 − x3 > 2) ∨ A1 ¬B1 ∨ A1

¬A2 ∨ x1− x5 ≤ 1 ¬A2 ∨ B2

3x1 − 2x2 ≤ 3 ∨ A2 B3 ∨ A2

¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1 ¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ 3x1 − 2x2 ≤ 3 A1 ∨ B3

x2 − x4 ≤ 6 ∨ x5 = 5− 3x4 ∨ ¬A1 B6 ∨ B7 ∨ ¬A1

A1 ∨ x3 = 3x5 + 4 ∨ A2 A1 ∨ B8 ∨ A2

µb := ¬B5,B8,B6,¬B1,¬B3,A1,A2,B2

¬B5 ∧ B8 ∧ B2 is inconsistent in the theory.
We have a conflict clause B5 ∨ ¬B8 ∨ ¬B2

The solver backtracks removing all literals up to
{¬B5,B8}.

4Example 5.2 [Sebastiani, 2007]
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Early Pruning

Check the T -consistency of each partial assignment found by CDCL
Backtrack immediately if the assignment is not consitent
Main advantage: prunes the search space

Technical considerations:
Requires an incremental and backtrackable T -solver
Checking consistency for every decision is not cheap!
Heuristics, use incomplete but cheap consistency checks (e.g., simplex on
integer arithmetic)
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T -Propagation

Used in T − decide to deduce the value of unassigned literals:
I When the current (partial) assignment µ is satisfiable
I The T -solver can return a set ν of unassigned literals such that µ |=T ν
I T -Propagation can unit propagate the implied ν (similarly to Boolean

Constraint Propagation)

¬(2x2 − x3 > 2) ∨ A1 ¬B1 ∨ A1

¬A2 ∨ x1− x5 ≤ 1 ¬A2 ∨ B2

3x1 − 2x2 ≤ 3 ∨ A2 B3 ∨ A2

¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1 ¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ 3x1 − 2x2 ≤ 3 A1 ∨ B3

x2 − x4 ≤ 6 ∨ x5 = 5− 3x4 ∨ ¬A1 B6 ∨ B7 ∨ ¬A1

A1 ∨ x3 = 3x5 + 4 ∨ A2 A1 ∨ B8 ∨ A2

µb := ¬B5,B8,B6,¬B1

¬(3x1 − x3 ≤ 6) ∧ x3 = 3x5 + 4 ∧ x2 − x4 ≤
6 ∧ (2x2 − x3 > 2) |=T ¬(3x1 − 2x2 ≤ 3)
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Other Approaches to the SMT problem

The eager approach to SMT: convert the problem to a SAT problem
Used to decide formulas over the bit-vector theory.

Abstract DPLL: abstract formulation of DPLL as a transition system
Allow to reason about the properties of different variants of the algorith (e.g.,
correctness, completeness, termination)
Model-Constructing Satisfiability:

I Assignments (e.g., decisions) to theory variables, not just Propositional
i.e., no Boolean abstraction anymore, and no enumeration of the models of
the Boolean Abstraction.

I Decisions and explanations can be done for new atoms (obtained from
unsatisfiable proofs)

I Several implementation, efficient for Non-Linear Real Arithmetic
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To sum up

What did we see today:
SMT is a fundamental tool in several area (e.g., verification, program
analysis, planning, . . . )
Satisfiability of (full) First Order logic is undecidable - so what can we do?
Theories allow us to have decision procedures - motivation to look at the
SMT problem
The lazy approach to SMT: best of both words (CDCL SAT solver) and
efficient theory solvers

Next week: how to decide consistency for the theory of Equalities and
Uninterpreted Functions
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