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Course Outline

Main goals of the course:
Know the main principles behind logical agents in AI and System verification;
To be able to model decision problems using logical formulas;
Know the solving algorithms for SAT and SMT solvers.

Remarks:
consider unquantified logical formula
consider exhaustive semantic methods
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Intelligent agents
Examples
Mobile robot: Perception – Decision – Action
Software model agent: Belief – Desire – Intention

In this course
internal model is based on logical formula
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Motivations

We are interested in
having an approach to automate the reasoning

in order to produce autonomous agent.

In particular, we will consider on knowledge-based agent. It is based on two
elements: Knowledge bases

Inference engine

Knowledge base domain−specific content

domain−independent algorithms

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
Tell it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

Logical agents; FOL 3

Knowledge base (set of sentences in a formal language) i.e. what the agent
knows
Inference engine i.e. a capability to deduce new information

Alexandre Chapoutot and Sergio Mover (ENSTA Paris)Decision Procedures for Artificial Intelligence 2022-2023 4 / 35



Simple knowledge-based agentA simple knowledge-based agent

function KB-Agent(percept) returns an action

static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB,Make-Percept-Sentence(percept, t))

action←Ask(KB,Make-Action-Query(t))

Tell(KB,Make-Action-Sentence(action, t))

t← t + 1

return action

The agent must be able to:
Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions

Logical agents; FOL 4

The agent shall:
Represent states (symbolic representation of the world) and actions
Incorporate new perceptions
Update internal representations of the world
Deduce appropriate actions

Propositional logic will help to perform all these actions
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Lecture 2: SAT solver algorithms

1 SAT solver algorithms
Remainder
DPLL
CDCL
Probabilistic approaches: WalkSAT
Applications
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Entailment or Logical consequence

We denote byM(a) the set of all models of a i.e.

M(a) = {I : JaKPL(I ) = 1}

We can express logical consequence or entailment denoted by

a |= b iff M(a) ⊆M(b)

In other words, a entails b iff b is true in all interpretations which make a true.

Example
In arithmetic, we have

x = 0 |= xy = 0

For Knowledge-Based Agent
What we want is KB |= g (g is goal for a robot)
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Entailment as satisfiability

For any PL formula a and b, to show

a |= b

we can
from a validity point of view

a |= b iff (a =⇒ b) is valid

from an unsatisfiability point of view (proof by contradiction)

a |= b iff (a ∧ ¬b) is unsatisfiable

Process
Consider a ∧ ¬b put is into CNF and apply a SAT solver
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SAT as a Constraint Satisfaction Problem

Satisfiability problem (SAT)
Is there an interpretation in which a PL formula is true (i.e., is there a model of a
PL formula)?

Each clause in CNF formula can be seen as a constraint that reduces the
number of interpretations that can be models
For example, P ∨ Q eliminates interpretations in which P is false and Q is
false

Goal of SAT
Find a possible model that is satisfying all the constraints, i.e., all clauses

Two kinds of algorithm to solve SAT
A deterministic approach: DPLL and its extension CDCL
A Probabilistic approach: WalkSAT
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Main ideas in DPLL

Starting from a PL formula F in CNF, an algorithm explores the value space
it builds incrementally a model M of F
M is extended either

I by deduction of the value a literal ` from M and F
I or by decision of the value of a literal ` of F which is not in M yet

If a decision produces a failure (i.e., all literals are set to false (⊥)) the
algorithm backtrack and inverse decision.

DPLL
DPLL stands for Davis–Putnam–Logemann–Loveland the names of the authors of
the algorithm
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DPLL - Definitions

Principle: Incremental building of a model M for the PL formula F in CNF

During the search,
A variable can have the value > (true), ⊥, (false), X not assigned
A clause can be

I SAT iff a least one of its literal is assigned to >
I Unit iff all its literals except one are assigned to ⊥
I Conflict iff all its literals are assigned to ⊥
I Undef iff it is not SAT, Unit, or Conflict

A CNF formula is SAT if all its clauses are SAT

F` stands for the simplified formula obtained by replacing ` with its value,
removing all clause with at least one > value and deleting all occurrences of ⊥
from the reminding clauses.
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Example

We want to check the satisfiability of the formula

(x1 ∨ x2) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (¬x1∨,¬x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ x1

Operation Model Formula

{x1, x2}, {x2, x̄3, x4}, {x̄1, x̄2}, {x̄1, x̄3, x̄4}, {x1}
Propag x1 x1 {x1, x2}, {x2, x̄3, x4}, {x̄1, x̄2}, {x̄1, x̄3, x̄4}, {x1}
Propag x2 x1, x2 {x1, x2}, {x2, x̄3, x4}, {x̄1, x̄2}, {x̄1, x̄3, x̄4}, {x1}
Decide x3 x1, x2, x3 {x1, x2}, {x2, x̄3, x4}, {x̄1, x̄2}, {x̄1, x̄3, x̄4}, {x1}
Propag x4 x1, x2, x3, x4 {x1, x2}, {x2, x̄3, x4}, {x̄1, x̄2}, {x̄1, x̄3, x̄4}, {x1}
Undo x3 x1, x2 {x1, x2}, {x2, x̄3, x4}, {x̄1, x̄2}, {x̄1, x̄3, x̄4}, {x1}
Decide x3 x1, x2, x3 {x1, x2}, {x2, x̄3, x4}, {x̄1, x̄2}, {x̄1, x̄3, x̄4}, {x1}

The formula is SAT with model M = {x1,¬x2,¬x3}
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DPLL Algorithm – pseudo code recursive form

Require: CNF formula F , empty model M
Ensure: UNSAT or SAT with model M

procedure DPLL(F , M)
(F ,M)← UnitPropagate(F ,M)
if All clauses are true in M then

return SAT
end if
if One clause is wrong in M then

return UNSAT
end if

`← choose a literal not assigned in M
if DPLL(F`,M ∪ {`}) = SAT then

return SAT
end if
return DPLL(F¬`,M ∪ {¬`})

end procedure

procedure UnitProgagate(F , M)
while F contains no empty clause but has a unit clause K with literal ` do

F ← F`

M ← M ∪ {`}
end whilereturn (F ,M)

end procedure
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Abstract DPLL1

It is based on a transition system where states are of the form

fail or M ‖ F

with
F a PL formula in CNF
M is a (partial) interpretation of the form

M = `, `, . . . , `d , . . . , `

with d an integer associated to a decision level.
Initial state ∅ ‖ F
Final states two cases are considered

I fail if F is unsatisfiable (UNSAT)
I M ‖ G with M of model of G and G is logically equivalent to F

1Nieuwenhuis et al. (2004)
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Abstract DPLL algorithm

Basic DPLL
The original DPLL algorithm from 1960 is defined with the following rules

UnitProp unit propagation
Decide decision step

Fail UNSAT
Backtrack backtracking rule

iterated until a model M is built or a failure is obtained.
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Abstract DPLL - correctness
Definitions
Irreducible state state from which one no transition can be taken

Execution sequence of transitions allowed by the rules from the initial state
∅ ‖ F

Saturated execution execution finishing on one irreducible state

Theorem (Strong termination)
Every execution of DPLL algorithm is finite

Theorem (Correctness)
Every saturated execution of DPLL algorithm starting from ∅ ‖ F and finishing at
M ‖ F then M |= F

Theorem (Completeness)
If F is UNSAT then all saturated executions starting from ∅ ‖ F finish with fail
state
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Basic DPLL – Drawbacks

Drawback 1
When UNSAT is false not explanation are learnt and so all the work explaining
why the current assignment is bad is thrown away.

Consequence current partial assignment producing UNSAT may be revisited
more than once!

Drawback 2
Only chronological backtracking is performed (i.e., undo the latest decision)

Consequence time is waste

Drawback 3
The choose of decision variable is almost done randomly without considering the
structure of clauses.
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Abstract DPLL – modern algorithms

New rules are now considered (mainly since 2000)
Learn learning from conflicts
Forget conflict clauses
Restart

Backjump non chronological backtracking
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Modern DPLL – CDCL

Modern DPLL are also named CDCL which stands for “Conflict Driven Clause
Learning”.

Modern DPLL
It is defined with the following rules

UnitProp
Decide
Fail
Backjump
Learn
Forget
Restart

iterated until a model M is built or a failure is obtained.
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Simple CDCL Algorithm – pseudo code iterative form

Require: CNF formula F , empty model M
Ensure: UNSAT or SAT with model M

procedure CDCL(F , M)
(F ,M)← UnitPropagate(F ,M)
if One clause is wrong in M then

return UNSAT
end if
dl ← 0
while not AllVariableAssigned(F ,M) do

(`, η)← choose a literal not assigned in M and its value
dl ← dl + 1
M ← M ∪ {(`, η)}
(F ,M)← UnitPropagate(F ,M)
if One clause is wrong in M then

(β, ccl) = ConflictAnalysis(F ,M)
if β < 0 then

return UNSAT
else

BackJump(F ,M, β, ccl)
dl ← β

end if
end if

end while
return SAT

end procedure
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CDCL - correctness

Theorem (Termination)
All executions in which

1 Learn/Forget rules are applied only a finite number of times
2 Restart is applied with an increasing periodicity

is finite

Theorem (Adequacy)
All executions starting from ∅ ‖ F and finishing in a irreducible state M ‖ F is
such that M |= F .

Theorem (Completeness)
If F is UNSAT then all execution starting from ∅ ‖ F and finishing at an
irreducible state S then S = fail

Alexandre Chapoutot and Sergio Mover (ENSTA Paris)Decision Procedures for Artificial Intelligence 2022-2023 21 / 35



CDCL - Clause learning
The main strength of CDCL algorithm is the conflict analysis and the clause
learning steps. Finding the minimal conflict clause is important.

Setting a truth value to a variable
A the decision level d , assigning > to variable xi is denoted by xi@d while
assigning ⊥ is denoted by x̄i@d

Antecedents
When the truth value of xi is given by propagation through a unit clause c , c is
named antecedent of xi .

Implication graph
Nodes are the setting of truth value at the different decision level. Edges are the
propagation labelled by antecedent clauses. Decisions are nodes without
antecedents (roots)
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CDCL - Conflict analysis

PL formula

F = {c1, c2, c3, c4, c5, c6}
c1 = {x1, x31,¬x2}
c2 = {x1,¬x3}
c3 = {x2, x3, x4}
c4 = {¬x4,¬x5}
c5 = {x21,¬x4,¬x6}
c6 = {x5, x6}

Assume the following decisions:
x̄21@2
x̄31@3
x̄1@5 (current decision level)

Hence Propagate deduces either x5 and
x̄5 or x6 and x̄6 i.e. a conflict clause K

3. Aller plus loin: techniques d’implémentation 60/131

F = {c1, c2, c3, c4, c5, c6}
c1 = {x1, x31, x̄2}
c2 = {x1, x̄3}
c3 = {x2, x3, x4}
c4 = {x̄4, x̄5}
c5 = {x21, x̄4, x̄6}
c6 = {x5, x6}

Supposons les décisions (issues de
decideVar) suivantes:

• ¯x21@2

• ¯x31@3

• x̄1@5 (niveau courant);

propagate déduit à la fois x5 et
x̄5, ou x6 et x̄6, i.e. un conflit (K ).

¯x31@3

x̄1@5
x̄2@5

x̄3@5
x4@5

¯x21@2

x̄5@5

x̄6@5
K

c1
c1
c2

c3
c3

c4
c5
c5

c6
c6
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Conflict analysis

Starting from the conflict clause K , a new clause avoiding this conflict is built
following antecedents in the implication graph.

K
c6−→ {x5, x6} c4−→ {x̄4, x6} c5−→ {x̄4, x21} c3−→ {x2, x3, x21}

c2−→ {x2, x21, x1} c1−→ {x1, x21, x31}

Hence, we can add the conflict clause {x1, x21, x31} and the set of clauses.
Moreover we go back to a decision level such that the conflict clause is unit to
explore an other part of the value space.

Alexandre Chapoutot and Sergio Mover (ENSTA Paris)Decision Procedures for Artificial Intelligence 2022-2023 24 / 35



Conflict analysis - cont’

Reduction of conflict clauses
Unique Implication Point (UIP) is a dominator node in the implication
graph
There exists at least one UIP at each decision level (the decision itself)
The conflict analysis can be stopped once the conflict clause contains the
first UIP at the current decision level or of lower levels.

Example
In previous example, x4@5 is the first UIP of decision level 5 so the conflict clause
{x21, x̄4} can be considered instead of {x21, x31, x1}.
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Engineering stuff: detection of unit clause

Unit clauses play an important role in CDCL algorithm. It is mandatory to have
efficient algorithms to detect them (Chaff 2000)

Main ideas of Two Watch Literals method
To each variable xi is associated the set of clauses Cxi containing xi

For each c ∈ Cxi , watch two literals ` and `′

If xi is set to > or ⊥, for each c ∈ Cxi

I If ` (resp. `′) is assigned to X , the clause is not unit
I If ` (resp. `′) is assigned to > or ⊥, look for an other literal `′′ assigned to X

in the clause
F If `′′ exists then watched it instead of ` (or `′)
F Otherwise, c is unit so propagate ` (or `′)

Note a solver spends 80% of the execution using Propagate!
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Engineering stuff: automatic decision heuristic

Method coming from solver Chaff (2000): Variable State Independent
Decaying Sum (VSIDS) decision method

An activity counter is associated to each variable (starting from 0)
Increasing activity counter each time a variable is involved in a conflict clause
Every n conflicts, divide activity counter by a given constant factor. Idea to
focus in most recent conflicts
The (unassigned) variable and polarity with the highest counter is chosen at
each decision. In case of ties, choose randomly.
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Local Search Algorithms

Local search method is a heuristic method for solving optimization problems.

In SAT context, try minimize the number of unsatisfied clauses or maximise the
number of satisfied clauses.

WalkSAT
A very simple implementation of local search method for SAT.

Main ideas: Start from a randomly generated interpretation
Pick randomly an unsatisfied clause
Pick an atom to flip and randomly choose between two operations

1 Randomly
2 To minimize the number of unsatisfied clauses
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WalkSAT
WalkSat

function WalkSAT(clauses,p,max-flips) returns a satisfying model or failure

inputs: clauses, a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically

around 0.5

max-flips, number of flips allowed before giving up

model← a random assignment of true/false to the symbols in clauses

for i = 1 to max-flips do

if model satisfies clauses then return model

clause← a randomly selected clause from clauses that is false in model

with probability p flip the value in model of a randomly selected symbol

from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Search and SAT 19
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WalkSAT algorithm

If the algorithm returns a failure after it tries max-flips times, what can we say?
1 The sentence is unsatisfiable
2 Nothing
3 The sentence is satisfiable

Remark: most useful when we expect a solution to exist
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Hard satisfiability problems
Consider random 3-CNF sentences (at most 3 literals per clauses), for example

(¬D ∨¬B ∨C )∧ (B ∨¬A∨¬C )∧ (¬C ∨¬B ∨E )∧ (E ∨¬D ∨B)∧ (B ∨E ∨¬C )

Notations: m number of clauses and n number of variables

Under constrained problems
relatively few clauses constraining the variables

For example, 16 over 32 possible interpretations are solutions for above problems
(note: 2 random guesses will work on average)

What makes a SAT problem hard?
Increase the number of clauses while keeping fixed the number of variables
=⇒ problem is more constrained so fewer solutions
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Experimental investigation of hard problems

264 Chapter 7. Logical Agents

most such underconstrained problems. On the other hand, an overconstrained problem has
many clauses relative to the number of variables and is likely to have no solutions.

To go beyond these basic intuitions, we must define exactly how random sentences
are generated. The notation CNFk(m,n) denotes a k-CNF sentence with m clauses and n
symbols, where the clauses are chosen uniformly, independently, and without replacement
from among all clauses with k different literals, which are positive or negative at random. (A
symbol may not appear twice in a clause, nor may a clause appear twice in a sentence.)

Given a source of random sentences, we can measure the probability of satisfiability.
Figure 7.19(a) plots the probability for CNF3(m, 50), that is, sentences with 50 variables
and 3 literals per clause, as a function of the clause/symbol ratio, m/n. As we expect, for
small m/n the probability of satisfiability is close to 1, and at large m/n the probability
is close to 0. The probability drops fairly sharply around m/n = 4 .3 . Empirically, we find
that the “cliff” stays in roughly the same place (for k = 3 ) and gets sharper and sharper as n
increases. Theoretically, the satisfiability threshold conjecture says that for every k ≥ 3 ,

SATISFIABILITY

THRESHOLD

CONJECTURE

there is a threshold ratio rk such that, as n goes to infinity, the probability that CNFk(n, rn)
is satisfiable becomes 1 for all values of r below the threshold, and 0 for all values above.
The conjecture remains unproven.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
(s

at
is

fi
ab

le
)

Clause/symbol ratio m/n

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 1 2 3 4 5 6 7 8

R
un

tim
e

Clause/symbol ratio m/n

DPLL
WalkSAT

(a) (b)

Figure 7.19 (a) Graph showing the probability that a random 3-CNF sentence with n =50
symbols is satisfiable, as a function of the clause/symbol ratio m/n. (b) Graph of the median
run time (measured in number of recursive calls to DPLL, a good proxy) on random 3-CNF
sentences. The most difficult problems have a clause/symbol ratio of about 4.3.

Now that we have a good idea where the satisfiable and unsatisfiable problems are, the
next question is, where are the hard problems? It turns out that they are also often at the
threshold value. Figure 7.19(b) shows that 50-symbol problems at the threshold value of 4.3
are about 20 times more difficult to solve than those at a ratio of 3.3. The underconstrained
problems are easiest to solve (because it is so easy to guess a solution); the overconstrained
problems are not as easy as the underconstrained, but still are much easier than the ones right
at the threshold.

random 3-CNF sentences, n = 50
Remark: Hard problems seem to cluster near m/n = 4.3

Alexandre Chapoutot and Sergio Mover (ENSTA Paris)Decision Procedures for Artificial Intelligence 2022-2023 32 / 35



Examples of tools

Modern tools use
A preprocessing step to simplify the CNF before calling CDCL algorithm
Parallel CDCL (multi-threaded)
In-processing step to simplify the CNF during the CDCL algorithm

Some tools
historical: chaff (2000), minisat (2004), picosat (2006)
SAT4J (Java, embedded into Eclipse to solve library dependencies)
Glucose 4.0 (C++, winner of several contests)
Lingeling (C, winner of several contests)
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Evolution of performance of SAT solvers
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Applications of SAT

Formal methods: Hardware model checking ; Software model checking;
Artificial intelligence: Planning ; Knowledge representation ; Games
(n-queens, sudoku, social golpher’s, etc.)
Bioinformatics: Haplotype inference Analysis of Genetic Regulatory Networks
; etc.
Design automation: Equivalence checking ; Delay computation ; Fault
diagnosis ; Noise analysis ; etc.
Security: Cryptanalysis ; Inversion attacks on hash functions ; etc.
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