Decision Procedures for Artificial Intelligence INF656L

Alexandre Chapoutot and Sergio Mover

ENSTA Paris

2022-2023

Alexandre Chapoutot and Sergio Mover (ENDecision Procedures for Artificial Intelligence

< □ > < □ > < □ > < □ > < □ >

Course Outline

Main goals of the course:

- Know the main principles behind logical agents in AI and System verification;
- To be able to model decision problems using logical formulas;
- Know the solving algorithms for SAT and SMT solvers.

Remarks:

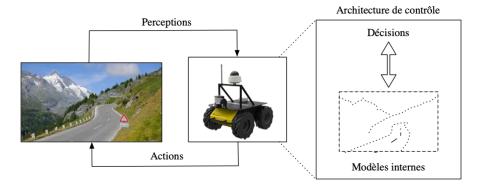
- consider unquantified logical formula
- consider exhaustive semantic methods

・ロト ・同ト ・ヨト ・ヨト

Intelligent agents

Examples

Mobile robot: Perception – Decision – Action Software model agent: Belief – Desire – Intention



In this course

internal model is based on logical formula

Motivations

We are interested in

• having an approach to automate the reasoning

in order to produce autonomous agent.

In particular, we will consider on *knowledge-based agent*. It is based on two elements:

- Knowledge base (set of sentences in a formal language) *i.e.* what the agent knows
- Inference engine *i.e.* a capability to deduce new information

Simple knowledge-based agent

```
function KB-AGENT( percept) returns an action

static: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))

action \leftarrow Ask(KB, MAKE-ACTION-QUERY(t))

TELL(KB, MAKE-ACTION-SENTENCE( action, t))

t \leftarrow t + 1

return action
```

The agent shall:

- Represent states (symbolic representation of the world) and actions
- Incorporate new perceptions
- Update internal representations of the world
- Deduce appropriate actions

Propositional logic will help to perform all these actions

・ロト ・ 同 ト ・ ヨ ト ・ 日 ヨ

Lecture 2: SAT solver algorithms

SAT solver algorithms

- Remainder
- DPLL
- CDCL
- Probabilistic approaches: WalkSAT
- Applications

< □ > < □ > < □ > < □ > < □ >

Entailment or Logical consequence

We denote by $\mathcal{M}(a)$ the set of all models of a *i.e.*

 $\mathcal{M}(a) = \{I : \llbracket a \rrbracket_{\mathsf{PL}}(I) = 1\}$

We can express logical consequence or entailment denoted by

 $a \models b$ iff $\mathcal{M}(a) \subseteq \mathcal{M}(b)$

In other words, a entails b iff b is true in all interpretations which make a true.

Example

In arithmetic, we have

$$x = 0 \models xy = 0$$

For Knowledge-Based Agent

What we want is $KB \models g$ (g is goal for a robot)

(日) (同) (日) (日)

Entailment as satisfiability

For any PL formula a and b, to show

$$a \models b$$

we can

• from a validity point of view

$$a\models b$$
 iff $(a\implies b)$ is valid

from an unsatisfiability point of view (proof by contradiction)

 $a \models b$ iff $(a \land \neg b)$ is unsatisfiable

Process

Consider $a \land \neg b$ put is into CNF and apply a SAT solver

イロト イロト イヨト イヨ

SAT as a Constraint Satisfaction Problem

Satisfiability problem (SAT)

Is there an interpretation in which a PL formula is true (*i.e.*, is there a model of a PL formula)?

- Each clause in CNF formula can be seen as **a constraint** that reduces the number of interpretations that can be models
- For example, $P \lor Q$ eliminates interpretations in which P is false and Q is false

Goal of SAT

Find a possible model that is satisfying all the constraints, *i.e.*, all clauses

Two kinds of algorithm to solve SAT

- A deterministic approach: DPLL and its extension CDCL
- A Probabilistic approach: WalkSAT

・ロト ・回ト ・ヨト ・ヨト

Main ideas in DPLL

Starting from a PL formula F in CNF, an algorithm explores the value space

- it builds incrementally a model M of F
- *M* is extended either
 - by **deduction** of the value a literal ℓ from M and F
 - or by **decision** of the value of a literal ℓ of F which is not in M yet
- If a **decision** produces a failure (*i.e.*, all literals are set to false (⊥)) the algorithm **backtrack** and inverse decision.

DPLL

DPLL stands for Davis–Putnam–Logemann–Loveland the names of the authors of the algorithm

(日) (同) (日) (日)

DPLL - Definitions

Principle: Incremental building of a model M for the PL formula F in CNF

During the search,

- A variable can have the value \top (true), \perp , (false), X not assigned
- A clause can be
 - \blacktriangleright SAT iff a least one of its literal is assigned to \top
 - Unit iff all its literals except one are assigned to \perp
 - \blacktriangleright Conflict iff all its literals are assigned to \bot
 - Undef iff it is not SAT, Unit, or Conflict
- A CNF formula is SAT if all its clauses are SAT

 F_{ℓ} stands for the simplified formula obtained by replacing ℓ with its value, removing all clause with at least one \top value and deleting all occurrences of \bot from the reminding clauses.

Example

We want to check the satisfiability of the formula

 $(x_1 \lor x_2) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor, \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land x_1$

Operation	Model	Formula
		$\{x_1, x_2\}, \{x_2, \bar{x}_3, x_4\}, \{\bar{x}_1, \bar{x}_2\}, \{\bar{x}_1, \bar{x}_3, \bar{x}_4\}, \{x_1\}$
Propag x1	<i>x</i> 1	$\{x_1, x_2\}, \{x_2, \bar{x}_3, x_4\}, \{\bar{x}_1, \bar{x}_2\}, \{\bar{x}_1, \bar{x}_3, \bar{x}_4\}, \{x_1\}$
Propag <mark>X</mark> 2	x 1, x 2	$\{x_1, x_2\}, \{x_2, \bar{x}_3, x_4\}, \{\bar{x}_1, \bar{x}_2\}, \{\bar{x}_1, \bar{x}_3, \bar{x}_4\}, \{x_1\}$
Decide 🗙	<i>x</i> ₁ , <i>x</i> ₂ , <i>x</i> ₃	$\{x_1, x_2\}, \{x_2, \bar{x}_3, x_4\}, \{\bar{x}_1, \bar{x}_2\}, \{\bar{x}_1, \bar{x}_3, \bar{x}_4\}, \{x_1\}$
Propag 🔀	x_1, x_2, x_3, x_4	$\{x_1, x_2\}, \{x_2, \bar{x}_3, x_4\}, \{\bar{x}_1, \bar{x}_2\}, \{\bar{x}_1, \bar{x}_3, \bar{x}_4\}, \{x_1\}$
Undo 🔀	x 1, x 2	$\{x_1, x_2\}, \{x_2, \bar{x}_3, x_4\}, \{\bar{x}_1, \bar{x}_2\}, \{\bar{x}_1, \bar{x}_3, \bar{x}_4\}, \{x_1\}$
Decide 🗙	x_1, x_2, x_3	$\{x_1, x_2\}, \{x_2, \bar{x}_3, x_4\}, \{\bar{x}_1, \bar{x}_2\}, \{\bar{x}_1, \bar{x}_3, \bar{x}_4\}, \{x_1\}$

The formula is SAT with model $M = \{x_1, \neg x_2, \neg x_3\}$

イロト イボト イヨト イヨト

DPLL Algorithm - pseudo code recursive form

```
Require: CNF formula F, empty model M
Ensure: UNSAT or SAT with model M
  procedure DPLL(F, M)
      (F, M) \leftarrow \text{UnitPropagate}(F, M)
      if All clauses are true in M then
          return SAT
      end if
      if One clause is wrong in M then
          return UNSAT
      end if
      \ell \leftarrow choose a literal not assigned in M
      if DPLL(F_{\ell}, M \cup \{\ell\}) = SAT then
          return SAT
      end if
       return DPLL(F_{\neg \ell}, M \cup \{\neg \ell\})
  end procedure
  procedure UnitProgagate(F, M)
      while F contains no empty clause but has a unit clause K with literal \ell do
          F \leftarrow F_{\ell}
          M \leftarrow M \cup \{\ell\}
      end whilereturn (F, M)
  end procedure
```

イロト イボト イヨト イヨト

Abstract DPLL¹

It is based on a transition system where states are of the form

fail or $M \parallel F$

with

- F a PL formula in CNF
- *M* is a (partial) interpretation of the form

$$M = \ell, \ell, \ldots, \ell^d, \ldots, \ell$$

with d an integer associated to a *decision level*.

- Initial state $\emptyset \parallel F$
- Final states two cases are considered
 - fail if F is unsatisfiable (UNSAT)
 - $M \parallel G$ with M of model of G and G is logically equivalent to F

¹Nieuwenhuis et al. (2004)

Abstract DPLL algorithm

Basic DPLL The original DPLL algorithm from 1960 is defined with the following rules UnitProp unit propagation Decide decision step Fail UNSAT Backtrack backtracking rule iterated until a model *M* is built or a failure is obtained.

(日) (同) (日) (日)

Abstract DPLL - correctness

Definitions

Irreducible state state from which one no transition can be taken Execution sequence of transitions allowed by the rules from the initial state

Ø ∥ *F*

Saturated execution execution finishing on one irreducible state

Theorem (Strong termination)

Every execution of DPLL algorithm is finite

Theorem (Correctness)

Every saturated execution of DPLL algorithm starting from $\emptyset \parallel F$ and finishing at $M \parallel F$ then $M \models F$

Theorem (Completeness)

If F is UNSAT then all saturated executions starting from $\emptyset \parallel F$ finish with fail state

Basic DPLL – Drawbacks

Drawback 1

When UNSAT is false not explanation are learnt and so all the work explaining why the current assignment is bad is thrown away.

Consequence current partial assignment producing UNSAT may be revisited more than once!

Drawback 2

Only chronological backtracking is performed (i.e., undo the latest decision)

Consequence time is waste

Drawback 3

The choose of decision variable is almost done randomly without considering the structure of clauses.

(日) (同) (日) (日)

Abstract DPLL – modern algorithms

New rules are now considered (mainly since 2000) Learn learning from conflicts Forget conflict clauses Restart Backjump non chronological backtracking

Modern DPLL – CDCL

Modern DPLL are also named CDCL which stands for "Conflict Driven Clause Learning".

Modern DPLL

It is defined with the following rules

- UnitProp
- Decide
- Fail
- Backjump
- Learn
- Forget
- Restart

iterated until a model M is built or a failure is obtained.

・ロト ・四ト ・ヨト ・ヨト

Simple CDCL Algorithm – pseudo code iterative form

```
Require: CNF formula F, empty model M
Ensure: UNSAT or SAT with model M
  procedure CDCL(F, M)
      (F, M) \leftarrow \text{UnitPropagate}(F, M)
      if One clause is wrong in M then
          return UNSAT
      end if
      dl \leftarrow 0
      while not AllVariableAssigned(F, M) do
          (\ell, \eta) \leftarrow choose a literal not assigned in M and its value
          dl \leftarrow dl + 1
          M \leftarrow M \cup \{(\ell, \eta)\}
          (F, M) \leftarrow UnitPropagate(F, M)
          if One clause is wrong in M then
              (\beta, ccl) = ConflictAnalysis(F, M)
              if \beta < 0 then
                   return UNSAT
              else
                   BackJump(F, M, \beta, ccl)
                  dl \leftarrow \beta
              end if
          end if
      end while
       return SAT
  end procedure
```

(日) (同) (日) (日)

CDCL - correctness

Theorem (Termination)

All executions in which

- S Learn/Forget rules are applied only a finite number of times
- e Restart is applied with an increasing periodicity

is finite

Theorem (Adequacy)

All executions starting from $\emptyset \parallel F$ and finishing in a irreducible state $M \parallel F$ is such that $M \models F$.

Theorem (Completeness)

If F is UNSAT then all execution starting from $\emptyset \parallel F$ and finishing at an irreducible state S then S = fail

2022-2023 21/35

・ロト ・伺 ト ・ヨト ・ヨ)

CDCL - Clause learning

The main strength of CDCL algorithm is the conflict analysis and the clause learning steps. **Finding the minimal conflict clause is important.**

Setting a truth value to a variable

A the decision level *d*, assigning \top to variable x_i is denoted by $x_i @d$ while assigning \bot is denoted by $\bar{x}_i @d$

Antecedents

When the truth value of x_i is given by propagation through a unit clause c, c is named **antecedent** of x_i .

Implication graph

Nodes are the setting of truth value at the different decision level. Edges are the propagation labelled by antecedent clauses. Decisions are nodes without antecedents (roots)

CDCL - Conflict analysis

PL formula

$$F = \{c_1, c_2, c_3, c_4, c_5, c_6\}$$

$$c_1 = \{x_1, x_{31}, \neg x_2\}$$

$$c_2 = \{x_1, \neg x_3\}$$

$$c_3 = \{x_2, x_3, x_4\}$$

$$c_4 = \{\neg x_4, \neg x_5\}$$

$$c_5 = \{x_{21}, \neg x_4, \neg x_6\}$$

$$c_6 = \{x_5, x_6\}$$

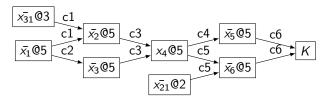
Assume the following decisions:

- \bar{x}_{21} @2
- \bar{x}_{31} @3
- \bar{x}_1 @5 (current decision level)

< 17 ►

∃ →

Hence Propagate deduces either x_5 and \bar{x}_5 or x_6 and \bar{x}_6 *i.e.* a conflict clause K



Conflict analysis

Starting from the conflict clause K, a new clause avoiding this conflict is built following antecedents in the implication graph.

$$\begin{array}{c} \mathcal{K} \xrightarrow{c_{6}} \{x_{5}, x_{6}\} \xrightarrow{c_{4}} \{\bar{x}_{4}, x_{6}\} \xrightarrow{c_{5}} \{\bar{x}_{4}, x_{21}\} \xrightarrow{c_{3}} \{x_{2}, x_{3}, x_{21}\} \\ \xrightarrow{c_{2}} \{x_{2}, x_{21}, x_{1}\} \xrightarrow{c_{1}} \{x_{1}, x_{21}, x_{31}\} \end{array}$$

Hence, we can add the conflict clause $\{x_1, x_{21}, x_{31}\}$ and the set of clauses. Moreover we go back to a decision level such that the conflict clause is unit to explore an other part of the value space.

(日) (同) (日) (日)

Conflict analysis - cont'

Reduction of conflict clauses

- Unique Implication Point (UIP) is a dominator node in the implication graph
- There exists at least one UIP at each decision level (the decision itself)
- The conflict analysis can be stopped once the conflict clause contains the first UIP at the current decision level or of lower levels.

Example

In previous example, x_4 @5 is the first UIP of decision level 5 so the conflict clause $\{x_{21}, \bar{x}_4\}$ can be considered instead of $\{x_{21}, x_{31}, x_1\}$.

・ロト ・ 同 ト ・ ヨ ト ・ 日 ヨ

Engineering stuff: detection of unit clause

Unit clauses play an important role in CDCL algorithm. It is mandatory to have efficient algorithms to detect them (Chaff 2000)

Main ideas of Two Watch Literals method

- To each variable x_i is associated the set of clauses C_{x_i} containing x_i
- For each $c \in \mathit{C}_{x_i}$, watch two literals ℓ and ℓ'
- If x_i is set to \top or \bot , for each $c \in C_{x_i}$
 - If ℓ (resp. ℓ') is assigned to X, the clause is not unit
 - If ℓ (resp. ℓ') is assigned to ⊤ or ⊥, look for an other literal ℓ'' assigned to X in the clause
 - ★ If ℓ'' exists then watched it instead of ℓ (or ℓ')
 - * Otherwise, c is unit so propagate ℓ (or ℓ')

Note a solver spends 80% of the execution using Propagate!

Engineering stuff: automatic decision heuristic

Method coming from solver Chaff (2000): Variable State Independent Decaying Sum (VSIDS) decision method

- An activity counter is associated to each variable (starting from 0)
- Increasing activity counter each time a variable is involved in a conflict clause
- Every *n* conflicts, divide activity counter by a given constant factor. Idea to focus in most recent conflicts
- The (unassigned) variable and polarity with the highest counter is chosen at each decision. In case of ties, choose randomly.

Local Search Algorithms

Local search method is a heuristic method for solving optimization problems.

In SAT context, try minimize the number of unsatisfied clauses or maximise the number of satisfied clauses.

WalkSAT

A very simple implementation of local search method for SAT.

Main ideas: Start from a randomly generated interpretation

- Pick randomly an unsatisfied clause
- Pick an atom to flip and randomly choose between two operations
 - Randomly
 - 2 To minimize the number of unsatisfied clauses

・ロト ・同ト ・ヨト ・ヨト

WalkSAT

```
function WALKSAT(clauses, p, max-flips) returns a satisfying model or failure
   inputs: clauses, a set of clauses in propositional logic
             p, the probability of choosing to do a "random walk" move, typically
around 0.5
            max-flips, number of flips allowed before giving up
   model \leftarrow a random assignment of true/false to the symbols in clauses
   for i = 1 to max-flips do
       if model satisfies clauses then return model
        clause \leftarrow a randomly selected clause from clauses that is false in model
        with probability p flip the value in model of a randomly selected symbol
from clause
       else flip whichever symbol in clause maximizes the number of satisfied clauses
   return failure
```

(日) (同) (三) (三)

If the algorithm returns a failure after it tries max-flips times, what can we say?

- The sentence is unsatisfiable
- O Nothing
- One sentence is satisfiable

Remark: most useful when we expect a solution to exist

イロト イボト イヨト イヨト

Hard satisfiability problems

Consider random 3-CNF sentences (at most 3 literals per clauses), for example

 $(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$

Notations: *m* number of clauses and *n* number of variables

Under constrained problems

• relatively few clauses constraining the variables

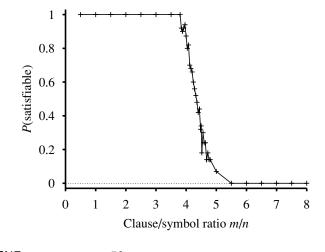
For example, 16 over 32 possible interpretations are solutions for above problems (note: 2 random guesses will work on average)

What makes a SAT problem hard?

● Increase the number of clauses while keeping fixed the number of variables ⇒ problem is more constrained so fewer solutions

(a) < (a) < (b) < (b)

Experimental investigation of hard problems



random 3-CNF sentences, n = 50**Remark:** Hard problems seem to cluster near m/n = 4.3

Examples of tools

Modern tools use

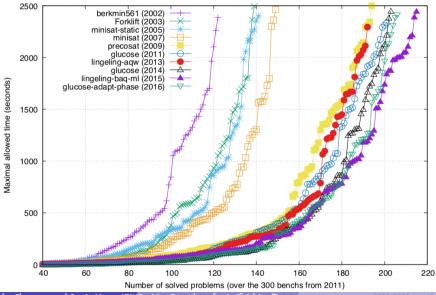
- A preprocessing step to simplify the CNF before calling CDCL algorithm
- Parallel CDCL (multi-threaded)
- In-processing step to simplify the CNF during the CDCL algorithm

Some tools

- historical: chaff (2000), minisat (2004), picosat (2006)
- SAT4J (Java, embedded into Eclipse to solve library dependencies)
- Glucose 4.0 (C++, winner of several contests)
- Lingeling (C, winner of several contests)

イロト イポト イモト イモト

Evolution of performance of SAT solvers



Alexandre Chapoutot and Sergio Mover (ENDecision Procedures for Artificial Intelligence

Applications of SAT

- Formal methods: Hardware model checking ; Software model checking;
- Artificial intelligence: Planning ; Knowledge representation ; Games (n-queens, sudoku, social golpher's, etc.)
- Bioinformatics: Haplotype inference Analysis of Genetic Regulatory Networks ; etc.
- Design automation: Equivalence checking ; Delay computation ; Fault diagnosis ; Noise analysis ; etc.
- Security: Cryptanalysis ; Inversion attacks on hash functions ; etc.