

ENSTA Paris 2022-2023

Decision Procedures for Artificial Intelligence – INF656L Alexandre Chapoutot

SAT Part - Practical work 1

Goal(s)

- ★ Modeling decision problem with propositional logic;
- \star First algorithm to prove satisfiability of propositional logic formula.

Exercise 1

Let's consider the interpretation *I* such that $\{p \mapsto F, q \mapsto T, r \mapsto T\}$. Does *I* satisfy the following propositional formulas?

1. $(p \implies \neg q) \lor \neg (r \land q)$

2.
$$(\neg p \lor \neg q) \implies (p \lor \neg r)$$

3.
$$\neg(\neg p \implies \neg q) \land r$$

4.
$$\neg(\neg p \implies (q \land \neg r))$$

Solution: *I* satisfies 1, 3 and 4 and does not satisfy 2

Exercise 2 – Truth table method

Question 1

Determine with a truth table method whether the formula

$$(p\implies q)\vee(p\implies \neg q)$$

is valid.

SO	lution:

Р	Q	((P	\rightarrow	Q)	\vee	(P	\rightarrow	(¬	Q)))
1	1	1	1	1	1	1	0	0	1
1	0	1	0	0	1	1	1	1	0
0	1	0	1	1	1	0	1	0	1
0	0	1 1 0 0	1	0	1	0	1	1	0

Question 2

Use the truth tables method to determine whether the formula $\phi \equiv (p \land \neg q) \implies (p \land q)$ is a logical consequence of the formula $\psi \equiv \neg p$.

Solution:										
					-	$\frac{(\neg 1)}{0}$	1			
	Р	Q	((P	\wedge	(¬	Q))	\rightarrow	(P	\wedge	Q))
	1	1	1	0	0	1	1	1	1	1
	1	0					0			
	0	1	0	0	0	1	1	0	0	1
	0	0	0 0	0	1	0	1	0	0	0

Question 3

Socrate says:

If I am guilty, I must be punished; I'm not guilty. Thus I must not be punished.

Is the argument logically correct?

Solution:	
• <i>P</i> stands for "I am guilty"	
• <i>Q</i> stands for "I must be punished"	
So we have	$\phi \equiv (P \implies Q) \land \neg P$
and	$\psi \equiv \neg Q$ I must not be punished
We have to prove that $\phi \models \psi$ so	$ \begin{array}{c ccc} Q & (\neg & Q) \\ \hline 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} $
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Consider P = false and Q = true so $\phi \not\models \psi$	r

Exercise 3 – **Logical formalization** *A* stands for "Aldo is Italian" and *B* stands for "Bob is English".

Question 1

Formalize the following sentences:

- 1. Aldo isn't Italian
- 2. Aldo is Italian while Bob is English
- 3. If Aldo is Italian then Bob is not English
- 4. Aldo is Italian or if Aldo isn't Italian then Bob is English
- 5. Either Aldo is Italian and Bob is English, or neither Aldo is Italian nor Bob is English

Solution:

```
1. \neg A

2. A \land B

3. A \Longrightarrow \neg B

4. A \lor (\neg A \Longrightarrow B) same than A \lor B

5. (A \land B) \lor (\neg A \land \neg B) same than A \Leftrightarrow B
```

Exercise 4 – Enigma

Aladdin finds two trunks T_A and T_B in a cave. He knows that each of them either contains a treasure or a fatal trap. On trunk T_A is written:

"At least one of these two trunks contains a treasure."

On trunk T_B is written:

"In T_A there's a fatal trap."

Aladdin knows that either both the inscriptions are true, or they are both false.

We want to answer the questions:

- Can Aladdin choose a trunk being sure that he will find a treasure?
- If this is the case, which trunk should he open?

Question 1

Give the propositional formulas associated to inscriptions on trunks

Solution:

Let's consider propositions

- A stands for "Trunk T_A contains the treasure"
- *B* stands for "Trunk *T_B* contains the treasure"

Model of the inscriptions

- $A \lor B$ stands for "At least one of these two trunks contains a treasure".
- $\neg A$ stands for " T_A contains a trap".

Question 2

Model the problem with logical formulas

Solution:

Model of the problem

• $(A \lor B) \leftrightarrow \neg A$ stands for "either both the inscriptions are true, or they are both false".

Question 3

Give the truth table of problem's model and answer the questions

|--|

а	b	((a	V	b)	\leftrightarrow	(¬	<i>a</i>))
1	1	1	1	1	0	0	1
1	0	1	1	0	0	0	1
0	1	0	1	1	1	1	0
0	0	1 1 0 0	0	0	0	1	0

Remark: solutions generated from https://cs.uwaterloo.ca/~cbright/logic/truthtable.php The only valuation of variable which satisfies the formula is A = false and B = true so Aladdin can open trunk T_B , being sure that it contains a treasure

Exercise 5 – Diner

Question 1

Model with propositional logic the following problem:

I would like to invite some of the following people to a party: Alice, Ben, Chris and David. If I invite Alice, I should also invite Benoît. I cannot invite Benoît and Christophe to the same party. I want to invite at least three of them (this condition must also be expressed as a logical formula).

Solution:

- A stands for "I invite Alice"
- *B* stands for "I invite Ben"
- *C* stands for "I invite Chris"
- *D* stands for "I invite David".

The logical model is then

- 1. $A \implies B$ (if I invite Alice then I invite Ben)
- 2. $\neg(B \land C)$ (I cannot invite Ben and Chris in the same time)
- 3. At leat 3 persons are invited

 $(A \land B \land C) \lor (A \land B \land D) \lor (A \land C \land D) \lor (B \land C \land D)$

Question 2

Put these formulas in conjunctive normal form

Solution:

1. $B \lor \neg A$

- 2. $\neg B \land \neg C$
- 3. $(A \lor B) \land (A \lor C) \land (A \lor D) \land (B \lor C) \land (B \lor D) \land (C \lor D) \land (A \lor B \lor C) \land (A \lor B \lor D) \land (A \lor C \lor D) \land (B \lor C \lor D) \land (A \lor B \lor C \lor D) \land (B \lor C \lor D) \land (B$

Exercise 6 – Simple decision procedure

An encoding of the PL formula in CNF is given by the DIMACS CNF format. A sample file is:

```
c simple_v3_c2.cnf
c
p cnf 3 2
1 -3 0
2 3 -1 0
```

All lines beginning with a "c" character are comments. The contents of the file begin with the words 'p cnf', followed by the number of *n* variables and the number of *c* clauses of the problem. In a DIMACS CNF file, a variable is represented as follows by an integer between 1 and *n*. The negation: is represented by by the - sign. A clause is represented as a list of literal, separated by spaces, and ending with a 0. A problem is represented as a succession of clauses. By example, the DIMACS CNF file given as an example encodes the formula

$$(x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1)$$

We will not deal with the reading of a CNF DIMACS file, but we are inspired by the encoding of PL formula in CNF.

The objective of this exercise is to implement a simple SAT algorithm based on a *model checking* method. The idea is to generate all the possible interpretations and to test one by one these interpretations to find those which satisfy the logical formula.

Question 1

Give a simple data structure that represents a PL formula in CNF according to the DIMACS CNF format.

Solution:

A list of lists of integers

Question 2

Write an evaluation function of a PL formula in CNF given an interpretation of the variables, *i.e.*, a Boolean value for each variable.

Question 3

Write a function that generates all binary words of length n given in parameter.

Question 4

Using the previous two functions, define a decision procedure.

Question 5

Transform PL formula of Exercise 3 into DIMACS format and apply this decision procedure to find a solution.

Question 6

Try solving this problem

			-		Quinn's SFIABLE	text,	16	variables	and	18	clauses.	
	Reso	JIUT	.101:	SAIIS	FIABLE							
c		10	10									
р	cnf											
	1		0									
	-2	-4										
		4										
		-5										
	5	-6	0									
	6	-7	0									
	6	7	0									
	7 -	-16	0									
	8	-9	0									
-	-8 -	-14	0									
	9	10	0									
	9 -	-10	0									
-1	.0 -	-11	0									
1	0	12	0									
1	.1	12	0									
1	.3	14	0									
1	4 -	-15	0									
1	.5	16	0									

Solution:

```
def bitfield(n):
    return [True if digit=='1' else False for digit in bin(n)[2:]] # [2:] to chop off the "0b" part
def createModel (n):
    allValues = []
    for i in range(0, pow(2, n)):
        w = bitfield(i)
        rest = n - len(w)
        wr = ([False] * rest) + w
        allValues.append(wr)
    return allValues
def evalCNF (cnf, model):
    formulaValue = True
    for clause in cnf:
        clauseValue = False
        for lit in clause:
             if (lit > 0):
                 clauseValue = clauseValue or model[lit -1]
             else:
                 clauseValue = clauseValue or (not model[(-lit)-1])
        formulaValue = formulaValue and clauseValue
    return formulaValue
def decisionProcedure (nbVar, cnf):
    allValues = createModel(nbVar)
    flag = False
    for w in allValues:
        if (evalCNF(cnf, w)):
             print ("SAT_with_", w)
             return
    if (not flag):
        print ("UNSAT")
cnf = [
   [1, -3], [2, 3, -1]
]
print ("Problem_1_is")
decisionProcedure (3, cnf)
cnf2 = [
    [1, 2], [-2, -4], [3, 4], [-4,-5],
[5, -6], [6 -7], [6, 7], [7 -16],
[8, -9], [-8, -14], [9, 10], [9, -10],
    [-10, -11], [10, 12], [11, 12], [13, 14],
    [14, -15], [15, 16]
]
print ("\nProblem_2_is")
decisionProcedure (16, cnf2)
```