Simulation abstraite : une analyse statique de modèles Simulink

Alexandre Chapoutot¹

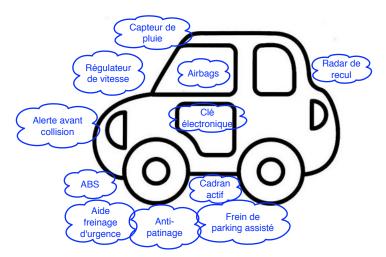
Laboratoire MeASI - CEA LIST

Soutenance de thèse Ecole Polytechnique, Palaiseau 8 décembre 2008

¹Sous la direction de Matthieu Martel

Omniprésence des systèmes informatiques

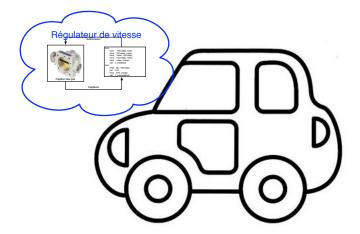
Exemple : l'évolution de l'automobile



•00000000

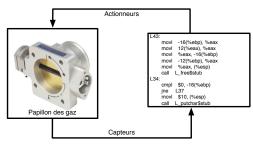
Omniprésence des systèmes informatiques

Exemple : l'évolution de l'automobile



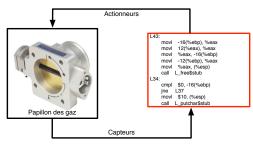
Etude des systèmes de contrôle-commande

Exemple: régulation du papillon des gaz



Etude des systèmes de contrôle-commande

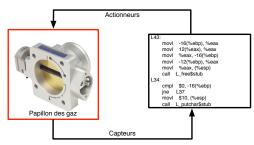
Exemple : régulation du papillon des gaz



- Un programme (élément de contrôle)

Etude des systèmes de contrôle-commande

Exemple : régulation du papillon des gaz

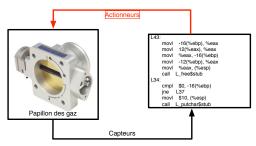


- Un programme (élément de contrôle)
- Un système physique (élément à contrôler)

00000000

Etude des systèmes de contrôle-commande

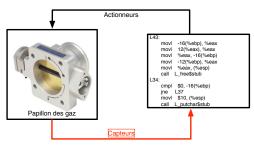
Exemple : régulation du papillon des gaz



- Un programme (élément de contrôle)
- Un système physique (élément à contrôler)
- Des actionneurs (action sur le système physique)

Etude des systèmes de contrôle-commande

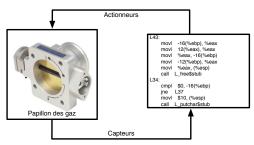
Exemple : régulation du papillon des gaz



- Un programme (élément de contrôle)
- Un système physique (élément à contrôler)
- Des actionneurs (action sur le système physique)
- Des capteurs (mesure du système physique)

Etude des systèmes de contrôle-commande

Exemple : régulation du papillon des gaz



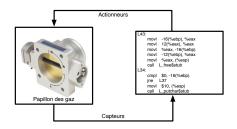
Quatre composants:

- Un programme (élément de contrôle)
- Un système physique (élément à contrôler)
- Des actionneurs (action sur le système physique)
- Des capteurs (mesure du système physique)

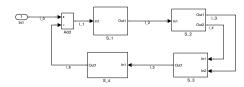
Hétérogénéité des composants : systèmes hybrides

Modélisation en Simulink

00000000

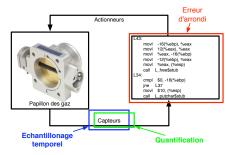


Modèle Simulink : programme décrivant le système hybride

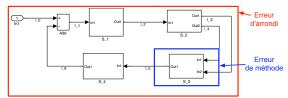


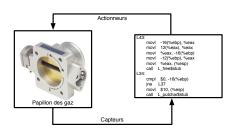
000000000

Place des approximations dans le système réel

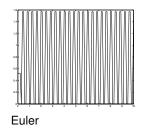


Place des approximations dans le modèle Simulink

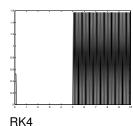


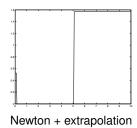


Simulation numérique du papillon des gaz (fermeture puis ouverture)



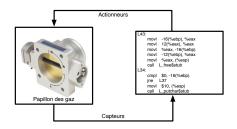
000000000





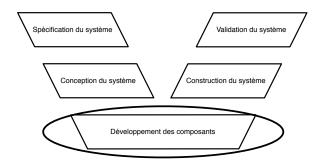
000000000

Vérification formelle de la modélisation en Simulink



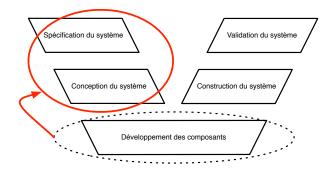
Modèle Simulink : programme décrivant le système hybride

000000000



Analyse statique par interprétation abstraite Analyseurs **Propriétés** Langages Astrée (ENS) Erreurs à l'exécution Polyspace (Mathworks) Erreurs à l'exécution C, C++, Ada aiT (AbsInt) assembleur Pire temps d'exécution C Global Surveyor (NASA) Pointeurs Airac5 (Corée) Débordements mémoire Fluctuat (CEA) C. assembleur Précision numérique

Objectif du travail de thèse



- Appliquer les méthodes de vérification formelle au plus tôt dans le cycle de développement
- Valider la méthode de résolution et pas sa mise en œuvre : simplification
- Valider en mimant au mieux les conditions réelles d'exécution

Analyse statique par interprétation abstraite de modèles Simulink Pour l'étude de la précision numérique

Problèmes

- Approximations numériques importantes
- Sémantique de Simulink pas clairement définie

Contributions théoriques

- Définition de domaines numériques abstraits [AFADL'07, TSI'07]
- Définition de la sémantique d'un sous-ensemble de Simulink [LCTES'06, SLA++P'08, soumis]

Contribution pratique

Prototype d'analyseur statique de modèles Simulink [SLA++P'08]

00000000

- Modèles Simulink
 - Un outil de modélisation
 - Présentation du langage
 - Sémantique et simulation numérique
- Simulation abstraite
 - Domaines numériques abstraits
 - Domaine des séquences
 - Analyse statique de Simulink
- Expérimentations
 - Architecture logicielle du simulateur abstrait
 - Expérimentation : pédale de frein
 - Expérimentation : papillon des gaz
- Conclusion et perspectives
 - Conclusion
 - Perspectives

Plan de l'exposé

- Modèles Simulink
 - Un outil de modélisation
 - Présentation du langage
 - Sémantique et simulation numérique
- Simulation abstraite
 - Domaines numériques abstraits
 - Domaine des séquences
 - Analyse statique de Simulink
- Expérimentations
 - Architecture logicielle du simulateur abstrait
 - Expérimentation : pédale de frein
 - Expérimentation : papillon des gaz
- 4 Conclusion et perspectives
 - Conclusion
 - Perspectives

Simulink en bref

Généralités

- Extension de Matlab
- Environnement graphique utilisé pour la conception de systèmes de contrôle-commande
- Plate-forme de simulation numérique
- Nombreuses bibliothèques dédiées : traitement du signal, systèmes physiques, automobile, etc.
- Standard de fait dans l'industrie (automobile en particulier)

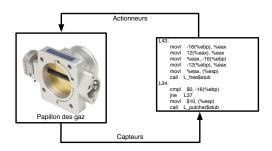
Paramétrage et fonctionnalités

- Formats des données variés
- Algorithmes numériques : Euler, Runge-Kutta, etc.
- Typeur, débogueur, générateur de code

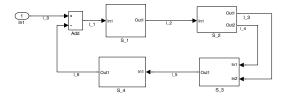
Diversité des modèles

- A temps continu
- A temps discret
- Hybrides

Modélisation Simulink

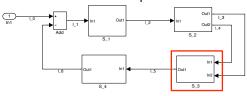


Modèle Simulink



Modèle du papillon des gaz

Modèle Simulink complet

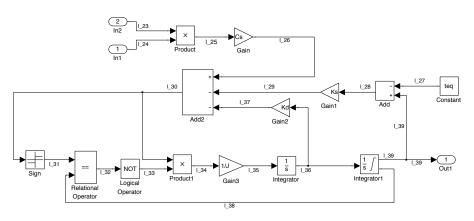


Modèle mathématique

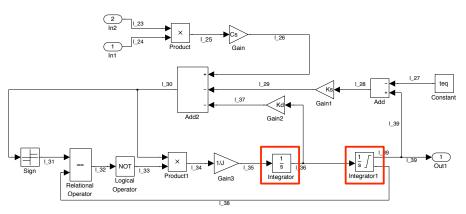
$$\begin{cases} T(t) = \mathsf{Direction} \ \times \ \mathsf{Effort} \ \times C_{\mathsf{S}} \\ \dot{\omega}(t) = \frac{1}{J}(-K_{\mathsf{S}}(\theta(t) - \theta_{eq}) - K_{d}\omega(t) + T(t)) & 0 < \theta < \pi/2 \\ \mathsf{si} \ (\theta < 0 \land \mathit{sgn}(\dot{\omega}(t) = -1)) \lor ((\theta > \pi/2 \land \mathit{sgn}(\dot{\omega}(t) = 1))) \\ \mathsf{alors} \ \dot{\omega}(t) = 0 \end{cases}$$

Modèle du papillon des gaz

Modèle Simulink (système à temps continu)

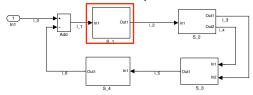


Modèle Simulink (système à temps continu)



Bloc temporel : Integrator (temps continu)

Modèle Simulink complet



L43:
movi -16(%ebp), %eax
movi 12(%eax), %eax
movi %eax, -16(%ebp)
movi -12(%ebp), %eax
movi %eax, (%eep)
call L_fee6Sub
L44:
mpl S0, -16(%ebp)
jne 1.27
movi S10, (%esp)
call L_outchar\$Sub

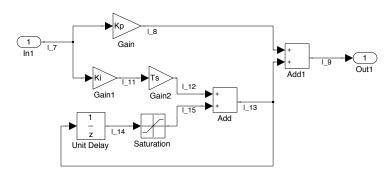
Modèle mathématique

$$\begin{cases} y(k) = y_p(k) + y_i(k) \\ y_p(k) = K_p e(k) \\ y_i(k+1) = y_i(k) + K_i T_s e(k) & 0 < y_i(k) < 1 \end{cases}$$

Régulateur PI (Proportionnel-Intégral)

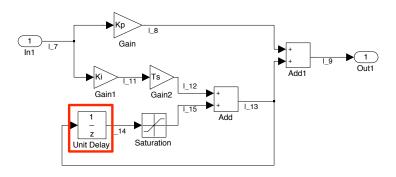
Modèle du régulateur

Modèle du contrôleur (système à temps discret)



Modèle du régulateur

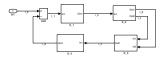
Modèle du contrôleur (système à temps discret)



Bloc temporel : Unit Delay (temps discret)

Simulation numérique : sémantique de Simulink

Modèle Simulink



Simulation numérique

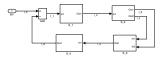
- 1: Etats initiaux
- 2: répéter
 - 3: Lire les entrées
- 4: Calculer les sorties
- 5: Calculer les états
- 6: Calculer le prochain pas de temps
- 7: jusqu'à Temps fin de simulation

Etat : "valeurs des précédentes itérations nécessaires pour calculer la sortie courante" (continu vs discret)

Description insuffisante pour la vérification formelle

Simulation numérique : sémantique de Simulink

Modèle Simulink



Simulation numérique

- 1: Etats initiaux
- 2: répéter
 - 3: Lire les entrées
- 4: Calculer les sorties
- 5: Calculer les états
- 6: Calculer le prochain pas de temps
- 7: **jusqu'à** Temps fin de simulation

Etat : "valeurs des précédentes itérations nécessaires pour calculer la sortie courante" (continu vs discret)

Description insuffisante pour la vérification formelle

Formalisation

Modèles Simulink

Nom	Bloc	Equations
	$c ightharpoonup \ell_1$	
Constant	Constant	$\{\ell_1 = c, \emptyset\}$
	$\begin{pmatrix} \ell_1 \\ \ell_2 \end{pmatrix} \leftarrow \ell_3$	
Add	Add	$\{\ell_3=\ell_1+\ell_2,\emptyset\}$
	$\begin{pmatrix} \ell_1 \\ \ell_2 \\ \ell_2 \end{pmatrix} \longrightarrow \ell_4$	
Switch	ℓ ₃ Switch	$\{\ell_4 = if(p(\ell_1), \ell_2, \ell_3), \emptyset\}$
	ℓ_1 1/s ℓ_2	
Integrator	Integrator	$\{\ell_2(t) = \sigma(t), \dot{\sigma}(t) = \ell_1(t)\}$
	ℓ_1 $\stackrel{1}{\sim}$ ℓ_2	
UnitDelay	Unit Delay	$\{\ell_2(k) = \sigma(k), \sigma(k+1) = \ell_1(k)\}$

Deux types d'équations :

- équations liées aux sorties
- équations liées aux états : opérateur temporel dans la sémantique

Note: Utilisation de l'équivalence $y(t) = \int x(z)dz \equiv \dot{y}(t) = x(t)$

Formalisation

Modèles Simulink

Nom	Bloc	Equations
	$c \rightarrow \ell_1$	
Constant	Constant	$\{\ell_1 = c, \emptyset\}$
	$\begin{pmatrix} \ell_1 \\ \ell_2 \end{pmatrix} \leftarrow \ell_3$	
Add	Add	$\{\ell_3 = \ell_1 + \ell_2, \emptyset\}$
	$\begin{pmatrix} \ell_1 \\ \ell_2 \\ \ell_2 \end{pmatrix} \longrightarrow \ell_4$	
Switch	ℓ ₃ Switch	$\{\ell_4=if(p(\ell_1),\ell_2,\ell_3),\emptyset\}$
	ℓ_1 > 1/s > ℓ_2	
Integrator	Integrator	$\{\ell_2(t) = \sigma(t), \dot{\sigma}(t) = \ell_1(t)\}$
	ℓ_1 $\stackrel{1}{{\scriptstyle -}}$ ℓ_2	
UnitDelay	Unit Delay	$\left\{ \ell_{2}(k) = \sigma(k), \sigma(k+1) = \ell_{1}(k) \right\}$

Deux types d'équations :

- équations liées aux sorties
- équations liées aux états : opérateur temporel dans la sémantique

Note: Utilisation de l'équivalence $y(t) = \int x(z)dz \equiv \dot{y}(t) = x(t)$

Formalisation

Modèles Simulink

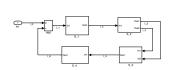
Nom	Bloc	Equations
	$c ightharpoonup \ell_1$	
Constant	Constant	$\{\ell_1=c, 0\}$
	$\begin{pmatrix} \ell_1 \\ \ell_2 \end{pmatrix}$ \downarrow	
Add	Add	$\{\ell_3=\ell_1+\ell_2, \emptyset\}$
	$\begin{pmatrix} \ell_1 \\ \ell_2 \\ \ell_2 \end{pmatrix} \longrightarrow \ell_4$	
Switch	ℓ ₃ Switch	$\{\ell_4 = if(p(\ell_1), \ell_2, \ell_3), \emptyset\}$
	ℓ_1 1/s ℓ_2	
Integrator	Integrator	$\{\ell_2(t) = \sigma(t), \dot{\sigma}(t) = \ell_1(t)\}$
	ℓ_1 $\stackrel{1}{\sim}$ ℓ_2	
UnitDelay	Unit Delay	$\{\ell_2(k) = \sigma(k), \frac{\sigma(k+1)}{\sigma(k+1)} = \ell_1(k)\}$

Deux types d'équations :

- équations liées aux sorties
- équations liées aux états : opérateur temporel dans la sémantique

Note: Utilisation de l'équivalence $y(t) = \int x(z)dz \equiv \dot{y}(t) = x(t)$

Modèle Simulink



Système d'équations

$$egin{aligned} \ell_0 &= & & ext{In1} \ \ell_1 &= \ell_0 - \ell_6 \ \ell_2 &= & S_1(\ell_1) \ (\ell_3,\ell_4) &= & S_2(\ell_2) \ \ell_5 &= & S_3(\ell_3,\ell_4) \ \ell_6 &= & S_4(\ell_5) \end{aligned}$$

Simulation numérique

- Etats initiaux
- 2: répéter
 - Lire les entrées
- Calculer les sorties
- Calculer les états
- Calculer le prochain pas de temps
- 7: jusqu'à Temps fin de simulation

Discrétise les fonctions continues

$$\dot{y}(t) = x(t)$$
 transformé en $^{\eta}$

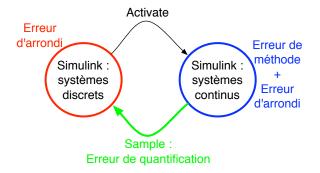
$$\eta(k+1) = \operatorname{solver}(\eta(k), x(k))$$

$$\gamma(k) = \eta(k)$$

Constat : plusieurs méthodes d'intégration donc plusieurs sémantiques

Formalisation : propriétés numériques

Objectif : calculer la distance entre les comportements mathématiques et la simulation numérique (critère de correction)

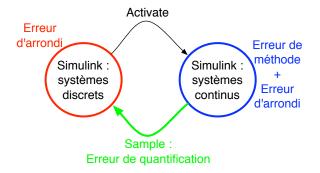


Résultat : Evaluation de la robustesse des programmes aux approximations numériques

Formalisation: propriétés numériques

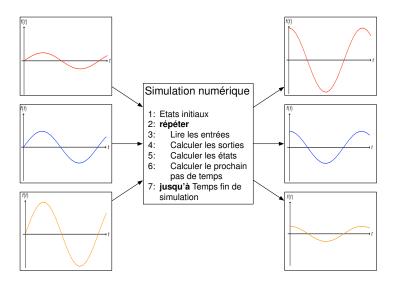
Modèles Simulink 000000000

Objectif: calculer la distance entre les comportements mathématiques et la simulation numérique (critère de correction)



Résultat : Evaluation de la robustesse des programmes aux approximations numériques pour un ensemble d'entrées

Simulation abstraite



Simulation abstraite

Approche sémantique des modèles Simulink.

Modélisation sémantique : sémantique des séquences [Kahn'74]

Plan de l'exposé

- Modèles Simulink
 - Un outil de modélisation
 - Présentation du langage
 - Sémantique et simulation numérique
- Simulation abstraite
 - Domaines numériques abstraits
 - Domaine des séquences
 - Analyse statique de Simulink
- 3 Expérimentations
 - Architecture logicielle du simulateur abstrait
 - Expérimentation : pédale de frein
 - Expérimentation : papillon des gaz
- Conclusion et perspectives
 - Conclusion
 - Perspectives

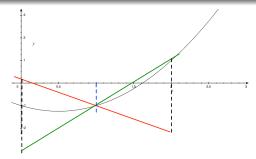
Intervalles [Moore'66] [Cousot&Cousot'77]

$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$

Problème de dépendance : $X - X \neq 0$ en général

Solution: forme centrée

Application du théorème des accroissements finis $\mathbf{f}([a,b]) \subseteq \mathbf{f}(m) + [\mathbf{f}']([a,b])([a,b]-m) \ m$ milieu de l'intervalle [a,b]



Manipulation d'ensembles de valeurs

Intervalles [Moore'66] [Cousot&Cousot'77]

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

Problème de dépendance : $X - X \neq 0$ en général

Solution : forme centrée

Application du théorème des accroissements finis $f([a,b]) \subseteq f(m) + [f']([a,b])([a,b]-m)$

Généralisation : forme de Taylor

$$f([a,b]) \subseteq f(m) + f'(m)([a,b] - m) + \ldots + f^{n-1}(m) \frac{([a,b]-m)^{n-1}}{(n-1)!} + [f^n]_n([a,b]) \frac{([a,b]-m)^n}{n!}$$

 m milieu de l'intervalle $[a,b]$

Contribution : domaine numérique abstrait

Domaine numérique abstrait

L'ensemble des formes de Taylor forme un domaine numérique abstrait $\langle \mathcal{T}, \sqsubseteq_{\mathcal{T}}, \bot, \top, \sqcup, \sqcap \rangle$

Intérêt : prise en compte des relations entre les variables (valeurs des dérivées partielles)

Deux applications:

- Adaptation des algorithmes d'intégration numérique (par exemple Euler, RK) avec du calcul par intervalles
- Amélioration de l'évaluation des erreurs d'arrondi

Amélioration du calcul des erreurs d'arrondi

Domaine des flottants avec erreurs [Goubault'01, Martel'02]

Défini spécifiquement pour estimer les erreurs de calculs

Principe: décomposition d'une valeur réelle

- Valeur flottante
- Erreur d'arrondi : distance entre réel et flottant (1)

Règles de calcul des erreurs

$$a = (f_a, e_a)$$
 et $b = (f_b, e_b)$

$$a+b = (f_a+_F f_b, e_a+e_b+\downarrow (f_a+f_b))$$

 $a\times b = (f_a\times_F f_b, e_af_b+e_bf_a+e_ae_b+\downarrow (f_a\times f_b))$

Amélioration du calcul des erreurs d'arrondi

Domaine des flottants avec erreurs différentiées

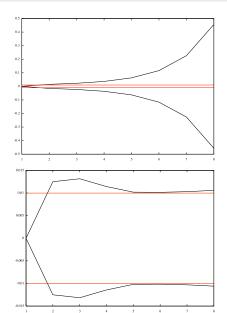
Combinaison du domaine des flottants avec erreurs et des formes de Taylor [AFADL'07, TSI'07]

Abstraction des erreurs fondée sur le domaine des formes de Taylor Permet de prendre en compte les dépendances entre les erreurs

Exemple: racine carrée par méthode de Newton

```
while (cond < 1) {
                                    xn1 = 0.5 * xn * (3.0 - a * xn * xn);
double xn = 0.1;
double xn1 = 0.0:
                                   temp = xn1 - xn:
double a = [25,25] [-0.1,0.1];
                                    if (temp < 1e-12) \{ cond = 1; \}
int cond = 0:
                                    if (temp > -1e-12) \{ cond = 1; \}
double temp = 0.0;
                                    xn = xn1:
double res = 0.0:
                                   res = xn1 * a:
```

Evolution des erreurs



Abstraction par des intervalles :

- Intervalle d'erreurs croissant
- Conclusion : instabilité numérique

Abstraction par forme de Taylor :

- Intervalle d'erreurs stable
- Conclusion : stabilité numérique

Plan de l'exposé

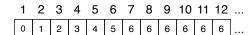
- Modèles Simulink
 - Un outil de modélisation
 - Présentation du langage
 - Sémantique et simulation numérique
- Simulation abstraite
 - Domaines numériques abstraits
 - Domaine des séquences
 - Analyse statique de Simulink
- Expérimentations
 - Architecture logicielle du simulateur abstrait
 - Expérimentation : pédale de frein
 - Expérimentation : papillon des gaz
- Conclusion et perspectives
 - Conclusion
 - Perspectives

Algorithme de simulation construit une séguence de valeurs Représentation de séquences infinies de manière finie

Exemple de séquence abstraite avec la fonction de partition :

$$\mu(k) = \begin{cases} k & \text{si } k < 6 \\ 6 & \text{sinon} \end{cases}$$

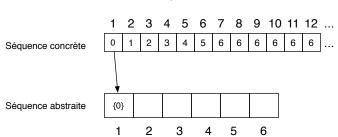
Séquence concrète



Algorithme de simulation construit une séquence de valeurs Représentation de séquences infinies de manière finie

Exemple de séquence abstraite avec la fonction de partition :

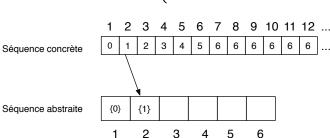
$$\mu(k) = \begin{cases} k & \text{si } k < 6 \\ 6 & \text{sinon} \end{cases}$$



Algorithme de simulation construit une séquence de valeurs Représentation de séquences infinies de manière finie

Exemple de séquence abstraite avec la fonction de partition :

$$\mu(k) = \begin{cases} k & \text{si } k < 6 \\ 6 & \text{sinon} \end{cases}$$



Algorithme de simulation construit une séquence de valeurs Représentation de séquences infinies de manière finie

Exemple de séquence abstraite avec la fonction de partition :

$$\mu(k) = \begin{cases} k & \text{si } k < 6 \\ 6 & \text{sinon} \end{cases}$$

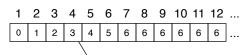
8 9 10 11 12 ... 2 3 5 6 6 6 6 6 Séquence concrète {2} Séquence abstraite {0} {1} 3 5 6

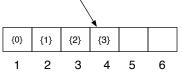
Algorithme de simulation construit une séquence de valeurs Représentation de séquences infinies de manière finie

Exemple de séquence abstraite avec la fonction de partition :

$$\mu(k) = \begin{cases} k & \text{si } k < 6 \\ 6 & \text{sinon} \end{cases}$$

Séquence concrète



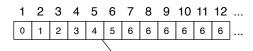


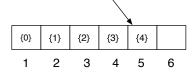
Algorithme de simulation construit une séquence de valeurs Représentation de séquences infinies de manière finie

Exemple de séquence abstraite avec la fonction de partition :

$$\mu(k) = \begin{cases} k & \text{si } k < 6 \\ 6 & \text{sinon} \end{cases}$$

Séquence concrète



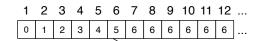


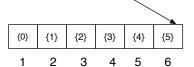
Algorithme de simulation construit une séguence de valeurs Représentation de séquences infinies de manière finie

Exemple de séquence abstraite avec la fonction de partition :

$$\mu(k) = \begin{cases} k & \text{si } k < 6 \\ 6 & \text{sinon} \end{cases}$$

Séquence concrète





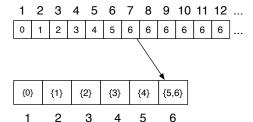
Algorithme de simulation construit une séguence de valeurs Représentation de séquences infinies de manière finie

Exemple de séquence abstraite avec la fonction de partition :

2

$$\mu(k) = \begin{cases} k & \text{si } k < 6 \\ 6 & \text{sinon} \end{cases}$$

Séquence concrète



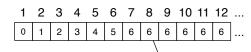
6

Algorithme de simulation construit une séquence de valeurs Représentation de séquences infinies de manière finie

Exemple de séquence abstraite avec la fonction de partition :

$$\mu(k) = \begin{cases} k & \text{si } k < 6 \\ 6 & \text{sinon} \end{cases}$$

Séquence concrète



				1	
{0}	{1}	{2}	{3}	{4}	{5,6}
1	2	3	4	5	6

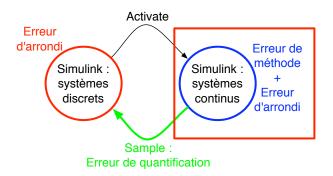
Algorithme de simulation construit une séquence de valeurs Représentation de séquences infinies de manière finie

Domaine abstrait

Le domaine des séquences est un domaine abstrait paramétré par une fonction de partition.

- Prise en compte des propriétés des fonctions : périodicité
- Définition d'une notion de précision

Mesure des approximations de la partie continue



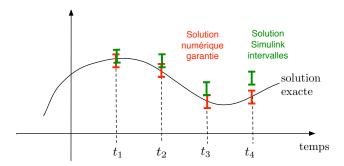
Evaluer la distance entre :

- la simulation numérique
- et un capteur parfait (discrétisation idéale du modèle mathématique)

Mesure des approximations de la partie continue

Pour un système d'équations différentielles :

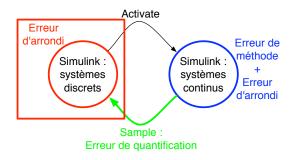
- Simulink : séquence d'intervalles approchant la solution
- Solution garantie : séquence d'intervalles encadrant la solution



Critère de correction :

 distance entre la solution garantie et la solution Simulink intervalle

Mesure des approximations de la partie discrète

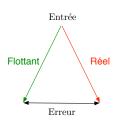


Evaluer la distance entre :

- un calcul avec des nombres flottants
- et un calcul dans les réels

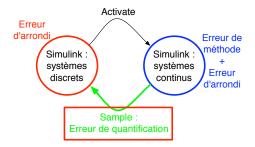
Mesure des approximations de la partie discrète

Donné directement par le domaine des flottants avec erreurs différentiées



Critère de correction :

• Plus la valeur de l'erreur est petite alors plus le résultat flottant est précis (c'est-à-dire proche du réel)

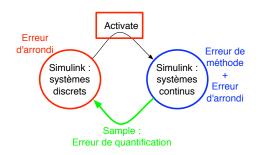


Du continu vers le discret : sample

Transforme les valeurs de l'intégration numérique s et de l'intégration numérique garantie g en flottant avec erreurs

$$(s, g) \Rightarrow (s, g-s+q)$$

Introduit une erreur de quantification q



Du discret vers le continu : activate

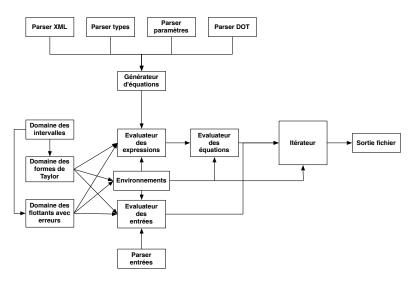
Transforme une valeur flottante f avec erreur e en valeur simulation et valeur réelle

$$(f,e) \Rightarrow (f,f+e)$$

N'introduit pas d'approximation numérique supplémentaire

- Modèles Simulink
 - Un outil de modélisation
 - Présentation du langage
 - Sémantique et simulation numérique
- Simulation abstraite
 - Domaines numériques abstraits
 - Domaine des séquences
 - Analyse statique de Simulink
- Expérimentations
 - Architecture logicielle du simulateur abstrait
 - Expérimentation : pédale de frein
 - Expérimentation : papillon des gaz
- Conclusion et perspectives
 - Conclusion
 - Perspectives

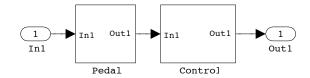
Architecture logicielle



O(6000) lignes OCaml, O(1000) lignes Matlab [Lim&Chapoutot'07]

Expérimentation : pédale de frein

Système en boucle ouverte

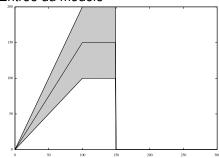


- Pédale : système masse-ressort-amortisseur
- Contrôle : détecteur de pression

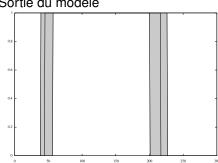
Protocole expérimental:

- Méthode d'intégration : Euler
- Pas d'intégration : 0.01

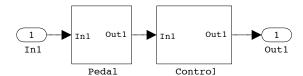
Entrée du modèle



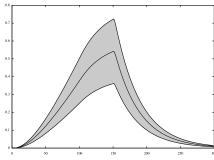
Sortie du modèle

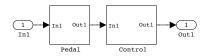


La pression de la pédale est détectée

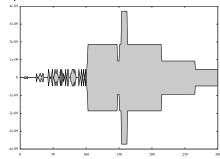


Sortie de la pédale

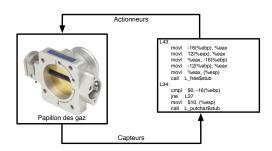




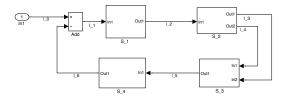
Erreur de méthode et d'arrondi pour la pédale



Conclusion : Les résultats de la simulation numérique sont très proches du modèle mathématique

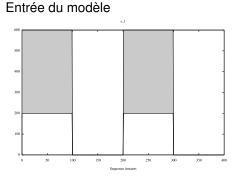


Modèle Simulink

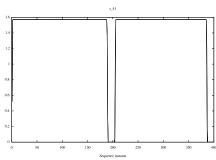


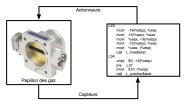
Expérimentation : papillon des gaz

Experimentation: papinon des gaz



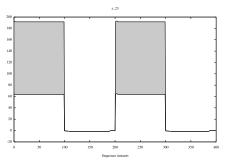
Dynamique du papillon des gaz

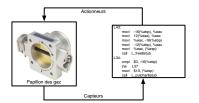




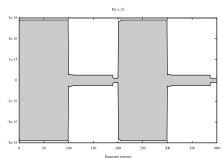
Expérimentation : papillon des gaz

Sortie du régulateur





Erreurs numériques



Conclusion : Les résultats de la simulation numérique sont très proches du modèle mathématique

ian de l'expose

- Modèles Simulink
 - Un outil de modélisation
 - Présentation du langage
 - Sémantique et simulation numérique
- Simulation abstraite
 - Domaines numériques abstraits
 - Domaine des séquences
 - Analyse statique de Simulink
- Expérimentations
 - Architecture logicielle du simulateur abstrait
 - Expérimentation : pédale de frein
 - Expérimentation : papillon des gaz
- Conclusion et perspectives
 - Conclusion
 - Perspectives

Conclusion

Simulation abstraite

Méthode de validation automatique des spécifications de programmes de contrôle-commande avec :

- prise en compte de l'environnement physique
- prise en compte des approximations numériques

La simulation abstraite permet de séparer les problèmes :

- liés à la modélisation
- liés aux approximations numériques

Propriété temporelle

Quelles influences ont les approximations numériques sur le contrôle?

Outils spécifiques

Utilisation des outils issus de l'automatique [LCTES'06] En particulier, l'analyse fréquentielle

Validation fonctionnelle multi-niveaux

Propagation de l'information des propriétés des spécifications au niveau du code

Développement logiciel

Poursuivre le développement du simulateur abstrait