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Abstract—Hybrid systems are a widely used model to
represent and reason about control-command systems.
In an industrial context, these are often implemented
in Simulink and their validity is checked by perform-
ing many numerical simulations in order to test their
behavior with various possible inputs. In this article,
we present a tool named HySon which performs set-
based simulation of hybrid systems with uncertain
parameters, expressed in Simulink. Our tool handles
advanced features such as non-linear operations, zero-
crossing events or discrete sampling. It is based on
well-known efficient numerical algorithms that were
adapted to handle set-based domains. We demonstrate
the performance of our method on various examples.

I. Introduction
Hybrid systems are a widely used model to describe

embedded systems which manipulate both continuous-
and discrete-time varying values. Industrial software tools
to design, study and simulate such models have been
developed, such as Simulink, LabVIEW, Scilab/Xcos or
Modelica. As a typical example of such systems, the reader
could think of a cruise controller which maintains the
speed of a car at a desired value. This program has inputs
(the speed of the car measured periodically) and outputs
(the intensity of the engine): if the measured speed is
below the desired speed then the controller will increase
the intensity of the engine, and conversely. Moreover, the
designers of the controller might want to take actions
making the streams non-smooth: for instance, the intensity
of the engine should be limited in order not to be greater
than a given maximal value. The mixture of discrete and
continuous-time in these systems provides them with a
very useful expressive power, which enables one to model
both discrete controllers and their continuous environ-
ment, but also makes them very difficult to study.

Since they are often used to design critical systems,
new verification tools are more and more needed. On the
one hand, we need tools to perform exhaustive testing:
given a specification of the range of the inputs, we want
to simulate the program on all possible inputs. On the
other hand, we need tools to have guaranteed simulations,
in which the errors due to floating-point computations
are known. In this article, we describe a software, named
HySon, that simulates Simulink programs with both these
criteria in mind. Namely, HySon is able to simulate a pro-
gram given “imprecise” or “uncertain” inputs (for which
we do not know the precise value but only an interval
in which they lie), and computes a good approximation

of the set of all possible Simulink executions, and this
approximation takes in account errors due to the use
of floating-point values to evaluate numerical formulas.
The simulation is thus set-based since it computes all
the executions w.r.t. various possible input values at once,
which is much more efficient and safer than the traditional
approach which consists in simulating the program with
randomly chosen inputs in their specification interval.

Our simulator for Simulink supports various state of the
art integration methods (with both fixed and variable step-
size), sampling rates and zero-crossing events (generated
when a value changes of sign). This simulator is very close
to the Simulink engine, except that it manipulates set of
values instead of floating-point numbers, being encoded
as intervals or as zonotopes. The adaptation is far from
straightforward, thus justifying the present article: apart
from technical implementation issues, comparisons (used
for instance to detect zero-crossings) are subtle to handle
when manipulating intervals because it might be true for
some of the elements of the set and false for the other, thus
requiring significant changes in the simulation algorithm.

We chose to analyze directly Simulink code and not
the generated C code for various reasons. First, the code
produced by Simulink has to be linked with a library
implementing the integration methods for which we do
not have the source code. Of course we could think of
implementing our own library, with the same interface
and functionalities as the Simulink one. However, as
we explain in Section III-B, the integration algorithms
which are used are quite involved and its code would
be complicated, relying on tight invariants for the
manipulated variables, and manipulate pointers and
complex structures (in order to implement the rollback
for small steps for instance). So, there is little hope that
an existing analyzer (like Astree [8], Fluctuat [10] or
Polyspace) could handle it out of the box, or even at
all. Secondly, the advantage of having a dedicated tool
working directly on Simulink programs is that it can
benefit from the high-level semantics of Simulink thus
allowing it to be much more concise to implement, more
efficient and more precise.

Related work. We believe that our software is the first of
its kind, being able to perform set-based simulation on a
realistic language (a reasonably large subset of Simulink)
expressing non-linear continuous-time dynamics and non-
linear event functions. Our method uses well-known nu-



merical integration schemes that are already used by
designers of control-command software. So, we believe that
our method will be easily adopted and understood by these
designers. Some other works [12] are very close to ours in
the study of Simulink, but are mainly focused on linear
systems without zero-crossing events. The reachability
problem in hybrid automata is also a field close to our
work: for instance, the tool SpaceEx [13] uses zonotopes
to compute guaranteed set of trajectories, i.e. bounding
the truncation error of the numerical integration, in the
more restricted formalism of linear hybrid automata. More
recently, similar methods have been used to handle time-
varying linear systems [1] and polynomial differential equa-
tions [2]. Finally, our work differ from [11] as we adapt
numerical methods in order to handle sets of values instead
of using them to compute reachable sets, hence reducing
the number of simulations to be performed and also taking
account of rounding errors.

II. Hybrid programs and their simulation
Simulink is a graphical language that allows designers to

write dynamical systems as block diagrams where opera-
tions are represented by blocks connected with wires. Each
block has inputs and outputs, named ports, and signals are
exchanged between blocks via wires; a signal is a function
` : R+ → R mapping time instants to values (for conciseness
we only consider real valued signals).

Following [5], a Simulink model can be easily translated
into a state-space representation that handles continuous
and discrete variables. Continuous variables are attached
to integrator (or state-space) blocks, and discrete variables
are attached to sampled and unit-delay blocks. Writing nx

(resp. nd) for the number of continuous (resp. discrete)
variables, every Simulink model can be translated into
equations of the form of Equation (1): the continuous-
time state function fx : R × Rnx × Rnd → Rnx expresses
the dynamics of the continuous variables, the discrete-time
state function fd : R×Rnx×Rnd → Rnd modifies the discrete
variables at sampling instants, while the output function
g : R × Rnx × Rnd → Rnm updates the values of the output
variables. We also introduce the zero-crossing events upon
which continuous variables x can be updated: this is
formalized by the zero-crossing function fz : R×Rnx → Rnx ,
while the zero-crossing events are defined by the function
z : R×Rnx×Rnd → {0, 1} which returns 1 if the event must be
activated and 0 otherwise. An example of such equations
is given in Example 1.

ẋ = fx(t,x,d) d = fd(t,x,d)

x = fz(t,x,d) when z(t,x,d) y = g(t,x,d)
(1)

Example 1. To illustrate our method, we use a simple yet
representative example, the uncertain bouncing pendulum.
This system consists of a pendulum that bounces against a
wall located at angle θ = 0.5, see Figure 1: the wall creates
a zero-crossing events during the simulation. The system
has two continuous variables (the angle θ, the angular
velocity ω) and no discrete variables. The evolution of the

`
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fx(t,x,d) =
(

ω

−g/` sin θ

)
fz(t,x,d) =

(
θ

−0.7ω

)
when θ = −0.5

y = θ

Figure 1. A pendulum system and the state-space equations.

continuous variables follow the equation `θ̈+g sin θ = 0. The
output is the couple (θ, ω) and the sate-space representa-
tion is given in Figure 1, with x = (θ, ω)t. �

The semantics of Simulink programs is the mathemati-
cal solution of the Equations (1). This solution is generally
not computable, and we consider instead the simulation,
as performed by the Simulink solver, as a semantics. This
simulation process starts at time t0 with a discretization
step h0 and updates the values of x, d and y according to
the following simulation loop:

Input: x0, d0, t0, h0;
n = 0;
loop until tn ≥ tend

evaluate g(tn,xn,dn)
compute d′ = fd(tn,xn,dn)
solve ẋ(t) = fx(t,x(t),dn) over interval [tn, tn + hn]
find_zero_crossing
compute hn+1 ; compute tn+1 ; dn+1 = d′ ; n = n+ 1

The first two steps of the simulation loop are simple evalu-
ation of fd and g to update the value of the output and the
discrete states. The most important steps are the solve and
find_zero_crossing steps that, respectively, compute an
approximation of the solution of the differential equation
of the state-space representation in Equation (1) at tn+1,
and detect any zero-crossing event between tn and tn+1. We
briefly detail these two steps in the rest of this section.

A. Solving differential equations

The simulation engine computes discretized approxi-
mations of the solution of differential equations. Given
a value xn that approximates x at time tn, the solve
procedure computes an approximation xn+1 at time tn+1.
For example, using Euler integration scheme, the value
xn+1 is defined as a linear interpolation from xn following
the slope given by fx(tn,xn,dn): xn+1 = xn +h ·fx(tn,xn,dn),
x0 being the initial values specified by the user.

This idea of linear interpolation to obtain xn+1 can
be generalized to any Runge-Kutta like method (solvers
ode4 or ode23 in Simulink for example). These solvers are
described by their Butcher tables, i.e. three matrices A, b
and c such that A and b encodes the intermediate steps at
which the function fx must be evaluated and c encodes the
final linear interpolation. For example, for the Boagacki-
Shampine (BS) method [3] (ode23 in Simulink), xn+1 is



defined by:

k1 = fx(tn,xn,dn) k2 = fx

(
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k3 = fx
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xn+1 = xn + h
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)

and so we have A =

 0 0 0
0.5 0 0
0 0.75 0

, b =
(

0 0.5 0.75
)T

and c =
(

2/9 1/3 4/9
)
. In the following, we assume given

the Butcher table of the numerical scheme.
To improve precision and performance, most integra-

tion methods dynamically choose the integration step
hn = tn+1− tn to keep it small when the values are varying
rapidly and big otherwise. Let us show for example the
implementation of the ode23 method (that we already
partially presented). This method performs, using the
same intermediate computation, another linear interpola-
tion leading to a second approximation point:

x′n+1 = xn + h
( 7

24
k1 +

2
4
k2 +

1
3
k3 +

1
8
fx(tn+1,xn+1,dn)

)
.

The Butcher table is extended by c′ = (7/24, 2/4, 1/3, 1/8)
that performs this second evaluation. The value xn+1

is a second-order approximation of the value x(tn+1)
whereas x′n+1 is a third-order approximation (thus the
name ode23).
The points xn+1 and x′n+1 give an estimation of

the numerical error due to the solver. In prac-
tice, we check that err ≤ err_max where the ap-
proximation error is err = ‖x′n+1 − xn+1‖∞ and
err_max = max (atol, rtol×max (‖xn‖∞, ‖xn+1‖∞)) is the max-
imal tolerated error, which depends on two user-chosen
constants atol and rtol, respectively expressing the absolute
and relative tolerance. If the inequality is not satisfied, the
step is rejected: the solver tries again with a step size hn/2.
If the inequality is verified, the step is accepted and the
next step hn+1 is computed by

hn+1 = hn × (err_max/err)1/(q+1) (2)

where q is the order of the method (q = 2 in case of ode23).

B. Handling zero-crossing events
The next step of the simulation loop must detect and

solve special events that could have occurred between tk

and tk+1. Actually, the main assumptions that make the
numerical solvers stable is that the function fx is (at least)
continuous. However, in many systems, this is not the case:
in the bouncing pendulum, the angular velocity changes
from ω to −ω when the pendulum hits the wall. In the
simulation loop, the find_zero_crossing step is responsible
of detecting and handling such events. The main idea is
that the ODE solver is used to compute the approximation
point xk+1, assuming no zero-crossing events occurred
between tk and tk+1 (i.e. assuming the dynamics of x is
continuous), and then we check if a zero-crossing event

occurred. If yes, this event is localized and the simulation
continues from it.
The detection of zero-crossing events is realized by

comparing the sign of z(tk,xk,d) and z(tk+1,xk+1,d). If
the sign changed, a zero-crossing event occurred (it is a
consequence of the intermediate value theorem on z).

Once the event is detected, we approximate the instant
tzc and the value xzc at which z(tzc,xzc,d) = 0 using a
bisection method on the time interval [tk, tk+1] and a dense
approximation function to estimate x at various instants
t ∈ [tk, tk+1]. The dense approximation of the solution of an
ODE between tk and tk+1 is a (solver-dependent) function
φ : t → Rnx that computes approximations of the solution
without using the numerical solver. For example, for the
ode23 solver, it is given by:

φ(t) = (2τ3 − 3τ2 + 1)xk + (τ3 − 2τ2 + τ)(tk+1 − tk)ẋk

+ (−2τ3 + 3τ2)xk+1 + (τ3 − τ2)(tk+1 − tk)ẋk+1 (3)

with τ = (t − tk)/(tk+1 − tk). Using this function, we can
precisely bracket the zero-crossing event using a bisection
method. Once the time tzc is precisely computed, the
simulation starts again from tzc and fz(tzc,xzc,d). For more
details on this process, we refer to [5].

C. Simulating a system
If we sum up all the techniques described in this section,

we obtain the algorithm used by Simulink to simulate
hybrid and dynamical systems. Given a hybrid program P

in state-space representation, we denote by JP K its simu-
lation as given by this algorithm and write JP K(t) for the
values of the variables of P at some time t. So JP K(t) ∈ Rm,
m = nx + nd + nm being the total number of program
variables.

In many real-life applications, the systems have un-
certainties in inputs, in parameters (e.g. the mass of the
pendulum), or in the initial value (e.g. the initial angle).
In such situations, one numerical simulation is of little
help to study the behavior of the system and the classical
approach is to perform many simulations for random val-
ues chosen in the uncertainty sets. Consider the bouncing
pendulum of Example 1. If the initial state is uncertain
and given by θ(0) ∈ [1.0, 1.1], ω(0) = 0, then we can perform
8 random simulations in Simulink and we obtain the black
lines of Figure 2 for the trajectories of θ. Our goal is to
efficiently compute approximations of all these simulations
at once: the thick squares represent the output of HySon
on this example.

In the rest of this article, we describe our method to
compute set-based simulations that automatically com-
pute enclosures of all the possible simulations for any value
of the uncertain parameters.

III. Set-based simulation of Simulink
From now on, we consider hybrid programs with un-

certainties in their initial states and in their parameters
(i.e. we only know that they lie in a given interval and
not their precise value). In Section III-A, we first describe
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Figure 2. Ten random executions of the bouncing pendulum and
one set-based simulation (red boxes).

the representation we chose for encoding sets of values
(representing “uncertain” values): we use two well-known
domains, intervals for the uncertainty on time and zono-
topes for the uncertainty on values. We then describe how
we implemented the set-based simulation in Section III-B.
A. Domains for representing sets

The simplest and most common way to represent and
manipulate sets of values is interval arithmetic [14]. Nev-
ertheless, this representation usually produces too much
over-approximated results in particular because of the
dependency problem. This problem arises for example when
evaluating the expression e(x) = x − x, which can produce
the interval e([0, 1]) = [−1, 1] 6= 0. This problem is central
in the numerical integration as for example in the Euler
method with have a computation of xk+1 involves xk and
fx(xk,dk, tk) which could be −xk.
To avoid this problem we use an improvement over

interval arithmetic named affine arithmetic [9] which can
track linear correlation between program variables. A set
of values in this domain is represented by an affine form x̂

(also called a zonotope), i.e. a formal expression of the
form x̂ = α0 +

∑n

i=1 αiεi where the coefficients αi are real
numbers, α0 being called the center of the affine form, and
the εi are formal variables ranging over the interval [−1, 1].
Obviously, an interval a = [a1, a2] can be seen as the affine
form x̂ = α0 + α1ε with α0 = (a1 + a2)/2 and α1 = (a2 − a1)/2.
Moreover, affine forms encode linear dependencies between
variables: if x ∈ [a1, a2] and y is such that y = 2x, then x will
be represented by the affine form x̂ above and y will be
represented as ŷ = 2α0 + 2α1ε.
Affine arithmetic extends usual operations on real num-

bers in the expected way. For instance, the affine com-
bination of two affine forms x̂ = α0 +

∑n

i=1 αiεi and
ŷ = β0 +

∑n

i=1 βiεi with a, b, c ∈ R, is given by:

ax̂+ bŷ + c = (aα0 + bβ0 + c) +
n∑

i=1

(aαi + bβi)εi . (4)

However, unlike the addition, most operations create new
noise symbols. Multiplication for example is defined by:

x̂× ŷ = α0α1 +
n∑

i=1

(αiβ0 + α0βi)εi + νεn+1 (5)

where ν =
(∑n

i=1 |αi|
)
×
(∑n

i=1 |βi|
)
over-approximates the

error between the linear approximation of multiplication
and multiplication itself.

Algorithm 1 Main simulation algorithm.
Require: approximation (t̃k, x̃k), step-size hk

repeat
ỹk =butcher(x̃k, hk); ẽk =error(ỹk, x̃k);
if not validate(ẽk) then

hk = hk/2;
end if

until validate(ẽk);
hk+1 =nextstepsize(ẽk, hk);
if zerocross(ỹk, x̃k) then

Handle zc-events;
else
return (t̃k + hk, ỹk)

end if

One of the main difficulties when implementing affine
arithmetic using floating-point numbers is to take in ac-
count the unavoidable numerical errors due to the use
of finite-precision representations for values (and thus
rounding on operations). We use an approach based on
computations of floating-point arithmetic named error free
transformations: the round-off error can be represented
by a floating-point number and hence it is possible to
exactly compute it (we refer to [15] for more details on
such methods). For instance, in the case of addition, the
round-off error e generated by the sum s = a+ b is given by

e = (a− (s− (s− a))) + (b− (s− a)) .

A second comment on the implementation is that an
affine form x̂ could be represented as an array of floats
encoding the coefficients αi. However, since in practice
most of those coefficients are null, it is much more efficient
to adopt a sparse representation and encode it as a list of
pairs (i, αi), sorted w.r.t. the first component, containing
only coefficients αi 6= 0.

B. Simulation algorithm
We explain how the simulation algorithms used in

Simulink were adapted to take into account the peculiar-
ities of the affine domain. Our goal was to use as much
as we could the same algorithms as for a floating-point
simulation in order to achieve the best efficiency, both in
precision and computation time. We shall use intervals
to represent uncertain times t̃k and affine arithmetic to
represent uncertain states x̃k. Given an approximation
(̃tk, x̃k) of the values of the simulations at a time t ∈ t̃k,
we compute a new approximation (̃tk+1, x̃k+1) using Al-
gorithm 1, very similar to the Simulink simulation loop
described in Section II. In the rest of this section, we
explain how the involved functions work.
1) Computing and validating the next state: The role

of the butcher function is to estimate the state x̃k+1

at time t̃k + hk using the chosen numerical integration
method. To do so, we use the Butcher table representation
of Runge-Kutta methods [7] and perform the operations
using affine sets arithmetic. For example, if we use the
Bogacki-Shampine method (see Section II), this sums
up to computing three linear extrapolations and three
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Figure 3. First iterations of the butcher function.

evaluations of fx in affine arithmetic. The extrapolations
(of the form x̃k + 1

2hk c̃
0
k for example) are very precise and

the set-based evaluation of fx can be made precise using
good linearization methods (as described in Section III-A).
In this way, the butcher function can be made very precise
and produces a good approximation of the state x̃k+1 at
time t̃k + hk. For example, we show in Figure 3, the first
ten iterations of the butcher function on the uncertain
pendulum, when using the RK4 numerical integration al-
gorithm (the thin lines represent floating-point simulation
for randomly chosen initial points).

Next, the approximation error must be estimated in
order to best adapt the step-size and achieve a good trade-
off between precision and computation time. This is the
role of the error function. As in Section II, we define
the error as err = ‖ỹ′k+1 − ỹk+1‖∞, where ỹ′k+1 and ỹk+1

are the two approximations at time t̃k + hk. To compute
the norm ‖ỹ‖∞ of a vector of affine forms ỹ, we compute
the component-wise absolute values using a Tchebychev
approximation as in [9] and then compute the maximum
of all these values using max(x̃, ỹ) = (x̃+ ỹ)/2 + abs(x̃− ỹ)/2.
2) Computing next step-size: Once the error is com-

puted, the next approximation x̃k+1 must be validated: the
step is validated only if the error is smaller than the user-
defined tolerance. We use again the equation ẽrr ≤ err_max
except that now, ẽrr is now an affine form (as computed
by error) and err_max is a floating-point value. We shall
accept the step if and only if the supremum of ẽrr is smaller
than err_max, that is only if the maximal computed error
is smaller than err_max. In this way, we shall reject steps
that produced an error which contains err_max, i.e. we
may reject steps that would not have been rejected if
we performed floating-point simulations. However, this
method is conservative in the following sense: a step is
accepted if and only if all the (approximated) trajectories
it represents are accepted. Thus, we chose precision over
performance, another choice could be to reject a step if
and only if all the trajectories it contains are rejected. For
sufficiently stable systems, our choice is preferable as the
variation of the step-size prevents the simulation to reject
too many steps. So, the validate function is defined as

validate(x̃k+1, x̃k) =

{
1 if sup(ẽrrk) ≤ errm

0 otherwise
(6)

with errm = max (atol, rtol×max (‖xk‖∞, ‖xk+1‖∞)). If the
step-size is not validated, we shall divide the step-size
by two and compute a new approximation. If the step is

validated, we define the new step-size hk+1 by:

hk+1 = m(hk × (err_max/ẽrr))1/q+1

where m(ỹ) is the center of the set ỹ. Note that this is very
close to Equation (2), the main difference is that, as ẽrr is
an affine form, we take the mean of all step-sizes as the
next step-size. The nextH function computes this hk+1.
3) Handling zero-crossing events: Once we have an

approximation x̃k+1 at time t̃k+1, we must check if the
zero-crossing signal crossed zero between tk and tk+1, and
if so localize precisely the time at which it crossed zero. Of
course as x̃k and x̃k+1 are sets encoded in affine arithmetic,
we will compute a time interval [tl, tr] that contains all
the possible zero-crossing instants for any approximate
trajectory going from x̃k to x̃k+1. Our method for handling
zero-crossing events works in two steps: first we localize the
zero-crossing instants, then we compute an approximation
of the state of the system at these instants. Without loss
of generality, we assume that the zero-crossing signal is x̃k

(in the pendulum example, it is x̃k + 0.5) and that x̃k does
not contain zero and is negative.

To compute tl, we use an algorithm close to the one used
by Simulink for floating-point simulation. We describe in
the sequel this method, tr being computed in a similar
way. The method uses three functions: the detect function
that detects a zero-crossing event, the extrapolate func-
tion that computes an interval of potential zero-crossing
events and the approximate function that computes an
approximation of the state of the system at some time t

between t̃k and t̃k+1.
The detection of a zero-crossing event is simple: we

compare the signs of x̃x+1 and x̃k, and if they have different
sign we know that there is a zero-crossing. Since x̃k+1 may
contain zero, we now have three possibilities represented
by the three following cases:

tk tk+1

(a)

tk tk+1

(b)

tk tk+1

(c)

In case (a), we have inf(x̃k+1) > 0, so we are sure there
is a zero-crossing between t̃k and t̃k+1. We thus have
detect(x̃k, x̃k+1) = 1. In case (b), we have sup(x̃k+1) < 0, so
there is no zero-crossing and we have detect(x̃k, x̃k+1) = 0.
In case (c), we have 0 ∈ x̃k+1, so we do not know if
there is a zero-crossing between t̃k and t̃k+1: we have
detect(x̃k, x̃k+1) = >, i.e. we do not know its value.
The extrapolation function is a simple linear interpola-

tion between x̃k and x̃k+1 and we compute the time interval
[t1, t2] such that this interpolation crosses zero. Formally,

extrapolate(x̃k, t̃k, x̃k+1, t̃k+1) = t̃k −
x̃k × hk

x̃k+1 − x̃k

.

If extrapolate(x̃k, t̃k, x̃k+1, t̃k+1) is the interval [t1, t2], then
we set the next guess for zero-crossing tm = (t1 + t2)/2
and compute an approximation of the signal at time tm
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Figure 4. Zero-crossing localization.

using the approximate function. This function is solver-
dependent and is a continuous extension of the numerical
integration method [16]; for example, as in Section II, the
approximation function for the ode23 method is the func-
tion φ(t) given by Equation (3), with τ = (t−inf(̃tk))/hk. This
function is the natural interpretation of the floating-point
continuous extension for affine arithmetic, except that we
replaced the term tk+1 − tk with hk. This is important as
t̃k+1 and t̃k are intervals defined by t̃k+1 = t̃k + hk, but
interval arithmetic gives t̃k+1 − t̃k 6= hk.

With these three functions, we can define our algorithm
for computing tl, the lower value of the zero-crossing
instants interval, see Algorithm 2. This algorithm is a loop
that repeatedly uses the extrapolate and approximate
functions to compute a new approximation set ỹm. Then, if
there is a potential zero-crossing between x̃k and ỹm (i.e. if
detect(x̃k, ỹm) is not 0), we look for tl between t̃k and tm,
otherwise we look for tl between tm and t̃k+1. To compute
tr, the only change is that we look left if detect(x̃k, ỹm) = 1
and right otherwise. This algorithm for computing [tl, tr] is
represented graphically below. The gray region is the (set-
based) continuous extension function and the black lines
between x̃k and x̃k+1 are the linear extrapolation which
produces t1, t2 and tm. The result of the algorithm will
be tl and tr, as depicted on the figure. This algorithm
is very precise: on the pendulum example, we get the
interval [0.752668, 0.771273] for the first zero-crossing and
if we perform 1000 floating-point simulations, we obtain
zero-crossing instants within the interval [0.753208, 0.771114].

Once the zero-crossing time t̃zc = [tl, tr] is computed, we
define the zero-crossing set x̃zc as:

x̃zc = approximate(tl) ∪ approximate(tr),

Algorithm 2 Zero-crossing localization algorithm.
Require: approximations (t̃k, x̃k) and (t̃k+1, x̃k+1)
while |tk − tk+1| > ε do

[t1, t2] =extrapolate(x̃k, x̃k+1)
tm = (t1 + t2)/2
ỹm =approximate(tm);
if detect(x̃k, ỹm) 6=0 then

zcfind((t̃k, x̃k), (t̃m, ỹm));
else

zcfind((t̃m, ỹm), (t̃k+1, x̃k+1));
end if

end while
return (t̃k+1, x̃k+1)

i.e. we compute approximations of the state at time tl and
tr and perform the union of both. This is not the optimal
value for the zero-crossing state: ideally, we should com-
pute the intersection of all states between tl and tr with the
hyperplane g(x̃) = 0 where g is the zero-crossing function
which may contain complex, non-linear operations. This
intersection is costly and hard to compute precisely in the
general case, which is why we chose to start from x̃zc. Note
that in some cases, we can refine this by inverting the zero-
crossing function g and setting x̃zc to g−1(0). For example,
in the pendulum system, we know that when there is a
zero-crossing, then θ = −0.5. So we set θ to −0.5 after the
zero-crossing, so that we have a very precise value for θ,
while the value for θ̇ remains uncertain.

There is one last case when handling zero-crossings,
namely when initially we have 0 ∈ x̃k+1. In this case, there
are trajectories between x̃k and x̃k+1 that did not cross 0,
and we handle them in a special way. We compute the
zero-crossing interval [tl, tr] as before and return two states:
the state ([tl, tr], x̃zc) as in the standard case and the state
(̃tk+1, x̃

′
k+1) where x̃′k+1 is the restriction of x̃k+1 that is

below 0. The simulation then continues from these two
states: we perform disjunctive simulations and computes
sets of approximations states.

IV. Benchmarks
In this section, we present a few benchmarks which

are summarized in the Table 5 which shows, along with
their dimension, the simulation duration (in seconds) when
simulated in the affine domain using Bogacki-Shampine
integration method. We also give the computation time
for 1000 random Simulink simulations.
Ball is the bouncing ball with x0 = [10, 10.1], v0 = 15

simulated during 15s. The Van der Pol oscillator is defined
by the ODE ẍ − µ(1 − x2)ẋ + x = 0 with µ = 0.2, x0 = [0.8, 1]
and ẋ0 = 0 simulated during 50s. Mass-spring is the well-
known mass-spring physical system with a mass of [0.5, 0.6],
a damping of 0.35 and initial position x0 = [−2.1,−2] simu-
lated during 40s. B. pendulum is the pendulum described
in Example 1, simulated for 50s. We also tested HySon
on some other examples that we cannot detail here for the
lack of space: Brusselator (a model of autocatalytic reac-
tion), Car (a non-linear model of a car), and Helicopter (a
28-dimensional model of a Westland Lynx helicopter [17]
used as a benchmark for SpaceEx [13]).

All the examples (excepting Helicopter) use error-free
transformations in order to encompass floating-point er-
rors. The Helicopter dynamics directly generated by the

Name Dim. Dur. Simu.×103

Ball 2 0.068 15
Van der Pol 2 5.97 12.24
Brusselator 2 1.84 13.49
Mass-spring 2 0.134 12.93
B. pendulum 2 13.58 34.34
Car 5 43.84 91.62
Helicopter 28 16.685 438

Figure 5. Experimental results
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Figure 6. Set based simulation of the Helicopter system (vertical
bars) and some random simulations (black lines). The dotted lines
are the minimum and maximum of 100.000 simulations at each time.

Tikz output of HySon is presented in Figure 6. We
only plot the interval computed for the values at the
integration times tk without interpolation between them.
In particular, we can notice that vertical bars are not
evenly spaced at the beginning of Helicopter : this is due
to a change of integration step.

We also report a comparison of the results produce by
HySon to the state of the art of reachability software for
linear hybrid automata SpaceEx [13]. To be fair, the non-
linear examples are not considered. SpaceEx analyses: the
Ball model in 0.48s, the Mass-Spring model in 0.59s; the
Helicopter model in 23.3s. Note that HySon has similar
performance against a specialized tool for linear systems.

Finally, we show the precision of our set-based simu-
lation compared to randomly chosen simulations. To do
so, we computed the relative distance between the bounds
computed by HySon and the bounds obtained for 1000
runs of Simulink on some problems. We present in the
table given in Figure 7 the maximum and mean distances,
each time with the fixed step-size solver RK4. Computing
this distance for a variable step-size solver would be more
complicated as Simulink and HySon do not chose the
same step-sizes. We believe however, as shown by the
Figures 2 and 3 that HySon also works very well for
variable step-size solvers. The results we obtain are very
good: even if the maximum relative distance may be high
(this happens usually when the simulations are close to
zero), the mean distance is small, indicating that the
overhead due to the use of set-based algorithms compared
to floating point simulations is small in the long run.

Name Max. distance Mean distance
Van der Pol 187.26% 9.4%
Mass-spring 5.61% 0.11%
Car 185.3% 6.6%

Figure 7. Set-based simulation precision

V. Conclusion and future works
In this article, we presented a novel approach for simu-

lating hybrid systems with uncertainties. We adapted the
simulation engine of Simulink in order to perform set-based
simulation, which is able to handle uncertainties on some
parameters and initial values. The main challenge was to
adapt the zero-crossing algorithm to the affine domain
which, due to non-linear operations, was not straightfor-
ward. We developed a tool that parses Simulink programs
and automatically computes good approximations of all

the trajectories. We believe that such a tool can be very
useful for the design of control-command systems for which
some physical parameters are not precisely known.

This work can be extended in many directions to provide
a better simulation of uncertain systems. First, since the
zero-crossing algorithm can produce two different states
(one that zero-crossed and one that did not), our simu-
lation can be sometimes slow when there are many zero-
crossing events, since the number of states from which we
must perform the simulation may increase. To solve this
problem, we can merge these states when they are close
enough: a way to do that is to adapt the method from [4].
Another improvement is to improve the computation of
zero-crossing states: we believe that a backward analysis
will be useful to compute g−1(0) where g is the zero-
crossing function. Finally, we want to refine our tool in
order to have guaranteed integration of the differential
equations, in the spirit of [6]. In this way, we would
compute reachable sets of the Simulink programs instead
of simulations. This would help to measure the quality of
the numerical simulations: the divergence between both
is an estimation of the error due to the use of numerical
integration tools.
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